1
|
Li L, Mussack V, Görgens A, Pepeldjiyska E, Hartz AS, Aslan H, Rackl E, Rank A, Schmohl J, El Andaloussi S, Pfaffl MW, Schmetzer H. The potential role of serum extracellular vesicle derived small RNAs in AML research as non-invasive biomarker. NANOSCALE ADVANCES 2023; 5:1691-1705. [PMID: 36926576 PMCID: PMC10012871 DOI: 10.1039/d2na00959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Extracellular vesicles (EV) are cell-derived vesicles released by all cells in health and disease. Accordingly, EVs are also released by cells in acute myeloid leukemia (AML), a hematologic malignancy characterized by uncontrolled growth of immature myeloid cells, and these EVs likely carry markers and molecular cargo reflecting the malignant transformation occurring in diseased cells. Monitoring antileukemic or proleukemic processes during disease development and treatment is essential. Therefore, EVs and EV-derived microRNA (miRNA) from AML samples were explored as biomarkers to distinguish disease-related patterns ex vivo or in vivo. METHODOLOGY EVs were purified from serum of healthy (H) volunteers and AML patients by immunoaffinity. EV surface protein profiles were analyzed by multiplex bead-based flow cytometry (MBFCM) and total RNA was isolated from EVs prior to miRNA profiling via small RNA sequencing. RESULTS MBFCM revealed different surface protein patterns in H versus AML EVs. miRNA analysis showed individual as well as highly dysregulated patterns in H and AML samples. CONCLUSIONS In this study, we provide a proof-of-concept for the discriminative potential of EV derived miRNA profiles as biomarkers in H versus AML samples.
Collapse
Affiliation(s)
- Lin Li
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet Stockholm Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen Essen Germany
| | - Elena Pepeldjiyska
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Anne Sophie Hartz
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Hazal Aslan
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Elias Rackl
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Andreas Rank
- Department of Hematology and Oncology, University Hospital of Augsburg Augsburg Germany
| | - Jörg Schmohl
- Department of Hematology and Oncology, Hospital of Stuttgart Stuttgart Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet Stockholm Sweden
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - Helga Schmetzer
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| |
Collapse
|
2
|
Ganesan S, Mathews V, Vyas N. Microenvironment and drug resistance in acute myeloid leukemia: Do we know enough? Int J Cancer 2021; 150:1401-1411. [PMID: 34921734 DOI: 10.1002/ijc.33908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AMLs), as the name suggests, often develop suddenly and are very progressive forms of cancer. Unlike in acute promyelocytic leukemia, a subtype of AML, the outcomes in most other AMLs remain poor. This is mainly attributed to the acquired drug resistance and lack of targeted therapy. Different studies across laboratories suggest that the cellular mechanisms to impart therapy resistance are often very dynamic and should be identified in a context-specific manner. Our review highlights the progress made so far in identifying the different cellular mechanisms of mutation-independent therapy resistance in AML. It reiterates that for more effective outcomes cancer therapies should acquire a more tailored approach where the protective interactions between the cancer cells and their niches are identified and targeted.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Neha Vyas
- Division of Molecular Medicine, St. John's Research Institute, SJNAHS, Bengaluru, India
| |
Collapse
|
3
|
Shen Y, Jia Y, Zhang R, Chen H, Feng Y, Li F, Wang T, Bai J, He A, Yang Y. Using Circ-ANAPC7 as a Novel Type of Biomarker in the Monitoring of Acute Myeloid Leukemia. Acta Haematol 2021; 145:176-183. [PMID: 34879367 DOI: 10.1159/000520446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Circular RNAs (circRNAs) are a novel class of RNAs which occupy gene expression at the transcriptional or post-transcriptional level, involve in many physiological processes, and participate in many diseases, especially in cancer. Our previous study showed 1 altered circRNA named circ-anaphase promoting complex subunit 7 (ANAPC7) that was upregulated in acute myeloid leukemia (AML). To further clear the expression and clinical significance of circ-ANAPC7, we enlarged the sample size and illuminated the diagnostic and monitoring value of circ-ANAPC7 in AML. METHODS Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was supposed to confirm the expression of circ-ANAPC7 of AML patients. We assessed the correlation of circ-ANAPC7 and clinical variables using the Spearman correlation test. The receiver operating characteristic (ROC) curve was carried out to evaluate the diagnostic value. RESULTS Circ-ANAPC7 was first found to be upregulated in AML, and its expression was correlated to white blood cell counts in peripheral blood and blast percentage in bone marrow. ROC curve analysis revealed that circ-ANAPC7 has a significant value of auxiliary AML diagnosis (area under the curve = 0.915, p < 0.001). Furthermore, the expression level of circ-ANAPC7 was changed accompanied with disease condition transformation. CONCLUSION Circ-ANAPC7 was upregulated in newly diagnosed and relapsed AML. It may serve as potential biomarkers for AML patient's diagnosis and monitoring.
Collapse
Affiliation(s)
- Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| | - Yachun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ru Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongli Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ju Bai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Li Q, Wu T, Li S. MiR-181b serves as diagnosis and prognosis biomarker in severe community-acquired pneumonia. Genet Mol Biol 2021; 44:e20200431. [PMID: 34460893 PMCID: PMC8404775 DOI: 10.1590/1678-4685-gmb-2020-0431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
Severe community-acquired pneumonia (SCAP) is a common critical disease in the intensive care unit (ICU). This study aims to evaluate the clinical significance of miR-181b in SCAP, which has been revealed to be dysregulated in acute respiratory distress syndrome events due to SCAP. There were 50 SCAP patients and 26 healthy volunteers were recruited in this study. The expression of miR-181b was detected by RT-qPCR and the difference between SCAP and healthy controls was evaluated. The diagnosis and prognosis value of miR-181b was assessed by the receiver operating characteristics (ROC), Kaplan-Meier, and Cox regression analysis. miR-181b was significantly downregulated in SCAP compared with healthy controls. The downregulation of miR-181b showed a significant association with the white blood cell count, absolute neutrophils, and the C-reactive protein of patients. The downregulation of miR-181b could distinguish SCAP patients from healthy controls and predicate the poor prognosis of SCAP patients. Downregulated miR-181b serves as a diagnosis and prognosis biomarker for SCAP, which may be useful biological information for the early detection and risk estimation of SCAP.
Collapse
Affiliation(s)
- Qiaolian Li
- Shanxian Dongda Hospital, Department of Respiratory and Critical Care Medicine, Heze, China
| | - Tingting Wu
- Shanxian Dongda Hospital, Department of Respiratory and Critical Care Medicine, Heze, China
| | - Song Li
- Shanxian Dongda Hospital, Department of Respiratory and Critical Care Medicine, Heze, China
| |
Collapse
|
5
|
Abdul-Maksoud RS, Rashad NM, Elsayed WSH, Ali MA, Kamal NM, Zidan HE. Circulating miR-181a and miR-223 expression with the potential value of biomarkers for the diagnosis of systemic lupus erythematosus and predicting lupus nephritis. J Gene Med 2021; 23:e3326. [PMID: 33617143 DOI: 10.1002/jgm.3326] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) contribute to the development and progression of systemic lupus erythematosus (SLE) by affecting a wide range of targeted genes and facilitating the development of lupus nephritis (LN). The present study aimed to analyze the serum expression of miR-181a and miR-223 in SLE patients and to assess whether they could serve as novel biomarkers for SLE diagnosis and to distinguish LN. METHODS The study included 70 control subjects and 116 patients with SLE (67 non-LN and 49 LN groups). Circulating miR-181a and miR-223 expression levels were analyzed among the Egyptian population using a real-time polymerase chain reaction. RESULTS Up-regulation of miR-181a was detected among SLE patients compared to healthy controls and higher values were reported among the LN group compared to the non-LN group. Down-regulation of miR-223 was reported among SLE patients compared to controls and lower values were reported among the LN group compared to the non-LN group. The higher miR-181a expression and the lower miR-223 expression were associated with higher stages of LN. SLE disease activity index, proteinuria and serum creatinine were independently correlated with miR-181a and miR-223 among SLE patients by linear regression analysis. Receiver-operating characteristic curve analysis revealed that combined miR-181a and miR-223 expression increased the sensitivity and specificity for the diagnosis of SLE and further distinguished LN from non-LN patients. CONCLUSIONS miR-181a and miR-223 could play a role in evaluating SLE disease progression and prognosis. Combined miR-181a and miR-223 expression analysis could serve as novel serum-based biomarkers in the diagnosis of SLE and predicting LN among Egyptians.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walid S H Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal A Ali
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nafesa M Kamal
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
7
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:ijms21197065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Correspondence:
| |
Collapse
|
8
|
Szczepanek J. Role of microRNA dysregulation in childhood acute leukemias: Diagnostics, monitoring and therapeutics: A comprehensive review. World J Clin Oncol 2020; 11:348-369. [PMID: 32855905 PMCID: PMC7426929 DOI: 10.5306/wjco.v11.i6.348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate the expression of genes by sequence-specific binding to mRNA to either promote or block its translation; they can also act as tumor suppressors (e.g., let-7b, miR-29a, miR-99, mir-100, miR-155, and miR-181) and/or oncogenes (e.g., miR-29a, miR-125b, miR-143-p3, mir-155, miR-181, miR-183, miR-196b, and miR-223) in childhood acute leukemia (AL). Differentially expressed miRNAs are important factors associated with the initiation and progression of AL. As shown in many studies, they can be used as noninvasive diagnostic and prognostic biomarkers, which are useful in monitoring early stages of AL development or during therapy (e.g., miR-125b, miR-146b, miR-181c, and miR-4786), accurate classification of different cellular or molecular AL subgroups (e.g., let-7b, miR-98, miR-100, miR-128b, and miR-223), and identification and development of new therapeutic agents (e.g., mir-10, miR-125b, miR-203, miR-210, miR-335). Specific miRNA patterns have also been described for commonly used AL therapy drugs (e.g., miR-125b and miR-223 for doxorubicin, miR-335 and miR-1208 for prednisolone, and miR-203 for imatinib), uncovering miRNAs that are associated with treatment response. In the current review, the role of miRNAs in the development, progression, and therapy monitoring of pediatric ALs will be presented and discussed.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń 87100, Poland
| |
Collapse
|
9
|
Sabarimurugan S, Kumarasamy C, Royam Madhav M, Samiappan S, Jayaraj R. The Significance of miRNAs as a Prognostic Biomarker for Survival Outcome in T Cell - Acute Lymphoblastic Leukemia Patients: A Systematic Review and Meta-Analysis. Cancer Manag Res 2020; 12:819-839. [PMID: 32104065 PMCID: PMC7008181 DOI: 10.2147/cmar.s200687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose T-cell acute lymphoblastic leukemia (T-ALL) affects lymphoid cells. Previous studies have reported that miRNAs play a significant role in T-ALL prognosis and have the potential to function as biomarkers in T-ALL. Therefore, this systematic review and meta-analysis study was designed to evaluate the overall prognostic impact of miRNAs in T-ALL patients. Methods Eligible studies published between Jan 2010 and April 2018 were retrieved from online bibliographic databases based on multiple keywords to generate search strings. Meta-analysis was performed using the outcome measure, Hazard Ratio (HR). A survival analysis of all studies was conducted and a subsequent forest plot was generated to evaluate the pooled effect size, across all T-ALL patients. Subgroup analysis was conducted based on demographic characteristics and commonly represented miRNAs among the included studies. Results A total of 17 studies were included for systematic review, among which 16 studies were eligible for meta-analysis, which, in total discussed 32 different miRNAs. The mean effect size of HR value was 0.929 (CI 0.878–0984), which indicates a decrease in risk of death by 7.1%. The analysis was based on the random effects model with the heterogeneity measure index (I2) being 84.92%. The pooled effect size (HR) of upregulated and downregulated miRNA expressions on survival outcome in the T-ALL patient was 0.787 (CI 0.732–0.845) and 1.225 (CI 1.110–1.344) respectively. The subgroup analysis was performed based on demographic characteristics (age, gender, lactate dehydrogenase, WBC count) and expression of miR221 and miR46a. Conclusion Our systematic review and meta-analysis findings suggest that the overall miRNA expression is potentially associated with a decreased likelihood of death in T-ALL patients. Although our findings are inconclusive, the results point toward miRNA expression allowing for prognostic evaluation of T-ALL patients.
Collapse
Affiliation(s)
| | - Chellan Kumarasamy
- University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Madurantakam Royam Madhav
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India 632014
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Rama Jayaraj
- Clinical Sciences, College of Health and Human Sciences, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| |
Collapse
|
10
|
Abdelhamed S, Butler JT, Doron B, Halse A, Nemecek E, Wilmarth PA, Marks DL, Chang BH, Horton T, Kurre P. Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche. EMBO Rep 2019; 20:e47546. [PMID: 31267709 PMCID: PMC6607014 DOI: 10.15252/embr.201847546] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Progressive remodeling of the bone marrow microenvironment is recognized as an integral aspect of leukemogenesis. Expanding acute myeloid leukemia (AML) clones not only alter stroma composition, but also actively constrain hematopoiesis, representing a significant source of patient morbidity and mortality. Recent studies revealed the surprising resistance of long-term hematopoietic stem cells (LT-HSC) to elimination from the leukemic niche. Here, we examine the fate and function of residual LT-HSC in the BM of murine xenografts with emphasis on the role of AML-derived extracellular vesicles (EV). AML-EV rapidly enter HSC, and their trafficking elicits protein synthesis suppression and LT-HSC quiescence. Mechanistically, AML-EV transfer a panel of miRNA, including miR-1246, that target the mTOR subunit Raptor, causing ribosomal protein S6 hypo-phosphorylation, which in turn impairs protein synthesis in LT-HSC. While HSC functionally recover from quiescence upon transplantation to an AML-naive environment, they maintain relative gains in repopulation capacity. These phenotypic changes are accompanied by DNA double-strand breaks and evidence of a sustained DNA-damage response. In sum, AML-EV contribute to niche-dependent, reversible quiescence and elicit persisting DNA damage in LT-HSC.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cells, Cultured
- DNA Breaks, Double-Stranded
- Extracellular Vesicles/metabolism
- Female
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Regulatory-Associated Protein of mTOR/genetics
- Regulatory-Associated Protein of mTOR/metabolism
- Ribosomal Protein S6/genetics
- Stem Cell Niche
Collapse
Affiliation(s)
- Sherif Abdelhamed
- Department of PediatricsPapé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| | - John T Butler
- Department of PediatricsPapé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandORUSA
| | - Ben Doron
- Department of PediatricsPapé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Amber Halse
- Department of PediatricsPapé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Eneida Nemecek
- Department of PediatricsPapé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| | - Phillip A Wilmarth
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandORUSA
- Proteomics Shared ResourcesOregon Health & Science UniversityPortlandORUSA
| | - Daniel L Marks
- Department of PediatricsPapé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Bill H Chang
- Department of PediatricsPapé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| | - Terzah Horton
- Texas Children's Cancer and Hematology CentersBaylor College of MedicineHoustonTXUSA
| | - Peter Kurre
- Children's Hospital of PhiladelphiaComprehensive Bone Marrow Failure CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
11
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Sun X, Liu H, Li T, Qin L. MicroRNA‑339‑5p inhibits cell proliferation of acute myeloid leukaemia by directly targeting SOX4. Mol Med Rep 2018; 18:5261-5269. [PMID: 30320397 DOI: 10.3892/mmr.2018.9552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/25/2018] [Indexed: 11/06/2022] Open
Abstract
In recent decades, microRNAs (miRNAs) have been considered novel gene regulators. Dysregulated miRNAs serve crucial roles in the formation and progression of acute myeloid leukaemia (AML). Therefore, the roles of differentially expressed miRNAs in AML require extensive investigation to obtain insight into the treatment of patients with AML. The present study demonstrated significant miR‑339‑5p downregulation in AML samples and cell lines. miR‑339‑5p overexpression attenuated AML cell proliferation by inducing cell cycle arrest and promoting cell apoptosis. Additionally, sex‑determining region Y‑related high‑mobility group box 4 (SOX4) was identified as a direct target gene of miR‑339‑5p in AML. Furthermore, SOX4 expression was significantly upregulated in AML samples; this upregulation was inversely correlated with the expression levels of miR‑339‑5p. Additionally, a series of rescue experiments demonstrated that SOX4 resumption reversed the effects of miR‑339‑5p overexpression on cell proliferation, cycle status and apoptosis of AML. In conclusion, miR‑339‑5p may serve its antiproliferative role in AML by directly targeting SOX4, which suggests that miR‑339‑5p may be considered an effective novel therapeutic target for treating patients with such an aggressive haematological malignancy.
Collapse
Affiliation(s)
- Xueming Sun
- Department of Hematology, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Huaqiang Liu
- Department of Hematology, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Tingting Li
- Department of Hematology, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Laiying Qin
- Department of Clinical Laboratory, Jinan Hospital for Infectious Diseases, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
13
|
Ye Q, Fu P, Dou J, Wang N. Downregulation of PDIA3 inhibits proliferation and invasion of human acute myeloid leukemia cells. Onco Targets Ther 2018; 11:2925-2935. [PMID: 29844689 PMCID: PMC5961636 DOI: 10.2147/ott.s162407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a common malignancy of the hematopoietic system. In bone marrow samples of AML patients, PDIA3 expression was higher than that in the samples of healthy controls. We aimed at exploring the effect of PDIA3 siRNA on proliferation, apoptosis, migration, and invasion of AML HL-60 and HEL cells. Materials and methods RT-PCR was performed to identify PDIA3 expression. Cell proliferation was assessed by MTT. Flow cytometry analysis and transwell were used to detect cell apoptosis, migration and invasion. Gene set enrich-ment analysis (GSEA) was employed to explore the PDIA 3-associated pathways in AML. Western blotting was used for protein expression detection. Results PDIA3 siRNA significantly inhibited the proliferation of AML cells at 24 and 48 h. PDIA3 siRNA notably enhanced the percentage of apoptotic cells. The migration and invasion abilities of HL-60 and HEL cells in the PDIA3 siRNA group were significantly suppressed compared with those in the control and siNC groups. GSEA of the Cancer Genome Atlas dataset showed that Kyoto Encyclopedia of Genes and Genomes oxidative phosphorylation and amino sugar and nucleotide sugar metabolism pathways could be correlated with PDIA3 expression; this was further confirmed in AML cells by Western blotting. MAPK signaling was also blocked by PDIA3 siRNA. Conclusion PDIA3 siRNA effectively enhanced apoptosis, and suppressed proliferation, invasion, and migration of AML cells by regulating oxidative phosphorylation and amino sugar and nucleotide sugar metabolism pathways, and MAPK signaling, which can provide novel therapeutic targets for AML.
Collapse
Affiliation(s)
- Qidong Ye
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, People's Republic of China
| | - Pan Fu
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiaying Dou
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Nina Wang
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Du XJ, Lu JM, Sha Y. MiR-181a inhibits vascular inflammation induced by ox-LDL via targeting TLR4 in human macrophages. J Cell Physiol 2018; 233:6996-7003. [PMID: 29737518 DOI: 10.1002/jcp.26622] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a kind of chronic inflammation disease with lipid accumulation in in blood vessel linings. Increasing evidence has reported that microRNAs can exert crucial roles in atherosclerosis. In previous study, miR-181a has been implicated to be abnormally expressed in atherosclerosis mice, however its detailed function in atherosclerosis remains uninvestigated. Hence, in our current study, we focused on the biological role of miR-181a in atherosclerosis progression. Ox-LDL has been commonly identified as an important atherosclerosis regulator. We observed that ox-LDL induced THP-1 cell apoptosis dose-dependently and time- dependently. Meanwhile, 25 µg/ml ox-LDL can promote foam cell formation and increased miR-181a expression significantly. CD36 has been involved in atherosclerosis progression and it was found that overexpression of miR-181a inhibited its protein levels. Moreover, miR-181a mimics repressed foam cell formation, TC and TG levels induced by ox-LDL dramatically. In addition, miR-181a mimics were able to reverse THP-1 cell apoptosis, increased IL-6, IL-1β, and TNF-α protein expression triggered by 25 µg/ml ox-LDL. TLR4 has been linked to various inflammation-associated diseases. In our present study, TLR4 was indicated as miR-181a target and the binding correlation between them was validated by dual-luciferase reporter assay. In conclusion, these results improves the understanding of atherosclerosis modulated by miR-181a/TLR4 and can contribute to development of new approaches for atherosclerosis.
Collapse
Affiliation(s)
- Xian-Jin Du
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing-Min Lu
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yin Sha
- Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|