1
|
Sohal A, Chaudhry H, Kowdley KV. Genetic Markers Predisposing to Nonalcoholic Steatohepatitis. Clin Liver Dis 2023; 27:333-352. [PMID: 37024211 DOI: 10.1016/j.cld.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The growing prevalence of nonalcoholic fatty liver disease (NAFLD) has sparked interest in understanding genetics and epigenetics associated with the development and progression of the disease. A better understanding of the genetic factors related to progression will be beneficial in the risk stratification of patients. These genetic markers can also serve as potential therapeutic targets in the future. In this review, we focus on the genetic markers associated with the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA
| | - Hunza Chaudhry
- Department of Internal Medicine, UCSF Fresno, 155 North Fresno Street, Fresno, CA 93722, USA
| | - Kris V Kowdley
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA; Elson S. Floyd College of Medicine, Washington State University, WA, USA.
| |
Collapse
|
2
|
NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol 2022; 46:102003. [PMID: 35963605 DOI: 10.1016/j.clinre.2022.102003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Worldwide non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of liver disease and its burden increasing at an alarming rate. NAFLD entails steatosis, fibrosis, cirrhosis, and, finally, hepatocellular carcinoma (HCC). The substantial inter-patient variation during disease progression is the hallmark of individuals with NAFLD. The variability of NAFLD development and related complications among individuals is determined by genetic and environmental factors. Genome-wide association studies (GWAS) have discovered reproducible and robust associations between gene variants such as PNPLA3, TM6SF2, HSD17B13, MBOAT7, GCKR and NAFLD. Evidences have provided the new insights into the NAFLD biology and underlined potential pharmaceutical targets. Ideally, the candidate genes associated with the hereditability of NAFLD are mainly involved in assembly of lipid droplets, lipid remodeling, lipoprotein packing and secretion, redox status mitochondria, and de novo lipogenesis. In recent years, the ability to translate genetics into a clinical context has emerged substantially by combining genetic variants primarily associated with NAFLD into polygenic risk scores (PRS). These score in combination with metabolic factors could be utilized to identify the severe liver diseases in patients with the gene regulatory networks (GRNs). Hereby, we even have highlighted the current understanding related to the schedule therapeutic approach of an individual based on microbial colonization and dysbiosis reversal as a therapy for NAFLD. The premise of this review is to concentrate on the potential of genetic factors and their translation into the design of novel therapeutics, as well as their implications for future research into personalized medications using microbiota.
Collapse
|
3
|
TM6SF2/PNPLA3/MBOAT7 Loss-of-Function Genetic Variants Impact on NAFLD Development and Progression Both in Patients and in In Vitro Models. Cell Mol Gastroenterol Hepatol 2021; 13:759-788. [PMID: 34823063 PMCID: PMC8783129 DOI: 10.1016/j.jcmgh.2021.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The I148M Patatin-like Phospholipase Domain-containing 3 (PNPLA3), the rs641738 in the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) locus, and the E167K Transmembrane 6 Superfamily Member 2 (TM6SF2) polymorphisms represent the main predisposing factors to nonalcoholic fatty liver disease (NAFLD) development and progression. We previously generated a full knockout of MBOAT7 in HepG2 cells (MBOAT7-/-), homozygous for I148M PNPLA3. Therefore, we aimed to investigate the synergic impact of the 3 at-risk variants on liver injury and hepatocellular carcinoma (HCC) in a large cohort of NAFLD patients, and create in vitro models of genetic NAFLD by silencing TM6SF2 in both HepG2 and MBOAT7-/- cells. METHODS NAFLD patients (n = 1380), of whom 121 had HCC, were stratified with a semiquantitative score ranging from 0 to 3 according to the number of PNPLA3, TM6SF2, and MBOAT7 at-risk variants. TM6SF2 was silenced in HepG2 (TM6SF2-/-) and MBOAT7-/- (MBOAT7-/-TM6SF2-/-) through Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). RESULTS In NAFLD patients, the additive weight of these mutations was associated with liver disease severity and an increased risk of developing HCC. In HepG2 cells, TM6SF2 silencing altered lipid composition and induced the accumulation of microvesicular lipid droplets (LDs), whereas the MBOAT7-/-TM6SF2-/- cells showed a mixed microvesicular/macrovesicular pattern of LDs. TM6SF2 deletion strongly affected endoplasmic reticulum and mitochondria ultrastructures, thus increasing endoplasmic reticulum/oxidative stress. The mitochondrial number was increased in both TM6SF2-/- and MBOAT7-/-TM6SF2-/- models, suggesting an unbalancing in mitochondrial dynamics, and the silencing of both MBOAT7 and TM6SF2 impaired mitochondrial activity with a shift toward anaerobic glycolysis. MBOAT7-/-TM6SF2-/- cells also showed the highest proliferation rate. Finally, the re-overexpression of MBOAT7 and/or TM6SF2 reversed the metabolic and tumorigenic features observed in the compound knockout model. CONCLUSIONS The co-presence of the 3 at-risk variants impacts the NAFLD course in both patients and experimental models, affecting LD accumulation, mitochondrial functionality, and metabolic reprogramming toward HCC.
Collapse
|
4
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
5
|
Pott J, Gadin J, Theusch E, Kleber ME, Delgado GE, Kirsten H, Hauck SM, Burkhardt R, Scharnagl H, Krauss RM, Loeffler M, März W, Thiery J, Silveira A, Vant Hooft FM, Scholz M. Meta-GWAS of PCSK9 levels detects two novel loci at APOB and TM6SF2. Hum Mol Genet 2021; 31:999-1011. [PMID: 34590679 PMCID: PMC8947322 DOI: 10.1093/hmg/ddab279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player in lipid metabolism, as it degrades low-density lipoprotein (LDL) receptors from hepatic cell membranes. So far, only variants of the PCSK9 gene locus were found to be associated with PCSK9 levels. Here we aimed to identify novel genetic loci that regulate PCSK9 levels and how they relate to other lipid traits. Additionally, we investigated to what extend the causal effect of PCSK9 on coronary artery disease (CAD) is mediated by low-density lipoprotein–cholesterol (LDL–C). Methods and Results We performed a genome-wide association study meta-analysis of PCSK9 levels in up to 12 721 samples of European ancestry. The estimated heritability was 10.3%, which increased to 12.6% using only samples from patients without statin treatment. We successfully replicated the known PCSK9 hit consisting of three independent signals. Interestingly, in a study of 300 African Americans, we confirmed the locus with a different PCSK9 variant. Beyond PCSK9, our meta-analysis detected three novel loci with genome-wide significance. Co-localization analysis with cis-eQTLs and lipid traits revealed biologically plausible candidate genes at two of them: APOB and TM6SF2. In a bivariate Mendelian Randomization analysis, we detected a strong effect of PCSK9 on LDL-C, but not vice versa. LDL-C mediated 63% of the total causal effect of PCSK9 on CAD. Conclusion Our study identified novel genetic loci with plausible candidate genes affecting PCSK9 levels. Ethnic heterogeneity was observed at the PCSK9 locus itself. Although the causal effect of PCSK9 on CAD is mainly mediated by LDL-C, an independent direct effect also occurs.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jesper Gadin
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Ronald M Krauss
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA.,Department of Medicine, University of California San Francisco, Oakland, CA, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,SYNLAB Academy, SYNALB Holding Deutschland GmbH, Mannheim, Germany
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig.,Faculty of Medicine, Kiel University, Kiel, Germany
| | - Angela Silveira
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Ferdinand M Vant Hooft
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital Solna, Sweden
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Donor PNPLA3 and TM6SF2 Variant Alleles Confer Additive Risks for Graft Steatosis After Liver Transplantation. Transplantation 2020; 104:526-534. [PMID: 31356578 DOI: 10.1097/tp.0000000000002876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The rs58542926 polymorphism in transmembrane 6 superfamily member 2 (TM6SF2) is a genetic factor predisposing to nonalcoholic fatty liver disease. We aimed to explore the effect of recipient and donor TM6SF2 rs58542926 genotypes on liver graft fat content after liver transplantation. METHODS Steatosis was evaluated in liver biopsies from 268 adult recipients. The influence of recipient and donor TM6SF2 genotypes, patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 genotypes, and nongenetic factors on the steatosis grade assessed 6-30 months after transplantation was analyzed by ordinal logistic regression. RESULTS The presence of the TM6SF2 c.499A allele in the donor (P = 0.014), PNPLA3 c.444G allele in the donor (P < 0.001), posttransplant body mass index (P < 0.001), and serum triglycerides (P = 0.047) independently predicted increased liver fat content on multivariable analysis, whereas noncirrhotic liver disease, as an indication for liver transplantation, was associated with lower risk of steatosis (P = 0.003). The effects of the donor TM6SF2 A and PNPLA3 G alleles were additive, with an odds ratio of 4.90 (95% confidence interval, 2.01-13.00; P < 0.001), when both minor alleles were present compared with an odds ratio of 2.22 (95% confidence interval, 1.42-3.61; P = 0.002) when only one of these alleles was present. CONCLUSIONS The donor TM6SF2 c.499A allele is an independent risk factor of liver graft steatosis after liver transplantation that is additive to the effects of donor PNPLA3 c.444G allele.
Collapse
|
7
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
8
|
Xu M, Li Y, Zhang S, Wang X, Shen J, Zhang S. Interaction of TM6SF2 E167K and PNPLA3 I148M variants in NAFLD in northeast China. Ann Hepatol 2020; 18:456-460. [PMID: 31054977 DOI: 10.1016/j.aohep.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND AIM This study aimed to confirm the association of the transmembrane 6 superfamily member 2 (TM6SF2) E167K variant with non-alcoholic fatty liver disease (NAFLD) and the degree of steatosis, as well as the additive effect of body mass index (BMI) or the patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M and TM6SF2 E167K variants in NAFLD. MATERIALS AND METHODS A total of 158 NAFLD patients and 158 matched controls were recruited. Steatosis was classified as mild, moderate and severe by FibroScan. Associations between the TM6SF2 E167K variant and NAFLD as well as clinical parameters were evaluated. RESULTS Although the frequency of the T allele was low in the Chinese population (MAF=7.4%), there was still a significant association between the E167K variant and NAFLD (odds ratio=3.379, 95% confidence interval: 1.500-7.612, P=0.003). In particular, the TM6SF2 genotype was also associated with the degree of steatosis (P=0.023). The TM6SF2 variant was associated with increased alanine aminotransferase (ALT) but no other clinical parameters, such as aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lipids. Notably, we also found that an additive effect of the TM6SF2 E167K and PNPLA3 I148M variants in NAFLD. Furthermore, we did not identify an association between the TM6SF2 E167K variant and NAFLD in the non-obese population. CONCLUSION The TM6SF2 E167K variant was associated with NAFLD in northeast China, and there was an interaction between the PNPLA3 I148M and TMS6F2 E167K variants in NAFLD.
Collapse
Affiliation(s)
- Min Xu
- Department of Medicine, Division of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiling Li
- Department of Medicine, Division of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Shuang Zhang
- Department of Medicine, Division of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyi Wang
- Department of Medicine, Division of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianhua Shen
- Department of Medicine, Division of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuwen Zhang
- Department of Medicine, Division of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Wang X, Cai B, Yang X, Sonubi OO, Zheng Z, Ramakrishnan R, Shi H, Valenti L, Pajvani UB, Sandhu J, Infante RE, Radhakrishnan A, Covey DF, Guan KL, Buck J, Levin LR, Tontonoz P, Schwabe RF, Tabas I. Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. Cell Metab 2020; 31:969-986.e7. [PMID: 32259482 PMCID: PMC7313619 DOI: 10.1016/j.cmet.2020.03.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Incomplete understanding of how hepatosteatosis transitions to fibrotic non-alcoholic steatohepatitis (NASH) has limited therapeutic options. Two molecules that are elevated in hepatocytes in human NASH liver are cholesterol, whose mechanistic link to NASH remains incompletely understood, and TAZ, a transcriptional regulator that promotes fibrosis but whose mechanism of increase in NASH is unknown. We now show that increased hepatocyte cholesterol upregulates TAZ and promotes fibrotic NASH. ASTER-B/C-mediated internalization of plasma membrane cholesterol activates soluble adenylyl cyclase (sAC; ADCY10), triggering a calcium-RhoA-mediated pathway that suppresses β-TrCP/proteasome-mediated TAZ degradation. In mice fed with a cholesterol-rich NASH-inducing diet, hepatocyte-specific silencing of ASTER-B/C, sAC, or RhoA decreased TAZ and ameliorated fibrotic NASH. The cholesterol-TAZ pathway is present in primary human hepatocytes, and associations among liver cholesterol, TAZ, and RhoA in human NASH liver are consistent with the pathway. Thus, hepatocyte cholesterol contributes to fibrotic NASH by increasing TAZ, suggesting new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Bishuang Cai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaoming Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, PRC
| | - Oluwatoni O Sonubi
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy; Translational Medicine - Transfusion Medicine and Hematology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90272, USA
| | - Rodney E Infante
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Douglas F Covey
- Department of Developmental Biology and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90272, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Iruarrizaga-Lejarreta M, Arretxe E, Alonso C. Using metabolomics to develop precision medicine strategies to treat nonalcoholic steatohepatitis. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1685379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Enara Arretxe
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| |
Collapse
|
11
|
Spooner MH, Jump DB. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? Curr Opin Clin Nutr Metab Care 2019; 22:103-110. [PMID: 30601174 PMCID: PMC6355343 DOI: 10.1097/mco.0000000000000539] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide. The incidence of NAFLD parallels the prevalence of obesity. Moreover, NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis and primary hepatocellular cancer (HCC). As such, NAFLD has become a major public health concern. We discuss recent clinical trials and meta-analyses evaluating the efficacy of C20-22 ω3 polyunsaturated fatty acids (PUFA) to attenuate preexisting NAFLD in adults and children. RECENT FINDINGS Humans with NAFLD and NASH; and preclinical mouse models of NASH, have a high abundance of hepatic saturated (SFA) and monounsaturated (MUFA) fat, but a low abundance of hepatic C20-22 ω3 PUFA. This change in hepatic fat type and abundance is associated with hepatic lipotoxicity, inflammation, oxidative stress and fibrosis. Recent meta-analyses and clinical trials evaluated the capacity of C20-22 ω3 PUFA dietary supplementation to improve health outcomes in adults and children with preexisting NAFLD. Diets supplemented with docosahexaenoic acid (DHA, 22 : 6,ω3) alone or with eicosapentaenoic acid (EPA, 20 : 5,ω3) are tolerated and effective at lowering liver fat in NAFLD patients. However, outcomes are mixed with respect to C20-22 ω3 PUFA attenuation of more severe NAFLD markers, such as hepatic injury, inflammation and fibrosis. SUMMARY These studies suggest that dietary supplementation with C20-22 ω3 PUFA should be considered as a viable and effective option to lower liver fat in obese adults and children with NAFLD.
Collapse
Affiliation(s)
| | - Donald B. Jump
- Address correspondence to: Donald B. Jump, Ph.D., School of Biological and Population Health Sciences, 107A Milam Hall, Oregon State University, Corvallis, OR 97331-5109, Phone: 541-737-4007; FAX: 541-737-6914,
| |
Collapse
|
12
|
Chen LZ, Ding HY, Liu SS, Liu Q, Jiang XJ, Xin YN, Xuan SY. Combining I148M and E167K variants to improve risk prediction for nonalcoholic fatty liver disease in Qingdao Han population, China. Lipids Health Dis 2019; 18:45. [PMID: 30738435 PMCID: PMC6368685 DOI: 10.1186/s12944-019-0992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background PNPLA3 I148M variant and TM6SF2 E167K variant are recognized as the major genetic modifiers of nonalcoholic fatty liver disease (NAFLD). The present study sought to evaluate the potential additive effect of the two variants on the risk of NAFLD in Qingdao Han Population, China. Methods We genotyped PNPLA3 I148M variant and TM6SF2 E167K variant in a cohort of 512 unrelated NAFLD patients and 451 healthy controls by sequencing and polymerase chain reaction analysis. In addition, serum lipid profiles and liver enzymes were determined by standard clinical laboratory methods. Results The minor allele frequencies were 45.48% for PNPLA3 148 locus G allele and 6.69% for TM6SF2 167 locus T allele. The PNPLA3 I148M variant was significantly associated with the risk of NAFLD in an additive model (CG, OR = 2.092, 95% CI: 1.551–2.820, P = 0.000; GG, OR = 4.566, 95% CI: 3.141–6.638, P = 0.000, respectively). And, our data suggested a strong link between the TM6SF2 E167K variant and the risk of NAFLD in a dominant model (CT + TT, OR = 2.327, 95% CI: 1.542–3.513, P = 0.000). In addition, the increasing of the number of risk alleles were associated with the risk of NAFLD (1 risk allele, OR = 1.687, P = 0.001; 2 risk alleles, OR = 4.326, P = 0.000; 3 risk alleles, OR = 6.018, P = 0.027, respectively). Conclusions Combining the I148M and E167K variants in a manner of an additive effect could improve risk prediction for NAFLD in a Qingdao Han Population cohort. Trial registration Chinese Clinical Trial Register.gov: ChiCTR1800015426.
Collapse
Affiliation(s)
- Li-Zhen Chen
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, 266003, China.,Department of Gastroenterology, Qingdao Municipal Hospital Group, Qingdao, 266011, China
| | - Hong-Yun Ding
- Department of Gastroenterology, Qingdao Municipal Hospital Group, Qingdao, 266011, China
| | - Shou-Sheng Liu
- Central Laboratories, Qingdao Municipal Hospital Group, Qingdao, 266011, China
| | - Qun Liu
- Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiang-Jun Jiang
- Department of Gastroenterology, Qingdao Municipal Hospital Group, Qingdao, 266011, China
| | - Yong-Ning Xin
- Department of Gastroenterology, Qingdao Municipal Hospital Group, Qingdao, 266011, China.
| | - Shi-Ying Xuan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, 266003, China. .,Department of Gastroenterology, Qingdao Municipal Hospital Group, Qingdao, 266011, China.
| |
Collapse
|
13
|
Abstract
BACKGROUND AND AIMS The patatin-like phospholipase domain-containing 3 (PNPLA3) gene has been associated with the development of alcoholic and nonalcoholic steatohepatitis. Using a newly developed and validated assay for PNPLA3, we explored the prevalence of gene polymorphisms in a cohort of HCV/HIV-coinfected individuals to determine whether there was an association with insulin resistance or hepatic fibrosis. METHODS A high-resolution melting point (HRM) assay was developed and validated. The assay was used to evaluate samples obtained in the context of a clinical trial performed at ACTG sites across the USA in HIV-infected patients. Clinical features and treatment outcomes were assessed in relation to the PNPLA3 genotype. RESULTS The HRM methodology demonstrated 100% concordance with results obtained by Sanger sequencing. Among 241 participants tested, 66.0% had the wild-type allele (CC) and the remainder had the aberrant PNPLA3 gene polymorphism in the homozygotic (GG) or heterozygotic (CG) form. Race and ethnicity were associated with PNPLA3 genotype but fibrosis stage, Homeostatic Model Assessment of Insulin Resistance, and HCV treatment outcome were not. CONCLUSION The HRM method is an effective, rapid technique for characterizing PNPLA3 genotype. In those with HCV/HIV infection, nearly 40% carry gene polymorphisms associated with the development of NASH or ASH. Prospective studies should focus on this group to determine whether they represent a subset of HIV-infected persons at increased risk of fibrotic progression.
Collapse
|
14
|
Zhang X, Liu S, Dong Q, Xin Y, Xuan S. The Genetics of Clinical Liver Diseases: Insight into the TM6SF2 E167K Variant. J Clin Transl Hepatol 2018; 6:326-331. [PMID: 30271746 PMCID: PMC6160302 DOI: 10.14218/jcth.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
The transmembrane 6 superfamily member 2 (TM6SF2) gene E167K variant (rs58542926) was identified by exome-wide association study as a nonsynonymous single nucleotide polymorphism associated with nonalcoholic fatty liver disease. The TM6SF2 E167K variant features a C-to-T substitution at nucleotide 499, encoding a glutamate with lysine change at codon 167 (E167K). TM6SF2 is markedly expressed in the liver, small intestine and kidney, and has been proposed as an important risk factor for diseases associated with lipid metabolism. Subsequently, multifunctional studies of the TM6SF2 E167K variant have been carried out in a spectrum of liver diseases, such as nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, fibrosis, cirrhosis, and viral hepatitis. This review summarizes the research status of the TM6SF2 E167K variant in different liver diseases and specific populations, and discusses the potential mechanisms of the TM6SF2 E167K variant's role in the progression of various liver diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Shousheng Liu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Quanjiang Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Yongning Xin
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- *Correspondence to: Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| | - Shiying Xuan
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- *Correspondence to: Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|