1
|
Patterson MR, Meijers AS, Ryder EL, Wootton LM, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald DA, Cogan JA, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. Oncogene 2024; 43:2184-2198. [PMID: 38789663 PMCID: PMC11226402 DOI: 10.1038/s41388-024-03067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ~5% of all human cancers worldwide, including most cervical cancer cases and a growing number of anogenital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited the oncogenic phenotype in vitro, whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we demonstrate that the LASP1 SH3 domain is essential for LASP1-mediated oncogenicity in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulates LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrate that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
Affiliation(s)
- Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aniek S Meijers
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Emma L Ryder
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - James A Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Debra Evans
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, UK
| | - Janne E Darell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Daisy A Theobald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Joseph A Cogan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Iain M Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
- VCU Massey Cancer Center, VCU, Richmond, VA, USA
| | - Adel Samson
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Patterson MR, Meijers AS, Ryder EL, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald D, Cogan J, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574687. [PMID: 38293147 PMCID: PMC10827106 DOI: 10.1101/2024.01.08.574687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ∼5% of all human cancers worldwide, including most cervical cancer cases and a growing number of ano-genital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited proliferation in vitro , whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we show that the LASP1 SH3 domain is essential for LASP1-mediated proliferation in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulated LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrated that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival role in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
|
3
|
Guo H, Zhao J, Li X, Sun F, Qin Y, Yang X, Xiong X, Yin Q, Wang X, Gao L, Jiao M, Hu J, Han B. Identification of miR-1-3p, miR-143-3p and miR-145-5p association with bone metastasis of Gleason 3+4 prostate cancer and involvement of LASP1 regulation. Mol Cell Probes 2023; 68:101901. [PMID: 36791996 DOI: 10.1016/j.mcp.2023.101901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Gleason Score (GS) 3 + 4 prostate cancer (PCa) is heterogeneous in clinical course and molecular features. Risk stratification of indolent and aggressive PCa with GS 3 + 4 is critical, especially those with bone metastasis (BM) potential. Microarray-based microRNA(miRNA) profiling with eight PCa cases with or without BM was used to screen the candidate miRNAs associated with BM. Transwell and MTS assays were used to characterize the function of miRNAs and target gene LASP1. RT-qPCR and immunohistochemistry assays were utilized to illustrate the clinical significance of miRNAs and target gene in a cohort of 309 Chinese PCa cases. In the current study, we identified that miR-1-3p, miR-143-3p and miR-145-5p are associated with BM of GS 3 + 4 PCa. Through functional experiments, we show that miR-1-3p/143-3p/145-5p promotes proliferation and migration of PCa in vitro. LASP1 was predicted as the common target of these three miRNAs which was further confirmed by a luciferase assay. Overexpression of LASP1 was correlated with higher GS, higher pathological stage, and the presence of metastasis by immunohistochemistry. siRNA knockdown of LASP1 significantly suppressed proliferation and migration, whereas overexpression of LASP1 promoted it. Bioinformatics analysis revealed the involvement of Wnt signaling pathway in LASP1 mediated function. LASP1 may activate Wnt signaling by interacting with β-catenin. In all, we suggest that miR-1-3p/143-3p/145-5p are associated with BM of Gleason 3 + 4 PCa. LASP1 is the common target of these miRNAs and may active Wnt signaling by interacting with β-catenin.
Collapse
Affiliation(s)
- Hongwei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China; Department of Pathology, Linyi People's Hospital, Linyi, 276000, China
| | - Jinlong Zhao
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Xinjun Li
- Department of Pathology, Binzhou People's Hospital, Binzhou, 256610, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yiming Qin
- College of Chemical Engineering and Materials Science, Shandong Normal University, 250014, Jinan, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qianshuo Yin
- School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xueli Wang
- Department of Pathology, Binzhou City Central Hospital, Binzhou, 256603, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Meng Jiao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Grossi I, Schiavone M, Cannone E, Grejdan OA, Tobia C, Bonomini F, Rezzani R, Salvi A, De Petro G. Lasp1 Expression Is Implicated in Embryonic Development of Zebrafish. Genes (Basel) 2022; 14:genes14010035. [PMID: 36672776 PMCID: PMC9858601 DOI: 10.3390/genes14010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The LIM and SH3 domain protein 1 (LASP1) was originally identified in metastatic breast cancer and mainly characterized as a cytoskeleton protein overexpressed in various cancer types. At present, little is known about LASP1 expression in physiological conditions, and its function during embryonic development has not been elucidated. Here, we focused on Lasp1 and embryonic development, choosing zebrafish as a vertebrate model. For the first time, we identified and determined the expression of Lasp1 protein at various stages of development, at 48 and 72 h post-fertilization (hpf), at 6 days pf and in different organs of zebrafish adults by Western blotting, 3D light-sheet microscopy and fluorescent immunohistochemistry. Further, we showed that specific lasp1 morpholino (MO) led to (i) abnormal morphants with alterations in several organs, (ii) effective knockdown of endogenous Lasp1 protein and (iii) an increase in lasp1 mRNA, as detected by ddPCR. The co-injection of lasp1 mRNA with lasp1 MO partially rescued morphant phenotypes, thus confirming the specificity of the MO oligonucleotide-induced defects. We also detected an increase in apoptosis following lasp1 MO treatment. Our results suggest a significant role for Lasp1 in embryonic development, highlighting zebrafish as a vertebrate model suitable for studying Lasp1 function in developmental biology and organogenesis.
Collapse
Affiliation(s)
- Ilaria Grossi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Elena Cannone
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Oana Andreea Grejdan
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, Division of Experimental Oncology and Immunology, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Butt E, Howard CM, Raman D. LASP1 in Cellular Signaling and Gene Expression: More than Just a Cytoskeletal Regulator. Cells 2022; 11:cells11233817. [PMID: 36497077 PMCID: PMC9741313 DOI: 10.3390/cells11233817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biochemistry II, University Clinic Wuerzburg, 97080 Wuerzburg, Germany
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| | - Cory M. Howard
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| |
Collapse
|
6
|
Zhang Z, Wang Y, Zeng L, Yu K, Wang Y, Luo Y, Liu F, Yang B, Zou Y, Wang L, Huang O. miR-218-5p in endometrial microenvironment prevents the migration of ectopic endometrial stromal cells by inhibiting LASP1. Reprod Biol Endocrinol 2022; 20:64. [PMID: 35379225 PMCID: PMC8978357 DOI: 10.1186/s12958-022-00928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our previous two-dimensional electrophoresis experiment showed that the expression of LASP1 in patients with endometriosis was significantly higher than that of control endometrium. However, the molecular mechanism by which LASP1 is regulated in endometriosis/adenomyosis is unknown. METHODS Herein, qPCR was performed to analyze the expression levels of LASP1 and miR-218-5p between endometriosis (Ems) cells and control cells. Fluorescence in situ hybridization was carried out to measure the expression level of miR-218-5p in ectopic endometrium versus normal endometrium. After miR-218-5p mimic or inhibitor were transfected, the transwell experiment was carried out to see the effect of miR-218-5p on the migration of endometrial stromal cells (ESCs). EdU was used to measure cell proliferation rate. Dual-luciferase reporter assay was used to verify the binding of hsa-miR-218-5p to the 3'UTR of LASP1. Western blot and immunofluorescence analysis were carried out to identify the protein expression pattern of LASP1 and EMT markers in endometrial tissue. RESULTS The miR-218-5p is mainly secreted from blood vessels and expressed in the muscle layer around the endometrium, which inhibits the expression level of LASP1 by binding the 3'UTR region of LASP1 in normal ESCs. Overexpression of miR-218-5p impedes the epithelial-to-mesenchymal transition (EMT) and prevents the migration of ESCs and the expression of Vimentin in Ems. CONCLUSIONS Our findings revealed that miR-218-5p in endometrial microenvironment prevents the migration of ectopic endometrial stromal cells by inhibiting LASP1.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Pathology, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, 330006, PR China
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yaoqing Wang
- Department of Reproductive Health, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, 330006, PR China
| | - Liqin Zeng
- The College of Medicine, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Kaihui Yu
- The College of Medicine, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yuanqin Wang
- The College of Medicine, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yong Luo
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Faying Liu
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Bicheng Yang
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, 330006, PR China
| | - Yang Zou
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| | - Liqun Wang
- Department of Reproductive Health, Jiangxi Maternal & Child Health Hospital, Nanchang, Jiangxi, 330006, PR China.
| | - Ouping Huang
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Song S, Johnson KS, Lujan H, Pradhan SH, Sayes CM, Taube JH. Nanoliposomal Delivery of MicroRNA-203 Suppresses Migration of Triple-Negative Breast Cancer through Distinct Target Suppression. Noncoding RNA 2021; 7:45. [PMID: 34449670 PMCID: PMC8395754 DOI: 10.3390/ncrna7030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers affect thousands of women in the United States and disproportionately drive mortality from breast cancer. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression post-transcriptionally by inhibiting target mRNA translation or by promoting mRNA degradation. We have identified that miRNA-203, silenced by epithelial-mesenchymal transition (EMT), is a tumor suppressor and can promote differentiation of breast cancer stem cells. In this study, we tested the ability of liposomal delivery of miR-203 to reverse aspects of breast cancer pathogenesis using breast cancer and EMT cell lines. We show that translationally relevant methods for increasing miR-203 abundance within a target tissue affects cellular properties associated with cancer progression. While stable miR-203 expression suppresses LASP1 and survivin, nanoliposomal delivery suppresses BMI1, indicating that suppression of distinct mRNA target profiles can lead to loss of cancer cell migration.
Collapse
Affiliation(s)
- Shuxuan Song
- Department of Biology, Baylor University, Waco, TX 76706, USA; (S.S.); (K.S.J.)
| | - Kelsey S. Johnson
- Department of Biology, Baylor University, Waco, TX 76706, USA; (S.S.); (K.S.J.)
| | - Henry Lujan
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA; (H.L.); (S.H.P.); (C.M.S.)
| | - Sahar H. Pradhan
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA; (H.L.); (S.H.P.); (C.M.S.)
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA; (H.L.); (S.H.P.); (C.M.S.)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA; (S.S.); (K.S.J.)
| |
Collapse
|
8
|
Sun W, Zu S, Shao G, Wang W, Gong F. Long non-coding DANCR targets miR-185-5p to upregulate LIM and SH3 protein 1 promoting prostate cancer via the FAK/PI3K/AKT/GSK3β/snail pathway. J Gene Med 2021; 23:e3344. [PMID: 33885171 DOI: 10.1002/jgm.3344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) acts as an oncogene in different cancers, although its roles in prostate cancer are not fully reported. We aimed to explore its mechanism in facilitating the malignancy of prostate cancer. METHODS The expression of DANCR, microRNA (miR)-185-5p and LIM and SH3 protein 1 (LASP1) in 40 pairs of prostate cancer tissues and normal tissues, five prostate cancer cell lines and one epithelial cell line was assessed by a quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry, respectively. In transfected PC3 and C4-2 cells, cell proliferation, migration, invasion, cell cycle distribution and epithelial-mesenchymal transition (EMT) protein expression were tested via cell counting kit-8, wound healing, transwell, flow cytometry and western blot assays, respectively. The interactions between DANCR, miR-185-5p and LASP1 were verified by a dual-luciferase reporter assay. Rescue experiments were conducted to determine the roles of DANCR on the malignant properties of PC3 and C4-2 cells. The involvement of the signaling pathway was examined using a p-FAK inhibitor. RESULTS DANCR and LASP1 expression was enhanced, whereas miR-185-5p expression was diminished in prostate cancer tissues and cell lines. Knockdown of DANCR suppressed cell proliferation, migration, invasion, G1-S transition and expression of EMT proteins of the transfected PC3 and C4-2 cells. DANCR sponged miR-185-5p to upregulate LASP1 expression. DANCR-miR-185-5p-LASP1 axis activates the FAK/PI3K/AKT/GSK3β/Snail pathway to promote the malignant properties of PC3 and C4-2 cells. CONCLUSIONS These findings suggest that DANCR exerts oncogenic roles in prostate cancer via the miR-185-5p/LASP1 axis activating the FAK/PI3K/AKT/GSK3β/Snail pathway. It can be a potential biomarker in the diagnosis and monitoring of prostate cancer.
Collapse
Affiliation(s)
- Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan City, Shandong, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan City, Shandong, China
| | - Guangfeng Shao
- Department of Urology, The Second Hospital of Shandong University, Jinan City, Shandong, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan City, Shandong, China
| | - Fangxin Gong
- Department of Urology, The Second Hospital of Shandong University, Jinan City, Shandong, China
| |
Collapse
|
9
|
Investigation of microRNA expression signatures in HCC via microRNA Gene Chip and bioinformatics analysis. Pathol Res Pract 2020; 216:152982. [DOI: 10.1016/j.prp.2020.152982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
|
10
|
Han N, Xu H, Yu N, Wu Y, Yu L. MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α. Clin Exp Pharmacol Physiol 2020; 47:85-94. [PMID: 31408201 DOI: 10.1111/1440-1681.13163] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
Proliferative diabetic retinopathy (PDR) is a common complication of diabetes mellitus, characterized by abnormal retinal angiogenesis. MicroRNA-203-3p (miR-203-3p) was found to be down-regulated in a murine model of proliferative retinopathy. This study was performed to explore the role of miR-203a-3p in retinal angiogenesis of PDR. Firstly, a rat OIR model, which was used to mimic PDR, was established and the OIR rats were treated with scrambled control or miR-203a-3p agomir by intravitreal injection. The results showed that the level of miR-203a-3p was decreased in OIR rats, and forced over-expression of miR-203a-3p inhibited OIR-induced retinal angiogenesis as evidenced by reduced blood vessel profiles and CD31 expression. OIR-induced up-regulation of VEGFA, HIF-α, PCNA, and MMPs in the retina was also counteracted by miR-203a-3p. Additionally, high glucose (HG)-induced proliferation, migration and tube formation of human retinal microvascular endothelial cells (HRMECs) were also dampened by the up-regulation of miR-203a-3p. Dual-luciferase reporter assay showed that miR-203a-3p could specifically bind to the 3'UTR of VEGFA and HIF-1α. Over-expression of VEGFA or HIF-1α restored the tube formation activity of HRMECs suppressed by miR-203a-3p. In conclusion, our findings demonstrate that up-regulation of miR-203a-3p might inhibit pathological retinal angiogenesis of PDR by targeting VEGFA and HIF-1α.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Haitao Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, China
| | - Yazhen Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Liu HY, Zhang YY, Zhu BL, Feng FZ, Zhang HT, Yan H, Zhou B. MiR-203a-3p regulates the biological behaviors of ovarian cancer cells through mediating the Akt/GSK-3β/Snail signaling pathway by targeting ATM. J Ovarian Res 2019; 12:60. [PMID: 31277702 PMCID: PMC6612229 DOI: 10.1186/s13048-019-0532-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate whether miR-203a-3p can regulate the biological behaviors of ovarian cancer cells by targeting ATM to affect the Akt/GSK-3β/Snail signaling pathway. METHODS The expression levels of miR-203a-3p and ATM were detected by qRT-PCR, immunohistochemical staining and Western blotting in ovarian cancer tissues and adjacent normal tissues obtained from 152 subjects. A dual-luciferase reporter gene assay was performed to verify the relationship between miR-203a-3p and ATM. Human ovarian cancer cell lines (A2780 and SKOV3) were used to generate the Blank, miR-NC, miR-203a-3p mimic, Control siRNA, ATM siRNA, and miR-203a-3p inhibitor + ATM siRNA groups. The biological behaviors of ovarian cancer cells were evaluated by CCK-8, wound healing, and Transwell invasion assays, annexin V-FITC/PI staining and flow cytometry. The levels of Akt/GSK-3β/Snail pathway-related proteins were assessed by Western blotting. RESULTS Ovarian cancer tissues showed lower miR-203a-3p levels and higher ATM levels than adjacent normal tissues, both of which were associated with the FIGO stage, grade and prognosis of ovarian cancer. As confirmed by a dual-luciferase reporter gene assay, miR-203a-3p could target ATM. Furthermore, the miR-203a-3p mimic had multiple effects, including the inhibition of the proliferation, invasion and migration of A2780 and SKOV3 cells, the promotion of cell apoptosis, the arrest of the cell cycle at the G1 phase, and the blockage of the Akt/GSK-3β/Snail signaling pathway. ATM siRNA had similar effects on the biological behaviors of ovarian cancer cells, and these effects could be reversed by a miR-203a-3p inhibitor. CONCLUSION miR-203a-3p was capable of hindering proliferation, migration, and invasion and facilitating the apoptosis of ovarian cancer cells through its modulation of the Akt/GSK-3β/Snail signaling pathway by targeting ATM, and therefore it could serve as a potential therapeutic option for ovarian cancer.
Collapse
Affiliation(s)
- Hong-Yun Liu
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Yu-Ying Zhang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Bao-Lian Zhu
- Department of Infection, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Fu-Zhong Feng
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Hai-Tang Zhang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Hua Yan
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, 276400, Shandong, China
| | - Bin Zhou
- Department of Rehabilitation Medicine, Linyi Central Hospital, No.17, Jiankang Road, Linyi, 276400, Shandong, China.
| |
Collapse
|
12
|
Greco F, Inferrera A, La Rocca R, Navarra M, Casciaro M, Grosso G, Gangemi S, Ficarra V, Mirone V. The Potential Role of MicroRNAs as Biomarkers in Benign Prostatic Hyperplasia: A Systematic Review and Meta-analysis. Eur Urol Focus 2019; 5:497-507. [DOI: 10.1016/j.euf.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/28/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
|
13
|
Weidle UH, Epp A, Birzele F, Brinkmann U. The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics Proteomics 2019; 16:1-19. [PMID: 30587496 DOI: 10.21873/cgp.20108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
The mortality of patients with hormone-resistant prostate cancer can be ascribed to a large degree to metastasis to distant organs, predominantly to the bones. In this review, we discuss the contribution of micro-RNAs (miRs) to the metastatic process of prostate cancer. The criteria for selection of miRs for this review were the availability of preclinical in vivo metastasis-related data in conjunction with prognostic clinical data. Depending on their function in the metastatic process, the corresponding miRs are up- or down-regulated in prostate cancer tissues when compared to matching normal tissues. Up-regulated miRs preferentially target suppressors of cytokine signaling or tumor suppressor-related genes and metastasis-inhibitory transcription factors. Down-regulated miRs promote epithelial-mesenchymal transition or mesenchymal-epithelial transition and diverse pro-metastatic signaling pathways. Some of the discussed miRs exert their function by simultaneously targeting epigenetic pathways as well as cell-cycle-related, anti-apoptotic and signaling-promoting targets. Finally, we discuss potential therapeutic options for the treatment of prostate cancer-related metastases by substitution or inhibition of miRs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexandra Epp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
14
|
Musavi Shenas MH, Eghbal-Fard S, Mehrisofiani V, Abd Yazdani N, Rahbar Farzam O, Marofi F, Yousefi M. MicroRNAs and signaling networks involved in epithelial-mesenchymal transition. J Cell Physiol 2018; 234:5775-5785. [PMID: 30417364 DOI: 10.1002/jcp.27489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a phenomenon in which epithelial cells lose their cell-to-cell connection and are detached from the base membrane. EMT is fundamental for many biological processes such as embryonic development and neurogenesis. It also plays a significant role in cancer progression and metastasis. EMT regulation occurs through a sophisticated network of transcription regulations that include many signaling pathways. The exact mechanism of cancer gene regulation has not been understood yet. However, it is interesting to study the role of microRNAs and epigenetics mechanism in the cancer development. In this review, the transcription regulation of EMT and the analysis of possible overlap between microRNAs and their targets which are involved in the cancer development are scrutinized.
Collapse
Affiliation(s)
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Mehrisofiani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Abd Yazdani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Butt E, Raman D. New Frontiers for the Cytoskeletal Protein LASP1. Front Oncol 2018; 8:391. [PMID: 30298118 PMCID: PMC6160563 DOI: 10.3389/fonc.2018.00391] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
In the recent two decades, LIM and SH3 protein 1 (LASP1) has been developed from a simple actin-binding structural protein to a tumor biomarker and subsequently to a complex, nuclear transcriptional regulator. Starting with a brief historical perspective, this review will mainly compare and contrast LASP1 and LASP2 from the angle of the newest data and importantly, examine their role in transcriptional regulation. We will summarize the current knowledge through pictorial models and tables including the roles of different microRNAs in the differential regulation of LASP1 levels and patient outcome rather than specify in detail all tumor entities. Finally, the novel functional roles of LASP1 in secretion of vesicles, expression of matrix metalloproteinases and transcriptional regulation as well as the activation of survival and proliferation pathways in different cancer types are described.
Collapse
Affiliation(s)
- Elke Butt
- Institute for Experimental Biomedicine II, University Clinic, Wuerzburg, Germany
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
16
|
Hosseini SM, Mahjoubi F, Majidzadeh T, Khaje-Hosseini F, Haghipanah M. Nebulette Expression Is Associated with Lymph Node Metastasis in Patients with Colorectal Cancer. Middle East J Dig Dis 2018; 10:174-179. [PMID: 30186581 PMCID: PMC6119834 DOI: 10.15171/mejdd.2018.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND
Colorectal cancer (CRC) is one of the most common cancers among men and women worldwide.
Cancer metastasis is the main cause of death in patients with cancer. NEBL (nebulette, Gene ID:
10529) protein interacts with thin filaments in the cell and may functionally destabilize focal
adhesion composition. There are some studies on NEBL gene expression alteration in cancer. In
the presented study we aimed to analyze NEBL gene expression in patients with colorectal cancer
to explore possible association of this gene with clinicopathological features in CRC.
METHODS
Sixty-seven fresh samples of colorectal tumors and adjacent normal tissues were collected
from Iranian patients with CRC. Real time polymerase chain reaction was performed to measure
the level of NEBL gene expression and its association with clinico-pathological features.
RESULTS
A significant overexpression with 3 fold increse was seen in NEBL mRNA level in tumoral
tissues compared with the adjacent normal tissues. In addition there was a significant association
between NEBL gene expression with lymph node metastasis in patients with CRC.
CONCLUSION
The overexpression of NEBL has the capacity to be considred as a prognostic biomarker in
patients with CRC.
Collapse
Affiliation(s)
- Sayed Mostafa Hosseini
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Tayebeh Majidzadeh
- Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Mahya Haghipanah
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhong C, Chen Y, Tao B, Peng L, Peng T, Yang X, Xia X, Chen L. LIM and SH3 protein 1 regulates cell growth and chemosensitivity of human glioblastoma via the PI3K/AKT pathway. BMC Cancer 2018; 18:722. [PMID: 29980193 PMCID: PMC6035445 DOI: 10.1186/s12885-018-4649-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background LIM and SH3 protein 1 (LASP1) is upregulated in several types of human cancer and implicated in cancer progression. However, the expression and intrinsic function of LASP1 in glioblastoma (GBM) remains unclear. Method Oncomine and The Cancer Genome Atlas (TCGA) database was analyzed for the expression and clinical significance of LASP1 in GBM. LASP1 mRNA and protein level were measured by qRT-PCR and western blotting. The effect of LASP1 on GBM proliferation was examined by MTT assay and colony formation assay, the effect of LASP1 on sensitivity of Temozolomide was measured by flow cytometry and subcutaneous tumor model. The association between LASP1 and PI3K/AKT signaling was assessed by western blotting. Results Oncomine GBM dataset analysis indicated LASP1 is significantly upregulated in GBM tissues compared to normal tissues. GBM dataset from The Cancer Genome Atlas (TCGA) revealed that high LASP1 expression is related to poor overall survival. LASP1 mRNA and protein in clinical specimens and tumor cell lines are frequently overexpressed. LASP1 knockdown dramatically suppressed U87 and U251 cell proliferation. Silencing LASP1 potentiated cell chemosensitivity to temozolomide in vitro, LASP1 knockdown inhibited tumor growth and enhanced the therapeutic effect of temozolomide in vivo. TCGA dataset analysis indicated LASP1 was correlated with PI3K/AKT signaling pathway, and LASP1 deletion inhibited this pathway. Combination treatment with PI3K/AKT pathway inhibitor LY294002 dramatically accelerated the suppression effect of temozolomide. Conclusion LASP1 may function as an oncogene in GBM and regulate cell proliferation and chemosensitivity in a PI3K/AKT-dependent mechanism. Thus, the LASP1/PI3K/AKT axis is a promising target and therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Chuanhong Zhong
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yitian Chen
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
| | - Bei Tao
- Rheumatism Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lilei Peng
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tangming Peng
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaobo Yang
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiangguo Xia
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ligang Chen
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
18
|
You H, Kong F, Zhou K, Wei X, Hu L, Hu W, Luo W, Kou Y, Liu X, Chen X, Zheng K, Tang R. HBX protein promotes LASP-1 expression through activation of c-Jun in human hepatoma cells. J Cell Physiol 2018; 233:7279-7291. [PMID: 29600594 DOI: 10.1002/jcp.26560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
LIM and SH3 domain protein 1 (LASP-1) is known to participate in the progression of hepatocellular carcinoma (HCC). We previously showed that ectopic expression of hepatitis B virus (HBV) X protein (HBX) enhanced the expression of LASP-1, which promoted proliferation and migration of HCC cells. Here, we further demonstrated the molecular mechanism underlying upregulation of LASP-1, mediated by HBX, in HBV-infected HCC cells. Through a luciferase activity assay, we discovered that the LASP-1 promoter region regulated by HBX contained an AP-1 binding element in human hepatoma cells. Interestingly, c-Jun, one subunit of AP-1, was mainly responsible for activation, mediated by HBX, of the LASP-1 promoter. Furthermore, HBX was shown not only to interact with phosphorylated c-Jun in HCC cells but also to activate c-Jun by increasing the activation of PI3-K/JNK signaling. Chromatin immunoprecipitation (ChIP) assay demonstrated that HBX was capable of binding to the LASP-1 promoter with c-Jun. Further, the expression levels of HBX were shown to be significantly positively correlated with that of LASP-1 and phosphorylatedc-Jun in HBV-related HCC tissues by immunohistochemistry analysis. In addition, the N-terminus of HBX was found to be responsible for the activation of c-Jun, as well as the expression of LASP-1. Taken together, these results suggest that HBX contributes to LASP-1 expression via the activation of c-Jun to increase the promoter activity of LASP-1 in HBV-related HCC cells.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenya Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xi Chen
- Bio-pharmaceuticals (Collaboration Articulation Program), School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
19
|
Zhao H, Liu B, Li J. LIM and SH3 protein 1 knockdown suppresses proliferation and metastasis of colorectal carcinoma cells via inhibition of the mitogen-activated protein kinase signaling pathway. Oncol Lett 2018; 15:6839-6844. [PMID: 29731863 PMCID: PMC5920965 DOI: 10.3892/ol.2018.8222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
LIM and SH3 protein 1 (Lasp-1), a focal adhesion protein, serves a critical role in the regulation of cell proliferation and migration. The role of Lasp-1, as well as the intracellular signaling pathways involved in metastasis and progression of colorectal carcinoma, remains unclear. In the present study, the regulatory effect of Lasp-1 and the underlying molecular mechanism involved in migration and invasion of colorectal carcinoma were investigated. RNA interference and overexpression in SW480 cells were performed to elucidate the role of Lasp-1. Reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence were conducted to determine the mRNA and protein levels of Lasp-1 and extracellular-signal-regulated kinase 1/2 (ERK1/2) in SW480 cells as well as tumor and adjacent normal tissues obtained from 20 patients with colorectal carcinoma. Furthermore, a cell proliferation assay, flow cytometric analysis, and cell migration and invasion assays were performed to examine the effect of Lasp-1 on cell growth. The results of the present study demonstrated that Lasp-1 and ERK1/2 were upregulated in tumor tissue compared with adjacent normal colorectal mucosa. Cell-based in vitro assays demonstrated that Lasp-1 knockdown suppressed the expression and activation of ERK1/2, whereas Lasp-1 overexpression resulted in ERK1/2 upregulation. Additionally, Lasp-1 knockdown inhibited cell proliferation, migration, and invasion and induced cellular apoptosis and G0/G1 cell-cycle arrest. The results of the present study indicate that Lasp-1 serves a critical role in the progression of colorectal carcinoma regulating the activation of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Hongpeng Zhao
- Department of Gastrointestinal Surgery, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Bo Liu
- Department of Gastrointestinal Surgery, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Jie Li
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
20
|
Jiang Q, Zhou Y, Yang H, Li L, Deng X, Cheng C, Xie Y, Luo X, Fang W, Liu Z. A directly negative interaction of miR-203 and ZEB2 modulates tumor stemness and chemotherapy resistance in nasopharyngeal carcinoma. Oncotarget 2018; 7:67288-67301. [PMID: 27589832 PMCID: PMC5341875 DOI: 10.18632/oncotarget.11691] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022] Open
Abstract
miR-203 is a tumor suppressor that is disregulated in numerous malignancies including nasopharyngeal carcinoma (NPC). However, the role of miR-203 in suppressing tumor stemness, chemotherapy resistance as well as its molecular mechanisms are unclear. In this study, we observed that miR-203 suppressed cell migration, invasion, tumor stemness, and chemotherapy resistance to cisplatin (DDP) in vitro and in vivo. miR-203 exerted these effects by targeting ZEB2 and downstream epithelial-mesenchymal transition (EMT) and tumor stemness signals. Interestingly we observed that miR-203 expression was directly suppressed by ZEB2 via targeting its promoter, which significantly reduced cell migration, invasion, tumor stemness, and chemotherapy resistance in NPC cells. Finally, we found that miR-203 was negatively correlated with ZEB2 expression in NPC tissues and tumor spheres. Our data demonstrate a directly negative feedback loop between miR-203 and ZEB2 participating in tumor stemness and chemotherapy resistance, highlighting the therapeutic potential of targeting this signal for NPC chemotherapy.
Collapse
Affiliation(s)
- Qingping Jiang
- Department of Pathology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ying Zhou
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Huiling Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan 523808, China
| | - Libo Li
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Xiaojie Deng
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Chao Cheng
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yingying Xie
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Xiaojun Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Weiyi Fang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Zhen Liu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Medical University of Guangzhou, Guangzhou 510182, China
| |
Collapse
|
21
|
Endres M, Kneitz S, Orth MF, Perera RK, Zernecke A, Butt E. Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1). Oncotarget 2018; 7:64244-64259. [PMID: 27588391 PMCID: PMC5325439 DOI: 10.18632/oncotarget.11720] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/09/2016] [Indexed: 01/27/2023] Open
Abstract
The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.
Collapse
Affiliation(s)
- Marcel Endres
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biozentrum, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Martin F Orth
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Ruwan K Perera
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| | - Elke Butt
- Institute of Experimental Biomedicine II, University Medical Clinic of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
22
|
Dyshlovoy SA, Otte K, Venz S, Hauschild J, Junker H, Makarieva TN, Balabanov S, Alsdorf WH, Madanchi R, Honecker F, Bokemeyer C, Stonik VA, von Amsberg G. Proteomic-based investigations on the mode of action of the marine anticancer compound rhizochalinin. Proteomics 2018; 17. [PMID: 28445005 DOI: 10.1002/pmic.201700048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
Rhizochalinin (Rhiz) is a novel marine natural sphingolipid-like compound, which shows promising in vitro and in vivo activity in human castration-resistant prostate cancer. In the present study, a global proteome screening approach was applied to investigate molecular targets and biological processes affected by Rhiz in castration-resistant prostate cancer. Bioinformatical analysis of the data predicted an antimigratory effect of Rhiz on cancer cells. Validation of proteins involved in the cancer-associated processes, including cell migration and invasion, revealed downregulation of specific isoforms of stathmin and LASP1, as well as upregulation of Grp75, keratin 81, and precursor IL-1β by Rhiz. Functional analyses confirmed an antimigratory effect of Rhiz in PC-3 cells. Additionally, predicted ERK1/2 activation was confirmed by Western blotting analysis, and revealed prosurvival effects in Rhiz-treated prostate cancer cells indicating a potential mechanism of resistance. A combination of Rhiz with MEK/ERK inhibitors PD98059 (non-ATP competitive MEK1 inhibitor) and FR180204 (ATP-competitive ERK1/2 inhibitor) resulted in synergistic effects. This work provides further insights into the molecular mechanisms underlying Rhiz bioactivity. Furthermore, our research is exemplary for the ability of proteomics to predict drug targets and mode of action of natural anticancer agents.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.,School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Katharina Otte
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany.,Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heike Junker
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Tatyana N Makarieva
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Stefan Balabanov
- Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Winfried H Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramin Madanchi
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedemann Honecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Tumor and Breast Center ZeTuP St. Gallen, St. Gallen, Switzerland
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valentin A Stonik
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Tao F, Tian X, Zhang Z. The PCAT3/PCAT9-miR-203-SNAI2 axis functions as a key mediator for prostate tumor growth and progression. Oncotarget 2018; 9:12212-12225. [PMID: 29552304 PMCID: PMC5844740 DOI: 10.18632/oncotarget.24198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be of great importance in the formation and progression of a wide range of human carcinomas including prostate cancer (PCa). Among them, PCAT3 and PCAT9 have been identified as two prostate tissue-specific lncRNAs and are up-regulated in PCa. However, their roles in the biological characteristics of PCa have not been fully elucidated. In the present study, our data revealed that knockdown of PCAT3 and PCAT9 suppressed cellular proliferation, invasion, migration, angiogenesis and stemness in androgen-dependent LNCaP and 22Rv1 cells. Strikingly, bioinformatics analysis predicted that both PCAT3 and PCAT9 transcripts had two conserved binding sties for miR-203. Meanwhile, dual luciferase report assays revealed that miR-203 could suppress the luciferase activities of reporter plasmids carrying the binding site of miR-203 on the mRNA of PCAT3 or PCAT9. Quantitative RT-PCR (qRT-PCR) and RNA fluorescence in situ hybridization (RNA-FISH) showed that miR-203 mimic reduced the expression of PCAT3 and PCAT9 both in LNCaP and 22Rv1 cells. We also noted that both PCAT3 and PCAT9 inhibited miR-203 expression and alleviated repression on the expression of SNAI2, a critical regulator of epithelial-mesenchymal transition directly targeted by miR-203. Functionally, silence of miR-203 or ectopic expression of SNAI2 attenuated the inhibitory effect of PCAT3 and PCAT9 knockdown on cell proliferation and migration in vitro, and xenograft growth in vivo. Taken together, our data suggested that the PCAT3/PCAT9-miR-203-SNAI2 axis may serve as a promising diagnostic and therapeutic target for PCa.
Collapse
Affiliation(s)
- Fangfang Tao
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Xinxin Tian
- Department of Biochemistry and Biophysics, Texas A and M University and Texas AgriLife Research, College Station, TX 77843-2128, USA.,Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin 300457, People's Republic of China
| | - Zhiqian Zhang
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin 300457, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
24
|
Leivonen SK, Icay K, Jäntti K, Siren I, Liu C, Alkodsi A, Cervera A, Ludvigsen M, Hamilton-Dutoit SJ, d'Amore F, Karjalainen-Lindsberg ML, Delabie J, Holte H, Lehtonen R, Hautaniemi S, Leppä S. MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B-cell lymphoma. Blood Cancer J 2017; 7:654. [PMID: 29242506 PMCID: PMC5802506 DOI: 10.1038/s41408-017-0033-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
Despite better therapeutic options and improved survival of diffuse large B-cell lymphoma (DLBCL), 30–40% of the patients experience relapse or have primary refractory disease with a dismal prognosis. To identify biological correlates for treatment resistance, we profiled microRNAs (miRNAs) of matched primary and relapsed DLBCL by next-generation sequencing. Altogether 492 miRNAs were expressed in the DLBCL samples. Thirteen miRNAs showed significant differential expression between primary and relapse specimen pairs. Integration of the differentially expressed miRNAs with matched mRNA expression profiles identified highly anti-correlated, putative targets, which were significantly enriched in cancer-associated pathways, including phosphatidylinositol (PI)), mitogen-activated protein kinase (MAPK), and B-cell receptor (BCR) signaling. Expression data suggested activation of these pathways during disease progression, and functional analyses validated that miR-370-3p, miR-381-3p, and miR-409-3p downregulate genes on the PI, MAPK, and BCR signaling pathways, and enhance chemosensitivity of DLBCL cells in vitro. High expression of selected target genes, that is, PIP5K1 and IMPA1, was found to be associated with poor survival in two independent cohorts of chemoimmunotherapy-treated patients (n = 92 and n = 233). Taken together, our results demonstrate that differentially expressed miRNAs contribute to disease progression by regulating key cell survival pathways and by mediating chemosensitivity, thus representing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Suvi-Katri Leivonen
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland.
| | - Katherine Icay
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Jäntti
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland
| | - Ilari Siren
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland
| | - Chengyu Liu
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Amjad Alkodsi
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Cervera
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maja Ludvigsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jan Delabie
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | - Harald Holte
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Rainer Lehtonen
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sirpa Leppä
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland
| |
Collapse
|
25
|
Song CJ, Chen H, Chen LZ, Ru GM, Guo JJ, Ding QN. The potential of microRNAs as human prostate cancer biomarkers: A meta-analysis of related studies. J Cell Biochem 2017; 119:2763-2786. [PMID: 29095529 PMCID: PMC5814937 DOI: 10.1002/jcb.26445] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PC) is a very important kind of male malignancies. When PC evolves into a stage of hormone resistance or metastasis, the fatality rate is very high. Currently, discoveries and advances in miRNAs as biomarkers have opened the potential for the diagnosis of PC, especially early diagnosis. miRNAs not only can noninvasively or minimally invasively identify PC, but also can provide the data for optimization and personalization of therapy. Moreover, miRNAs have been shown to play an important role to predict prognosis of PC. The purpose of this meta‐analysis is to integrate the currently published expression profile data of miRNAs in PC, and evaluate the value of miRNAs as biomarkers for PC. All of relevant records were selected via electronic databases: Pubmed, Embase, Cochrane, and CNKI based on the assessment of title, abstract, and full text. we extracted mean ± SD or fold change of miRNAs expression levels in PC versus BPH or normal controls. Pooled hazard ratios (HRs) with 95% confidence intervals (CI) for overall survival (OS) and recurrence‐free survival (RFS), were also calculated to detect the relationship between high miRNAs expression and PC prognosis. Selected 104 articles were published in 2007‐2017. According to the inclusion criteria, 104 records were included for this meta‐analysis. The pooled or stratified analyze showed 10 up‐regulated miRNAs (miR‐18a, miR‐34a, miR‐106b, miR‐141, miR‐182, miR‐183, miR‐200a/b, miR‐301a, and miR‐375) and 14 down‐regulated miRNAs (miR‐1, miR‐23b/27b, miR‐30c, miR‐99b, miR‐139‐5p, miR‐152, miR‐187, miR‐204, miR‐205, miR‐224, miR‐452, miR‐505, and let‐7c) had relatively good diagnostic and predictive potential to discriminate PC from BPH/normal controls. Furthermore, high expression of miR‐32 and low expression of let‐7c could be used to differentiate metastatic PC from local/primary PC. Additional interesting findings were that the expression profiles of five miRNAs (miR‐21, miR‐30c, miR‐129, miR‐145, and let‐7c) could predict poor RFS of PC, while the evaluation of miR‐375 was associated with worse OS. miRNAs are important regulators in PC progression. Our results indicate that miRNAs are suitable for predicting the different stages of PC. The detection of miRNAs is an effective way to control patient's prognosis and evaluate therapeutic efficacy. However, large‐scale detections based on common clinical guidelines are still necessary to further validate our conclusions, due to the bias induced by molecular heterogeneity and differences in study design and detection methods.
Collapse
Affiliation(s)
- Chun-Jiao Song
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Huan Chen
- Zhejiang Institute of Microbiology, Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China
| | - Li-Zhong Chen
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Guo-Mei Ru
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jian-Jun Guo
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Qian-Nan Ding
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
26
|
Cheng D, Qiu X, Zhuang M, Zhu C, Zou H, Zhang A. Development and validation of nomogram based on miR-203 and clinicopathological characteristics predicting survival after neoadjuvant chemotherapy and surgery for patients with non-metastatic osteosarcoma. Oncotarget 2017; 8:96935-96944. [PMID: 29228583 PMCID: PMC5722535 DOI: 10.18632/oncotarget.18534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/04/2017] [Indexed: 12/26/2022] Open
Abstract
Background Recently, nomograms have been used as models for risk prediction in malignant tumor because they can predict the outcome of interest for a certain individual based on many variables. This study aimed to establish an effective prognostic nomogram for osteosarcoma based on the clinicopathological factors and microRNA-203. Results The results showed that miR-203 expression was significantly lower in osteosarcoma tissues compared with the corresponding adjacent tissues (P < 0.001). Patients with low miR-203 expression had poor overall survival (OS) in osteosarcoma. The histological type, tumor size, AJCC stage and miR-203 expression were integrated in the nomogram. The nomogram showed significantly better prediction of OS than for patients with non-metastatic osteosarcoma. The ROC curve also showed higher specificity and sensitivity for predicting 3- and 5-year osteosarcoma patients’ survival compared with AJCC stage. The decision curve analysis also indicated more potential of clinical application of the nomogram compared with AJCC staging system. Moreover, our findings were supported by the validation cohort. Materials and Methods We retrospectively investigated 301 patients with non-metastatic osteosarcoma. Data from primary cohort (n = 198) were used to develop multivariate nomograms. This nomogram was internally validated for discrimination and calibration with bootstrap samples and was externally validated with an independent patient cohort (n = 103). Conclusions Our proposed nomogram showed more accurate prognostic prediction for patients with non-metastatic osteosarcoma.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xubin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ming Zhuang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Chenlei Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Hongjun Zou
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ailiang Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
27
|
Shi J, Guo J, Li X. Role of LASP-1, a novel SOX9 transcriptional target, in the progression of lung cancer. Int J Oncol 2017; 52:179-188. [PMID: 29138807 DOI: 10.3892/ijo.2017.4201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer accounts for most cancer-related deaths worldwide. However, the underlying mechanism by which it mediates the progression of lung cancer remains unclear. Expression of LASP-1 (LIM and SH3 protein 1) was evaluated in lung cancer tissues and tumor-adjacent normal tissues using immunohistochemistry and western blotting. Functional studies have shown that siRNA-mediated silencing of LASP-1 in human lung cancer cells and reduced cell proliferation, migration, and invasion. Flow cytometry and immunofluorescence staining also revealed that rate of cell apoptosis was increased after knockdown of expression of LASP-1, thereby suggesting that LASP-1 may function as an oncogene during lung cancer progression. SOX9 is an important transcription factor, which is involved in the development of several types of human cancer. Further analysis has showed the presence of a consensus-binding site of SOX9 in the promoter region of LASP-1. Mechanistic investigations showed that LASP-1 was transcriptionally activated by SOX9. Through luciferase reporter and ChIP assays, we demonstrated that LASP-1 was a direct target gene of sex determining region Y-box 9 (SOX9). Knockdown of SOX9 expression by RNA interference reduces cell proliferation and induces apoptosis of lung cancer cells, which was consistent with the results obtained from silencing the expression of LASP-1 in NCI‑H1650 cells. Together, these findings indicated that LASP-1, as a downstream target of SOX9, may act as a novel biomarker for lung cancer and plays an important role in cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jianguang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
28
|
MiR-203a-3p suppresses cell proliferation and metastasis through inhibiting LASP1 in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:138. [PMID: 28982387 PMCID: PMC5629759 DOI: 10.1186/s13046-017-0604-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND miR-203a-3p was reported as a tumor suppressor and disregulated in many malignancies including nasopharyngeal carcinoma (NPC). However, its function in tumor growth and metastasis in NPC has rarely been reported. METHODS The expression level of miR-203a-3p in human NPC tissues and cell lines was detected via real-time PCR (RT-PCR). Cell proliferation, migration and invasion were assessed in vitro by MTT, colony formation and transwell assay, respectively. The function of miR-203a-3p in vivo was detected through NPC xenograft tumor growth and lung metastatic mice model. Dual-luciferase reporter assay was used to identify the direct target of miR-203a-3p. RESULTS The expression of miR-203a-3p was decreased in NPC tissues and cell lines in comparison with normal nasopharyngeal tissues and cell line. Ectopic expression of miR-203a-3p inhibited while inhibiting miR-203a-3p expression increased NPC cell proliferation, migration and invasion in vitro. MR-203a-3p overexpression suppressed xenograft tumor growth and lung metastasis in vivo. LASP1 was identified as a direct target of miR-203a-3p, which was confirmed by real-time PCR and western blotting assay. Ectopic expression of LASP1 partially reversed miR-203a-3p-mediated inhibition on proliferation, migration and invasion in NPC cells. CONCLUSION Collectively, miR-203a-3p suppresses tumor growth and metastasis through targeting LASP1 in NPC. The newly identified miR-203a-3p/LASP1 pathway provides further insights into the initiation and progression of NPC, which may represent a novel therapeutic target for NPC.
Collapse
|
29
|
Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett 2017; 407:9-20. [DOI: 10.1016/j.canlet.2017.08.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022]
|
30
|
Hu S, Ran Y, Chen W, Zhang Y, Xu Y. MicroRNA-326 inhibits cell proliferation and invasion, activating apoptosis in hepatocellular carcinoma by directly targeting LIM and SH3 protein 1. Oncol Rep 2017; 38:1569-1578. [PMID: 28713953 DOI: 10.3892/or.2017.5810] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth-most common cancer and third leading cause of cancer-related deaths worldwide. Increasing evidence indicates that dysregulation of microRNAs is often observed in HCC, and has been extensively investigated in terms of cancer formation, progression, diagnosis, therapy, and prognosis. Recently, microRNA-326 (miR-326) has been demonstrated to play important roles in multiple types of human cancer. However, the expression pattern, clinical significance, roles and regulatory mechanisms of miR-326 in HCC have yet to be elucidated. In this study, miR-326 was frequently downregulated in HCC tissues and cell lines. Low miR-326 expression was significantly associated with the TNM stage, differentiation and lymph node metastasis of HCC patients. Further functional assays demonstrated that the recovered miR-326 expression inhibited HCC cell proliferation and invasion and activated cell apoptosis in vitro. In addition, LIM and SH3 protein 1 (LASP1) was identified as a direct target gene of miR-326 in HCC. Furthermore, LASP1 was upregulated in HCC tissues and cell lines. The expression level of LASP1 mRNA was inversely correlated with that of miR-326 in HCC tissues. Moreover, LASP1 silencing elicited effects similar to miR-326 overexpression on HCC cells, and LASP1 upregulation markedly reversed the effects of miR-326 overexpression on HCC cells. These results revealed that miR-326 suppressed the progression of HCC by directly targeting LASP1. Therefore, miR-326 may be used as a potential therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yun Ran
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Wenlin Chen
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yuncheng Zhang
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yongjian Xu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
31
|
Zhang X, Liu Y, Fan C, Wang L, Li A, Zhou H, Cai L, Miao Y, Li Q, Qiu X, Wang E. Lasp1 promotes malignant phenotype of non-small-cell lung cancer via inducing phosphorylation of FAK-AKT pathway. Oncotarget 2017; 8:75102-75113. [PMID: 29088849 PMCID: PMC5650404 DOI: 10.18632/oncotarget.20527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
Lasp1 (LIM and SH3 domain protein 1) promotes tumor proliferation and invasion in multiple cancer entities including non-small cell lung cancer (NSCLC). However, the molecular mechanism is uncertain to date. In the present study, using immunohistochemistry, we found that Lasp1 expression was significantly correlated with tumor size (P=0.005), advanced TNM stage (P=0.042), positive regional lymph node metastasis (P=0.034) and poor overall survival (P<0.001). Similar results were seen in patients with squamous cell lung carcinoma (P=0.003 for larger tumor size, P=0.017 for advanced TNM stage, P=0.003 for positive lymph node metastasis and P<0.001 for poor overall survival) but not in patients with lung adenocarcinoma (P>0.05). Proliferation and invasion assay showed that Lasp1 dramatically promoted the ability of proliferation and invasion of NSCLC cells. Subsequent western blot results revealed that Lasp1 promoted the expression of Cyclin A2, CyclinB1, and Snail, and inhibited the expression of E-cadherin. Lasp1 directly interacted with FAK and facilitated the expression of phosphorylated FAK (Tyr397) and AKT (Ser473). Incorporation of both FAK inhibitor and AKT inhibitor counteracted the upregulating expression of Cyclin A2, CyclinB1, and Snail, and downregulating expression of E-cadherin expression induced by Lasp1 overexpression. Interestingly, inhibition of FAK signaling pathway attenuated the phosphorylation of AKT, but inhibition of AKT signaling pathway did not affect the phosphorylation of FAK. In conclusion, Lasp1 facilitated tumor proliferation and invasion of NSCLC through directly binding to FAK and enhancing the phosphorylation of FAK (Tyr397) and AKT (Ser473). Lasp1 may be a novel therapeutic target in the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Xiupeng Zhang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- Department of Radiotherapy, First Hospital of China Medical University, Shenyang, China
| | - Haijing Zhou
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Lin Cai
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Kong FY, Zhu T, Li N, Cai YF, Zhou K, Wei X, Kou YB, You HJ, Zheng KY, Tang RX. Bioinformatics analysis of the proteins interacting with LASP-1 and their association with HBV-related hepatocellular carcinoma. Sci Rep 2017; 7:44017. [PMID: 28266596 PMCID: PMC5339786 DOI: 10.1038/srep44017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
LIM and SH3 domain protein (LASP-1) is responsible for the development of several types of human cancers via the interaction with other proteins; however, the precise biological functions of proteins interacting with LASP-1 are not fully clarified. Although the role of LASP-1 in hepatocarcinogenesis has been reported, the implication of LASP-1 interactors in HBV-related hepatocellular carcinoma (HCC) is not clearly evaluated. We obtained information regarding LASP-1 interactors from public databases and published studies. Via bioinformatics analysis, we found that LASP-1 interactors were related to distinct molecular functions and associated with various biological processes. Through an integrated network analysis of the interaction and pathways of LASP-1 interactors, cross-talk between different proteins and associated pathways was found. In addition, LASP-1 and several its interactors are significantly altered in HBV-related HCC through microarray analysis and could form a complex co-expression network. In the disease, LASP-1 and its interactors were further predicted to be regulated by a complex interaction network composed of different transcription factors. Besides, numerous LASP-1 interactors were associated with various clinical factors and related to the survival and recurrence of HBV-related HCC. Taken together, these results could help enrich our understanding of LASP-1 interactors and their relationships with HBV-related HCC.
Collapse
Affiliation(s)
- Fan-Yun Kong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Zhu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun-Fei Cai
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Bo Kou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Juan You
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
33
|
Li W, Li H, Zhang L, Hu M, Li F, Deng J, An M, Wu S, Ma R, Lu J, Zhou Y. Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem 2017; 292:5801-5813. [PMID: 28232485 DOI: 10.1074/jbc.m116.758508] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/19/2017] [Indexed: 01/01/2023] Open
Abstract
Thousands of long intergenic non-protein coding RNAs (lincRNAs) have been identified in mammals in genome-wide sequencing studies. Some of these RNAs have been consistently conserved during the evolution of species and could presumably function in important biologic processes. Therefore, we measured the levels of 26 highly conserved lincRNAs in a total of 176 pairs of endometrial carcinoma (EC) and surrounding non-tumor tissues of two distinct Chinese populations. Here, we report that a lincRNA, LINC00672, which possesses an ultra-conserved region, is aberrantly down-regulated during the development of EC. Nevertheless, LINC00672 is a p53-targeting lincRNA acting along with heterogeneous nuclear ribonucleoproteins as a suppressive cofactor, which locally reinforces p53-mediated suppression of LASP1, an evolutionarily conserved neighboring gene of LINC00672 and putatively associated with increased tumor aggressiveness, during anti-tumor processes. LINC00672 overexpression could lower the levels of LASP1 and slow the development of malignant phenotypes of EC both in vitro and in vivo Moreover, LINC00672 significantly increased the 50% inhibitory concentration of paclitaxel in EC cells and increased the sensitivity of xenograft mice to paclitaxel. These findings indicate that LINC00672 can influence LASP1 expression as a locus-restricted cofactor for p53-mediated gene suppression, thus impacting EC malignancies and chemosensitivity to paclitaxel.
Collapse
Affiliation(s)
- Wei Li
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Hua Li
- the Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing 100191
| | - Liyuan Zhang
- the Departments of Radiotherapy and Oncology and
| | - Min Hu
- Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou 215004, and
| | - Fang Li
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Jieqiong Deng
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Mingxing An
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Siqi Wu
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Rui Ma
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Jiachun Lu
- the Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, China
| | - Yifeng Zhou
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123,
| |
Collapse
|
34
|
Kwekel JC, Vijay V, Han T, Moland CL, Desai VG, Fuscoe JC. Sex and age differences in the expression of liver microRNAs during the life span of F344 rats. Biol Sex Differ 2017; 8:6. [PMID: 28174625 PMCID: PMC5291947 DOI: 10.1186/s13293-017-0127-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022] Open
Abstract
Background Physiological factors such as age and sex have been shown to be risk factors for adverse effects in the liver, including liver diseases and drug-induced liver injury. Previously, we have reported age- and sex-related significant differences in hepatic basal gene expression in rats during the life span that may be related to susceptibility to such adverse effects. However, the underlying mechanisms of the gene expression changes were not fully understood. In recent years, increasing evidence for epigenetic mechanisms of gene regulation has fueled interest in the role of microRNAs (miRNAs) in toxicogenomics and biomarker discovery. We therefore proposed that significant age and sex differences exist in baseline liver miRNA expression, and that comprehensive profiling of miRNAs will provide insights into the epigenetic regulation of gene expression in rat liver. Methods To address this, liver tissues from male and female F344 rats were examined at 2, 5, 6, 8, 15, 21, 52, 78, and 104 weeks of age for the expression of 677 unique miRNAs. Following data processing, predictive pathway analysis was performed on selected miRNAs that exhibited prominent age and/or sex differences in expression. Results Of the 314 miRNAs found to be expressed, 214 were differentially expressed; 65 and 212 miRNAs showed significant (false discovery rate (FDR) <5% and ≥1.5-fold change) sex- and age-related differences in expression, respectively. Thirty-eight miRNAs showed 2-week-specific expression, of which 31 miRNAs were found to be encoded within the Dlk1-Dio3 cluster located on chromosome 6. This cluster has been associated with tissue proliferation and differentiation, and liver energy homeostasis in postnatal development. Predictive pathway analysis linked sex-biased miRNA expression with sexually dimorphic molecular functions and toxicological functions that may reflect sex differences in hepatic physiology and disease. The expression of miRNAs (miR-18a, miR-99a, and miR-203, miR-451) was also found to associate with specific sexually dimorphic hepatic histopathology. The expression of miRNAs involved in regulating cell death, cell proliferation, and cell cycle was found to change as the rats matured from adult to old age. Conclusions Overall, significant age- and sex-related differences in liver miRNA expression were identified and linked to histopathological findings and predicted functional pathways that may underlie susceptibilities to liver toxicity and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13293-017-0127-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA.,Present address: Department of Math & Science, Central Baptist College, Conway, AR USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Carrie L Moland
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| |
Collapse
|
35
|
Dejima T, Imada K, Takeuchi A, Shiota M, Leong J, Tombe T, Tam K, Fazli L, Naito S, Gleave ME, Ong CJ. Suppression of LIM and SH3 Domain Protein 1 (LASP1) Negatively Regulated by Androgen Receptor Delays Castration Resistant Prostate Cancer Progression. Prostate 2017; 77:309-320. [PMID: 27775154 DOI: 10.1002/pros.23269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND LIM and SH3 domain protein 1 (LASP1) has been implicated in several human malignancies and has been shown to predict PSA recurrence in prostate cancer. However, the anti-tumor effect of LASP1 knockdown and the association between LASP1 and the androgen receptor (AR) remains unclear. The aim of this study is to clarify the significance of LASP1 as a target for prostate cancer, and to test the effect of silencing LASP1 in vivo using antisense oligonucleotides (ASO). METHODS A tissue microarray (TMA) was performed to characterize the differences in LASP1 expression in prostate cancer treated after hormone deprivation therapy. Flow cytometry was used to analyze cell cycle. We designed LASP1 ASO for knockdown of LASP1 in vivo studies. RESULTS The expression of LASP1 in TMA was increased after androgen ablation and persisted in castration resistant prostate cancer (CRPC). Also in TMA, compared with LNCaP cell, LASP1 expression is elevated in CRPC cell lines (C4-2 and VehA cells). Interestingly, suppression of AR elevated LASP1 expression conversely, AR activation decreased LASP1 expression. Silencing of LASP1 reduced cell growth through G1 arrest which was accompanied by a decrease of cyclin D1. Forced overexpression of LASP1 promoted cell cycle and induced cell growth which was accompanied by an increase of cyclin D1. Systemic administration of LASP1 ASO with athymic mice significantly inhibited tumor growth in CRPC xenografts. CONCLUSIONS These results indicate that LASP1 is negatively regulated by AR at the transcriptional level and promotes tumor growth through induction of cell cycle, ultimately suggesting that LASP1 may be a potential target in prostate cancer treatment. Prostate 77:309-320, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takashi Dejima
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Imada
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jeffrey Leong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tabitha Tombe
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Martin E Gleave
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Gutkoska J, LaRocco M, Ramirez-Medina E, de Los Santos T, Lawrence P. Host microRNA-203a Is antagonistic to the progression of foot-and-mouth disease virus infection. Virology 2017; 504:52-62. [PMID: 28152384 DOI: 10.1016/j.virol.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Sam68 was previously shown to be a critical host factor for foot-and-mouth disease virus (FMDV) replication. MicroRNA (miR) miR-203a is reportedly a negative regulator of Sam68 expression both in vitro and in vivo. Here, transfection of miR-203a-3p and miR-203a-5p mimics separately and in combination in a porcine cell line followed by FMDV infection resulted in diminished viral protein synthesis and a 4 and 6log reduction in virus titers relative to negative controls, respectively. Unexpectedly, Sam68 expression was increased by miR-203a-5p transfection, but not miR-203a-3p. miR-203a-5p also down-regulated Survivin expression, which was predicted to play a role in FMDV infection. Moreover, miR-203a-5p but not miR-203a-3p affected a reduction in FMDV viral RNA. These effects were not replicated with a related Picornavirus, suggesting FMDV specificity. Importantly, miR-203a-3p and miR-203a-5p impaired FMDV infection across multiple FMDV serotypes. We concluded that miR-203a-3p and miR-203a-5p represent attractive potential naturally occurring bio-therapeutics against FMDV.
Collapse
Affiliation(s)
- Joseph Gutkoska
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Michael LaRocco
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Paul Lawrence
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States.
| |
Collapse
|
37
|
Ramalho-Carvalho J, Fromm B, Henrique R, Jerónimo C. Deciphering the function of non-coding RNAs in prostate cancer. Cancer Metastasis Rev 2017; 35:235-62. [PMID: 27221068 DOI: 10.1007/s10555-016-9628-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The advent of next-generation sequencing methods is fuelling the discovery of multiple non-coding RNA transcripts with direct implication in cell biology and homeostasis. This new layer of biological regulation seems to be of particular importance in human pathogenesis, including cancer. The aberrant expression of ncRNAs is a feature of prostate cancer, as they promote tumor-suppressive or oncogenic activities, controlling multicellular events leading to carcinogenesis and tumor progression. From the small RNAs involved in the RNAi pathway to the long non-coding RNAs controlling chromatin remodeling, alternative splicing, and DNA repair, the non-coding transcriptome represents the significant majority of transcriptional output. As such, ncRNAs appear as exciting new diagnostic, prognostic, and therapeutic tools. However, additional work is required to characterize the RNA species, their functions, and their applicability to clinical practice in oncology. In this review, we summarize the most important features of ncRNA biology, emphasizing its relevance in prostate carcinogenesis and its potential for clinical applications.
Collapse
Affiliation(s)
- João Ramalho-Carvalho
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal.,Biomedical Sciences Graduate Program, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, N-0424, Oslo, Norway
| | - Rui Henrique
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal. .,Portuguese Oncology Institute of Porto, Research Center-LAB 3, F Bdg, 1st floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.
| |
Collapse
|
38
|
Festuccia C. Investigational serine/threonine kinase inhibitors against prostate cancer metastases. Expert Opin Investig Drugs 2016; 26:25-34. [PMID: 27892725 DOI: 10.1080/13543784.2016.1266337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is used as first therapeutic approach in prostate cancer (PCa) although castration resistant disease (CRPC) develops with high frequency. CRPC is the consequence of lack of apoptotic responses to ADT. Alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy were used in CRPC. Serine/threonine protein kinases (STKs) regulate different molecular pathways of normal and neoplastic cells and participate to development of CRPC as well as to the progression towards a bone metastatic disease (mCRPC). Areas covered: The present review provide data on STK expression and activity in the development of CRPC as well as summarize recent reports of different strategies to block STK activity for the control of PCa progression. Expert Opinion: Inhibitors for different STKs have been developed but clinical trials in PCa are comparatively rare and few exhibit satisfactory 'drug-like' properties. It is, however, necessary to intensify, when possible, the number of clinical trials with these drugs in order to insert new therapies or combinations with standard hormone- and chemo-therapies in the treatment guidelines of the mPCA.
Collapse
Affiliation(s)
- Claudio Festuccia
- a Department of Biotechnological and Applied Clinical Sciences , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
39
|
Sun W, Guo L, Shao G, Liu X, Guan Y, Su L, Zhao S. Suppression of LASP-1 attenuates the carcinogenesis of prostatic cancer cell lines: Key role of the NF-κB pathway. Oncol Rep 2016; 37:341-347. [PMID: 27840958 DOI: 10.3892/or.2016.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers among males worldwide and causes a considerable number of deaths each year. One of the newly explored targets for the development of therapies against PCa is LIM and SH3 protein 1 (LASP-1). In the present study, the function of LASP-1 in the oncogenesis and metastasis of PCa was investigated using a series of in vitro experiments. Moreover, the mechanism through which LASP-1 exerted its effect on the carcinogenesis of PCa was also explored. The expression levels of LASP-1 in clinical PCa specimens were determined both at the mRNA and protein levels. Afterwards, the activity of LASP-1 in human PCa cell lines PC3 and DU145 was inhibited using a short hairpin RNA (shRNA) interfering method. The effects of LASP-1 knockdown on the cell growth, apoptosis, cell cycle distribution, migration and invasion were assessed. It was demonstrated that the expression of LASP-1 was significantly higher in the clinical PCa tissues than the level in the corresponding para-carcinoma tissues. Following the knockdown of the LASP-1 gene in human PCa cell lines, the viability, migration and invasion of the cancer cells were decreased. It was also demonstrated that the change in the cell viability and motile ability were associated with an induction of cell apoptosis and G1 phase cell cycle arrest. Based on the results of the detection of the expression of NF-κB-related factors, it was indicated that LASP-1 may affect the carcinogenesis of PCa through a NF-κB inhibition-dependent manner. Although the detailed explanation of the mechanism of LASP-1 in the carcinogenesis of PCa requires further elucidation, the present study highlights the potential of LASP-1 as a promising therapeutic target to ameliorate the oncogenesis and metastasis of PCa.
Collapse
Affiliation(s)
- Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqiang Guo
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guangfeng Shao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangguo Liu
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Yong Guan
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Su
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Shengtian Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
40
|
He S, Zhang G, Dong H, Ma M, Sun Q. miR-203 facilitates tumor growth and metastasis by targeting fibroblast growth factor 2 in breast cancer. Onco Targets Ther 2016; 9:6203-6210. [PMID: 27785068 PMCID: PMC5067001 DOI: 10.2147/ott.s108712] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the second leading cause of cancer mortality in women worldwide. Molecular therapy is needed to improve the outcome in patients with breast cancer. miR-203 participates in cancer cell proliferation, transformation, and apoptosis. This study showed that miR-203 was upregulated in breast cancer tissues and the MCF-7 cell line. miR-203 knockdown suppressed colony formation and transformation and also limited migration in MCF-7 cells. Fibroblast growth factor 2 (FGF2) was confirmed as a novel target of miR-203, as miR-203 knockdown induced an enhanced expression of FGF2 in MCF-7 cells. Moreover, FGF2 can reverse transforming growth factor-β signal pathway to suppress breast cancer. These findings provide new insights with potential therapeutic applications for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shuqian He
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Guihui Zhang
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - He Dong
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Maoqiang Ma
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Qing Sun
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
41
|
MicroRNA-218 inhibits the proliferation, migration, and invasion and promotes apoptosis of gastric cancer cells by targeting LASP1. Tumour Biol 2016; 37:15241-15252. [DOI: 10.1007/s13277-016-5388-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
|
42
|
Li S, Hang L, Ma Y, Wu C. Distinctive microRNA expression in early stage nasopharyngeal carcinoma patients. J Cell Mol Med 2016; 20:2259-2268. [PMID: 27489139 PMCID: PMC5134390 DOI: 10.1111/jcmm.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022] Open
Abstract
The goal of this study was to investigate microRNAs (miRs) expression at different stages of nasopharyngeal carcinoma (NPC). MiR expression profiling at various stages of NPC was performed by miR array and further verified using quantitative real-time RT-PCR. Pathway enrichment analysis was carried out to identify the functional pathways regulated by the miRs. The expression of a selected group of identified miRs was verified in stage I NPC by in situ hybridization (ISH). A total of 449 miRs were identified with significantly different expressions between NPC tissues and normal pharyngeal tissues. Eighty-four miRs were dysregulated only in stage I NPC, among which 45 miRs were up-regulated and the other 39 were down-regulated. Pathway enrichment assay revleaed that three significantly down-regulated and three significantly up-regulated miRs involved in 12 pathways associating with tumour formation and progression. Quantitative RT-PCR confirmed the miR array result. In addition, the low expression levels of hsa-miR-4324, hsa-miR-203a and hsa-miR-199b-5p were further validated in stage I NPC by ISH. This present study identifed the miR signature in stage I NPC, providing the basis for early detection and treatment of NPC.
Collapse
Affiliation(s)
- Shuna Li
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lihua Hang
- Department of Anesthesia, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongming Ma
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaoyang Wu
- Department of Radiation Oncology, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
43
|
Zhou P, Jiang N, Zhang GX, Sun Q. MiR-203 inhibits tumor invasion and metastasis in gastric cancer by ATM. Acta Biochim Biophys Sin (Shanghai) 2016; 48:696-703. [PMID: 27542403 DOI: 10.1093/abbs/gmw063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/25/2016] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is one of the most common malignancies in the world. A number of miRNAs are aberrantly expressed during the progression of gastric cancer. In this study, we aimed to investigate the role of miR-203 in the invasion and metastasis of gastric cancer and the potential mechanism of the effect of miR-203 on the tumor progression of gastric cancer. Our results showed that miR-203 was significantly downregulated in gastric cancer tissues and cells, while ataxia telangiectasia mutated kinase (ATM) was upregulated in gastric cancer tissues and cells and was directly regulated by miR-203. Ectopic overexpression of miR-203 inhibited the colony formation, migration, and invasion of gastric cancer cells. In addition, miR-203 overexpression significantly suppressed the protein level of Snail and obviously promoted the protein level of E-cadherin in gastric cancer cells. ATM knockdown phenocopied the effect of miR-203 overexpression. These results suggested that miR-203 suppressed the migration and invasion of gastric cancer through regulating the level of ATM-mediated-Snail and E-cadherin. MiR-203 might be a novel therapeutic strategy for the treatment of gastric cancer.
Collapse
|
44
|
Xu L, Shen B, Chen T, Dong P. miR-203 is involved in the laryngeal carcinoma pathogenesis via targeting VEGFA and Cox-2. Onco Targets Ther 2016; 9:4629-37. [PMID: 27555783 PMCID: PMC4968859 DOI: 10.2147/ott.s96053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The development of laryngeal squamous cell carcinoma (LSCC) is a multistep process involving multiple factors. MicroRNAs, a group of important negative regulators of gene expression, have also been confirmed to be involved in the LSCC pathogenesis. In the present study, we compared the expression of nine selected microRNAs in the LSCC tissues and adjacent nontumor tissues. We found that the expression of miR-203 was significantly reduced in the LSCC tissues. Predicted by using bioinformatics tools, we found that VEGFA and cyclooxygenase-2 (Cox-2) may be direct targets of miR-203. By subsequent determination through dual-luciferase assay and Western blot, we confirmed that miR-203 suppresses the expression of VEGFA and Cox-2 by directly targeting 3'-untranslated region. Meanwhile, by analyzing the relationship between miR-203 and VEGFA in clinical tissue samples, we found that a negative correlation existed in the expression of miR-203 and VEGFA (P=0.0096, r=-0.33). Similarly, the expression of miR-203 and Cox-2 also has a negative correlation (P=0.0019, r=-0.46). Subsequently, in vitro functional study indicated that miR-203 played as a tumor suppressor by repressing proliferation, migration, and invasion of Hep-2 cells. The overexpression of VEGFA partially rescued the effect of overexpressed miR-203. Overexpressed Cox-2 partially rescued the effect of miR-203 on Hep-2 cell proliferation but not on the cell migration and invasion capacity. These findings suggest that miR-203 plays as a tumor suppressor in LSCC, partially by regulating VEGFA and Cox-2, and may serve as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Lin Xu
- Department of Otolaryngology, Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou
| | - Bin Shen
- Department of Otolaryngology-Head & Neck Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai
| | - Tingting Chen
- Lishui Central Hospital, Lishui, Zhejiang Province, People's Republic of China
| | - Pin Dong
- Department of Otolaryngology-Head & Neck Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai
| |
Collapse
|
45
|
Gomes BC, Martins M, Lopes P, Morujão I, Oliveira M, Araújo A, Rueff J, Rodrigues AS. Prognostic value of microRNA-203a expression in breast cancer. Oncol Rep 2016; 36:1748-56. [PMID: 27431784 DOI: 10.3892/or.2016.4913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/10/2016] [Indexed: 11/06/2022] Open
Abstract
Tumor heterogeneity and the poor outcome of breast cancer (BC) patients have led researchers to define new markers of this disease. In recent years, microRNA expression patterns have proven to be valuable disease indicators. The level of miR-203a, in particular, was shown to be altered in different types of cancer. The objective of the present study was to assess the relationship between miR-203a expression and clinicopathological features of BC in a Portuguese cohort. The expression levels of miR‑203a were analyzed in 109 formalin‑fixed paraffin-embedded paired normal and tumor tissue samples. Significant overexpression of miR‑203a in the tumor tissues was found (1.7-fold higher) compared to the expression in the normal adjacent tissues (p=0.003). In addition, several clinicopathological characteristics presented an association with higher miR-203a expression levels. Tumors with diameter ≤18.5 mm (1.5-fold; p=0.019), tumors positive for estrogen receptor (fold-change, 1.71; p=0.042), progesterone receptor (fold-change, 1.50; p=0.046) and negative for HER2 (fold-change, 1.50; p=0.016) and high Ki-67 index (fold-change, 2.60; p=0.024) presented a significant difference in miR-203a expression compared with adjacent normal tissues. Tumors without invasion of lymph nodes also presented higher expression of miR-203a (fold-change, 2.40; p=0.004). With regard to histological classification, ductal carcinomas in situ (fold-change, 2.20; p=0.028) and invasive carcinoma NOS (fold-change, 1.71; p=0.009) displayed significantly higher expression of miR-203a. Moreover, we found a significant downregulation of miR-203a with increased stage in invasive lobular carcinomas, suggesting that miR-203a could represent a potential marker to discriminate stages in invasive lobular carcinomas.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Manuela Martins
- Department of Pathology, Central Lisbon Hospital Centre, Lisbon, Portugal
| | - Paulina Lopes
- Breast Pathology Unit, Central Lisbon Hospital Centre, Lisbon, Portugal
| | - Inês Morujão
- Breast Pathology Unit, Central Lisbon Hospital Centre, Lisbon, Portugal
| | - Mário Oliveira
- Department of Pathology, Central Lisbon Hospital Centre, Lisbon, Portugal
| | - António Araújo
- Breast Pathology Unit, Central Lisbon Hospital Centre, Lisbon, Portugal
| | - José Rueff
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - António Sebastião Rodrigues
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Lv ZD, Kong B, Liu XP, Jin LY, Dong Q, Li FN, Wang HB. miR-655 suppresses epithelial-to-mesenchymal transition by targeting Prrx1 in triple-negative breast cancer. J Cell Mol Med 2016; 20:864-73. [PMID: 26820102 PMCID: PMC4831358 DOI: 10.1111/jcmm.12770] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/28/2015] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR-655 was down-regulated in TNBC, and its expression levels were associated with molecular-based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR-655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR-655 not only induced the up-regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal-like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR-655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR-655 significantly suppressed Prrx1, as demonstrated by Prrx1 3'-untranslated region luciferase report assay. Our study demonstrated that miR-655 inhibits the acquisition of the EMT phenotype in TNBC by down-regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adult
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Cell Movement
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Keratins/genetics
- Keratins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Lymphatic Metastasis
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Protein Binding
- Signal Transduction
- Vimentin/genetics
- Vimentin/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang-Ping Liu
- Central Laboratory of Molecular Biology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Ying Jin
- Cerebrovascular Disease Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fu-Nian Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
47
|
Josson S, Chung LWK, Gururajan M. microRNAs and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 889:105-18. [PMID: 26658999 DOI: 10.1007/978-3-319-23730-5_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
microRNAs are noncoding RNAs that are important for embryonic stem cell development and epithelial to mesenchymal transition (EMT). Tumor cells hijack EMT and stemness to grow and metastasize to distant organs including bone. In the tumor microenvironment, tumor cells interact with the stromal fibroblasts at the primary and metastatic sites and this interaction leads to tumor growth, EMT, and bone metastasis. Tumor-stromal interactions are a dynamic process that involves both cell-cell communications and extracellular vesicles and soluble factors. Growing body of evidence suggests that microRNAs are part of the payload that comprises the extracellular vesicles. microRNAs induce reactive stroma and thus convert normal stroma into tumor-associated stroma to promote aggressive tumorigenicity in vitro and in vivo. Landmark published studies demonstrate that expression of specific microRNAs of DLK1-DIO3 stem cell cluster correlates with patient survival in metastatic prostate cancer. Thus, microRNAs mediate tumor growth, EMT, and metastasis through cell intrinsic mechanisms and extracellular communications and could be novel biomarkers and therapeutic targets in bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Sajni Josson
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA. .,Neostrata Inc., Princeton, NJ, 08540, USA.
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Murali Gururajan
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA. .,Bristol-Myers Squibb Inc., Princeton, NJ, 08543, USA.
| |
Collapse
|
48
|
LASP-1, regulated by miR-203, promotes tumor proliferation and aggressiveness in human non-small cell lung cancer. Exp Mol Pathol 2016; 100:116-24. [DOI: 10.1016/j.yexmp.2015.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
|
49
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
50
|
Cai S, Chen R, Li X, Cai Y, Ye Z, Li S, Li J, Huang H, Peng S, Wang J, Tao Y, Huang H, Wen X, Mo J, Deng Z, Wang J, Zhang Y, Gao X, Wen X. Downregulation of microRNA-23a suppresses prostate cancer metastasis by targeting the PAK6-LIMK1 signaling pathway. Oncotarget 2016; 6:3904-17. [PMID: 25714010 PMCID: PMC4414162 DOI: 10.18632/oncotarget.2880] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022] Open
Abstract
Here we found that levels of miR-23a were decreased in prostate cancer cell lines and tumor tissues. These low levels were associated with poor patients' prognosis. MiR-23a inhibited migration and invasion of prostate cancer in vivo and in orthotopic prostate cancer mice model. MiR-23a decreased levels of p21-activated kinase 6 (PAK6). Expression of miR-23a inhibited phosphorylation of LIM kinase 1 (LIMK1) and cofilin, in turn suppressing formation of stress fibers and actin filaments, which was required for cell motility and invasion. PAK6 bound to LIMK1 and activated it via phosphorylation at Thr-508. Also, PAK6 and LIMK1 were colocalized in the cytoplasma. Thus, miR-23a regulated cytoskeleton by affecting LIMK1 and cofilin. In summary, we have identified the miR-23a-PAK6-LIMK1 pathway of prostate cancer metastasis. Potential therapeutic approach by targeting miR-23 is suggested.
Collapse
Affiliation(s)
- Songwang Cai
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruihan Chen
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Department of Health Care, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Cai
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shigeng Li
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiqiu Huang
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shubin Peng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiran Tao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongxing Huang
- Department of Urology, Zhongshan People's Hospital, Zhongshan City, Guangdong, China
| | - Xinglai Wen
- Department of Urology, Qingyuan People's Hospital, Qingyuan City, Guangdong, China
| | - Jianfeng Mo
- Department of Urology, Qingyuan People's Hospital, Qingyuan City, Guangdong, China
| | - Zhupeng Deng
- Department of Urology, Taishan People's Hospital, Taishan City, Guangdong, China
| | - Jian Wang
- Department of Urology, The First People's Hospital of Foshan City, Foshan City, Guangdong, China
| | - Yangfan Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Gao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingqiao Wen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|