1
|
Fischer KD, Tiwari S, Thier B, Qiu LC, Lin TC, Paschen A, Imig J. Long non-coding RNA GRASLND links melanoma differentiation and interferon-gamma response. Front Mol Biosci 2024; 11:1471100. [PMID: 39398277 PMCID: PMC11466874 DOI: 10.3389/fmolb.2024.1471100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Melanoma is a highly malignant tumor, that stands as the most lethal form of skin cancer and is characterized by notable phenotypic plasticity and intratumoral heterogeneity. Melanoma plasticity is involved in tumor growth, metastasis and therapy resistance. Long non-coding RNAs (lncRNAs) could influence plasticity due to their regulatory function. However, their role and mode of action are poorly studied. Here, we show a relevance of lncRNA GRASLND in melanoma differentiation and IFNγ signaling. GRASLND knockdown revealed switching of differentiated, melanocytic melanoma cells towards a dedifferentiated, slow-proliferating and highly-invasive cell state. Interestingly, GRASLND is overexpressed in differentiated melanomas and associated with poor prognosis. Accordingly, we found GRASLND expressed in immunological "cold" tumors and it negatively correlates with gene signatures of immune response activation. In line, silencing of GRASLND under IFNγ enhanced the expression of IFNγ-stimulated genes, including HLA-I antigen presentation, demonstrating suppressive activity of GRASLND on IFNγ signaling. Our findings demonstrate that in differentiated melanomas elevated expression of GRASLND interferes with anti-tumor effects of IFNγ, suggesting a role of GRASLND in tumor immune evasion.
Collapse
Affiliation(s)
- Kim Denise Fischer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Shashank Tiwari
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lin Christina Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Tzu-Chen Lin
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jochen Imig
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
2
|
Cantile M, Belli V, Scognamiglio G, Martorana A, De Pietro G, Tracey M, Budillon A. The role of HOTAIR in the modulation of resistance to anticancer therapy. Front Mol Biosci 2024; 11:1414651. [PMID: 38887279 PMCID: PMC11181001 DOI: 10.3389/fmolb.2024.1414651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Leading anti-tumour therapeutic strategies typically involve surgery and radiotherapy for locally advanced (non-metastatic) cancers, while hormone therapy, chemotherapy, and molecular targeted therapy are the current treatment options for metastatic cancer. Despite the initially high sensitivity rate to anticancer therapies, a large number of patients develop resistance, leading to a poor prognosis. The mechanisms related to drug resistance are highly complex, and long non-coding RNAs appear to play a crucial role in these processes. Among these, the lncRNA homeobox transcript antisense intergenic RNA (HOTAIR), widely implicated in cancer initiation and progression, likewise plays a significant role in anticancer drug resistance. It can modulate cell activities such as proliferation, apoptosis, hypoxia, autophagy, as well as epithelial-mesenchymal transition, thereby contributing to the development of resistant tumour cells. In this manuscript, we describe different mechanisms of antitumor drug resistance in which HOTAIR is involved and suggest its potential as a therapeutic predictive biomarker for the management of cancer patients.
Collapse
Affiliation(s)
- Monica Cantile
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Valentina Belli
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giosuè Scognamiglio
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Anna Martorana
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Giovanna De Pietro
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Maura Tracey
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
3
|
Masrour M, Khanmohammadi S, Fallahtafti P, Hashemi SM, Rezaei N. Long non-coding RNA as a potential diagnostic and prognostic biomarker in melanoma: A systematic review and meta-analysis. J Cell Mol Med 2024; 28:e18109. [PMID: 38193829 PMCID: PMC10844705 DOI: 10.1111/jcmm.18109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been applied as biomarkers for melanoma patients. In this systematic review and meta-analysis, we investigated the diagnostic and prognostic value of lncRNAs. We used the keywords 'lncRNA' and 'melanoma' to search databases for studies published before June 14th, 2023. The specificity, sensitivity and AUC were utilized to assess diagnostic accuracy and the prognostic value was assessed using overall survival, progression-free survival and disease-free survival hazard ratios. After screening 1191 articles, we included seven studies in the diagnostic evaluation section and 17 studies in the prognosis evaluation section. The Reitsma bivariate model estimated a cumulative sensitivity of 0.724 (95% CI: 0.659-0.781, p < 0.001) and specificity of 0.812 (95% CI: 0.752-0.859, p < 0.001). The pooled AUC was 0.780 (95% CI: 0.749-0.811, p < 0.0001). The HR for overall survival was 2.723 (95% CI: 2.259-3.283, p < 0.0001). Two studies reported an HR for overall survival less than one, with an HR of 0.348 (95% CI: 0.200-0.607, p < 0.0002). The HR for progression-free survival was 2.913 (95% CI: 2.050-4.138, p < 0.0001). Four studies reported an HR less than one, with an HR of 0.457 (95% CI: 0.256-0.817). The HR for disease-free survival was 2.760 (95% CI: 2.009-3.792, p < 0.0001). In conclusion, the expression of lncRNAs in melanoma patients affects survival and prognosis. LncRNAs can also be employed as diagnostic biomarkers.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Shaghayegh Khanmohammadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Parisa Fallahtafti
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Seyedeh Melika Hashemi
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Liu J, Hu X, Xin W, Wang X. Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy. Curr Med Chem 2024; 31:6084-6109. [PMID: 37877505 DOI: 10.2174/0109298673267553231017053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patient's life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| |
Collapse
|
6
|
Gosman LM, Țăpoi DA, Costache M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int J Mol Sci 2023; 24:15881. [PMID: 37958863 PMCID: PMC10650804 DOI: 10.3390/ijms242115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cutaneous melanoma (CM) is an increasingly significant public health concern. Due to alarming mortality rates and escalating incidence, it is crucial to understand its etiology and identify emerging biomarkers for improved diagnosis and treatment strategies. This review aims to provide a comprehensive overview of the multifactorial etiology of CM, underscore the importance of early detection, discuss the molecular mechanisms behind melanoma development and progression, and shed light on the role of the potential biomarkers in diagnosis and treatment. The pathogenesis of CM involves a complex interplay of genetic predispositions and environmental exposures, ultraviolet radiation exposure being the predominant environmental risk factor. The emergence of new biomarkers, such as novel immunohistochemical markers, gene mutation analysis, microRNA, and exosome protein expressions, holds promise for improved early detection, and prognostic and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Laura Maria Gosman
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, Saint Pantelimon Clinical Emergency Hospital, 021659 Bucharest, Romania
| | - Dana-Antonia Țăpoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
7
|
Liu Y, Ruan H, Lu F, Peng H, Luan W. miR-224-5p acts as a tumour suppressor and reverses the resistance to BRAF inhibitor in melanoma through directly targeting PAK4 to block the MAPK pathway. Pathol Res Pract 2023; 249:154772. [PMID: 37611431 DOI: 10.1016/j.prp.2023.154772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
miR-224-5p has been shown to play both an oncogene and tumour suppressor role in many human tumours. However, the role and molecular mechanism of miR-224-5p in cutaneous melanoma remains unclear. miR-224-5p levels were downregulated in melanoma tissue, and low miR-224-5p expression was an independent risk factor for melanoma patients. miR-224-5p blocked proliferation, epithelial-to-mesenchymal transition (EMT), invasion, migration in BRAF wild-type melanoma cell, and overcome acquired BRAFi resistance in VMF-resistant melanoma cells. miR-224-5p exerted its role by directly repressing PAK4 to block the downstream CRAF/MEK/ERK pathways. We demonstrated that miR-224-5p inhibited melanoma growth and metastasis in vivo though xenograft tumor and pulmonary metastasis assay. Thus, miR-224-5p/PAK4-mediated CRAF/MEK/ERK pathways have therapeutic potential in melanoma treatment.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hongru Ruan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feng Lu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
8
|
Natarelli N, Boby A, Aflatooni S, Tran JT, Diaz MJ, Taneja K, Forouzandeh M. Regulatory miRNAs and lncRNAs in Skin Cancer: A Narrative Review. Life (Basel) 2023; 13:1696. [PMID: 37629553 PMCID: PMC10455148 DOI: 10.3390/life13081696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant regulatory role in the pathogenesis of skin cancer, despite the fact that protein-coding genes have generally been the focus of research efforts in the field. We comment on the actions of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the current review with an eye toward potential therapeutic treatments. LncRNAs are remarkably adaptable, acting as scaffolding, guides, or decoys to modify key signaling pathways (i.e., the Wnt/β-catenin pathway) and gene expression. As post-transcriptional gatekeepers, miRNAs control gene expression by attaching to messenger RNAs and causing their degradation or suppression during translation. Cell cycle regulation, cellular differentiation, and immunological responses are all affected by the dysregulation of miRNAs observed in skin cancer. NcRNAs also show promise as diagnostic biomarkers and prognostic indicators. Unraveling the complexity of the regulatory networks governed by ncRNAs in skin cancer offers unprecedented opportunities for groundbreaking targeted therapies, revolutionizing the landscape of dermatologic care.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Aleena Boby
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Jasmine Thuy Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA;
| | | | - Kamil Taneja
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mahtab Forouzandeh
- Department of Dermatology, University of Florida, Gainesville, FL 32606, USA
| |
Collapse
|
9
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
10
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Takahashi T, Ichikawa H, Okayama Y, Seki M, Hijikata T. SV40 miR-S1 and Cellular miR-1266 Sequester Each Other from Their Targets, Enhancing Telomerase Activity and Viral Replication. Noncoding RNA 2022; 8:ncrna8040057. [PMID: 36005825 PMCID: PMC9413689 DOI: 10.3390/ncrna8040057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-encoded microRNAs (miRNAs) target viral and host mRNAs to repress protein production from viral and host genes, and regulate viral persistence, cell transformation, and evasion of the immune system. The present study demonstrated that simian virus 40 (SV40)-encoded miRNA miR-S1 targets a cellular miRNA miR-1266 to derepress their respective target proteins, namely, T antigens (Tags) and telomerase reverse transcriptase (TERT). An in silico search for cellular miRNAs to interact with viral miR-S1 yielded nine potential miRNAs, five of which, including miR-1266, were found to interact with miR-S1 in dual-luciferase tests employing reporter plasmids containing the miRNA sequences with miR-S1. Intracellular bindings of miR-1266 to miR-S1 were also verified by the pull-down assay. These miRNAs were recruited into the Ago2-associated RNA-induced silencing complex. Intracellular coexpression of miR-S1 with miR-1266 abrogated the downregulation of TERT and decrease in telomerase activity induced by miR-1266. These effects of miR-S1 were also observed in miR-1266-expressing A549 cells infected with SV40. Moreover, the infected cells contained more Tag, replicated more viral DNA, and released more viral particles than control A549 cells infected with SV40, indicating that miR-S1-induced Tag downregulation was antagonized by miR-1266. Collectively, the present results revealed an interplay of viral and cellular miRNAs to sequester each other from their respective targets. This is a novel mechanism for viruses to manipulate the expression of viral and cellular proteins, contributing to not only viral lytic and latent replication but also cell transformation observed in viral infectious diseases including oncogenesis.
Collapse
|
13
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Wang K, Li M, Duan H, Zhang T, Xu C, Yu F. SLCO4A1‐AS1 triggers the malignant behaviors of melanoma cells via sponging miR‐1306‐5p to enhance PCGF2. Exp Dermatol 2022; 31:1220-1233. [PMID: 35427425 DOI: 10.1111/exd.14577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Kai Wang
- Henan Provincial People’s Hospital International Medical Center Department of Plastic Surgery Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Min Li
- Department of Dermatology Henan Provincial People’s Hospital Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Hongyan Duan
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Tong Zhang
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Chengyang Xu
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| | - Feifei Yu
- Henan Provincial People’s Hospital International Medical Center Zhengzhou University People’s Hospital Henan University People’s Hospital Zhengzhou 450003 Henan China
| |
Collapse
|
15
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
16
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
17
|
Li Y, Cheng Z, Fan H, Hao C, Yao W. Epigenetic Changes and Functions in Pneumoconiosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2523066. [PMID: 35096264 PMCID: PMC8794660 DOI: 10.1155/2022/2523066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Pneumoconiosis is one of the most common occupational diseases in the world, and specific treatment methods of pneumoconiosis are lacking at present, so it carries great social and economic burdens. Pneumoconiosis, coronavirus disease 2019, and idiopathic pulmonary fibrosis all have similar typical pathological changes-pulmonary fibrosis. Pulmonary fibrosis is a chronic lung disease characterized by excessive deposition of the extracellular matrix and remodeling of the lung tissue structure. Clarifying the pathogenesis of pneumoconiosis plays an important guiding role in its treatment. The occurrence and development of pneumoconiosis are accompanied by epigenetic factors (e.g., DNA methylation and noncoding RNA) changes, which in turn can promote or inhibit the process of pneumoconiosis. Here, we summarize epigenetic changes and functions in the several kinds of evidence classification (epidemiological investigation, in vivo, and in vitro experiments) and main types of cells (macrophages, fibroblasts, and alveolar epithelial cells) to provide some clues for finding specific therapeutic targets for pneumoconiosis and even for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiping Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan Province, China
| | - Zhiwei Cheng
- Department of Case Management, The Third Affiliated Hospital of Zhengzhou University, China
| | - Hui Fan
- Ultrasonography Department, The Third Affiliated Hospital of Zhengzhou University, China
| | - Changfu Hao
- Department of Child and Adolecence Health, School of Public Health, Zhengzhou University, Henan, 450001, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan Province, China
| |
Collapse
|
18
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
19
|
Peng Q, Wang J. Non-coding RNAs in melanoma: Biological functions and potential clinical applications. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:219-231. [PMID: 34514101 PMCID: PMC8424110 DOI: 10.1016/j.omto.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant melanoma (MM) is a malignant tumor that originates from melanocytes and has a high mortality rate. Therefore, early diagnosis and treatment are very important for survival. So far, the exact molecular mechanism leading to the occurrence of melanoma, especially the molecular metastatic mechanism, remains largely unknown. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs), have been investigated and found to play vital roles in regulating tumor occurrence and development, including melanoma. In this review, we summarize the progress of recent research on the effects of ncRNAs on melanoma and attempt to elucidate the role of ncRNAs as molecular markers or potential targets that will provide promising application perspectives on melanoma.
Collapse
Affiliation(s)
- Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi 046000 China
| |
Collapse
|
20
|
Liang M, Wang H, Liu C, Lei T, Min J. OIP5-AS1 contributes to the development in endometrial carcinoma cells by targeting miR-152-3p to up-regulate SLC7A5. Cancer Cell Int 2021; 21:440. [PMID: 34419049 PMCID: PMC8379738 DOI: 10.1186/s12935-021-02061-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background Endometrial carcinoma (EC) is one common gynecological tumor, threatening physical and psychological health of females. Huge amount of essays indicated that long non-coding RNAs (lncRNAs) were widely reported to serve as a crucial regulator in the biological movements among multiple carcinomas, including EC. Methods RT-qPCR was implemented to detect the expression of target genes. Loss/gain-of-function experiments certified the impacts of OIP5-AS1 and miR-152-3p on EC cell progression. Results Data of this research suggested that powerful expression of OIP5-AS1 was discovered in EC cell lines. Loss/gain-of-function assays inferred that OIP5-AS1 promoted proliferative, migratory and invasive abilities, and Epithelial-Mesenchymal Transition (EMT). In addition, we identified miR-152-3p expression was negatively modulated by OIP5-AS1. OIP5-AS1 accelerated the development of EC cells via downregulating miR-152-3p expression. SLC7A5 was selected out as a downstream target of miR-152-3p. The competing relationship between OIP5-AS1 and SLC7A5 was corroborated by luciferase reporter assay. Eventually, the results of rescue assays indicated that SLC7A5 overexpression could restore the impacts of OIP5-AS1 ablation on the progression of EC cells. Conclusion Our research confirmed that OIP5-AS1 propeled the development of EC cells through targeting miR-152-3p/SLC7A5. OIP5-AS1 could be utilized as a target for EC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02061-0.
Collapse
Affiliation(s)
- Minglin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Cong Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Tao Lei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong Univercity of Science and Technology, No. 2177 Liberation Avenue, Wuhan, 430022, China.
| |
Collapse
|
21
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
22
|
Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: A remarkable oncogenic promoter in human cancer metastasis. Oncol Lett 2021; 21:302. [PMID: 33732378 PMCID: PMC7905531 DOI: 10.3892/ol.2021.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor β, Wnt/β-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.
Collapse
Affiliation(s)
- Lili Chen
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
23
|
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int J Mol Sci 2021; 22:1166. [PMID: 33503876 PMCID: PMC7865742 DOI: 10.3390/ijms22031166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is considered a rare tumor, although it is one of the most common cancers in young adults and its incidence has risen in the last decades. Targeted therapy, with BRAF and MEK inhibitors, and immunotherapy revolutionized the treatment of metastatic melanoma but there is still a considerable percentage of patients with primary or acquired resistance to these therapies. Recently, oncology researchers directed their attention at the role of long non-coding RNAs (lncRNAs) in different types of cancers, including melanoma. lncRNAs are RNA transcripts, initially considered "junk sequences", that have been proven to have a crucial role in the fine regulation of physiological and pathological processes of different tissues. Furthermore, they are more expressed in tumors than protein-coding genes, constituting perfect candidates either as biomarkers (diagnostic, prognostic, predictive) or as therapeutic targets. In this work, we reviewed all the literature available for lncRNA in melanoma, elucidating all the potential roles in this tumor.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Luigi Pio Guerrera
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| |
Collapse
|
24
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
25
|
Li H, Liu D, Liu L, Huang S, Ma A, Zhang X. The role of HOTAIR/miR-152-3p/LIN28B in regulating the progression of endometrial squamous carcinoma. Arch Med Sci 2021; 17:434-448. [PMID: 33747279 PMCID: PMC7959016 DOI: 10.5114/aoms.2019.89632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/12/2019] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION There is growing evidence that long non-coding RNAs (lncRNAs) are correlated with malignancy in the modulation of tumor progression. This study aims to investigate the effect of homeobox protein (HOX) transcript antisense RNA (HOTAIR) on the migration and invasion of ESC. MATERIAL AND METHODS Starbase was used to identify miRNAs with complementary base pairing with HOTAIR. RNA pull-down and qRT-PCR were employed to investigate the effect of HOTAIR on miR-152-3p. In vitro cell migration and invasion assays were performed to assess the effects of HOTAIR and miR-152-3p on ESC. Computational software, TargetScan, was then used to identify the potential target of miR-152-3p, and their relationship was verified by immunoblotting analysis, qRT-PCR and luciferase reporter assay. RESULTS Starbase predicted a potential miR-152-3p binding site in HOTAIR, which was validated by RNA pull-down assay. HOTAIR was negatively correlated with miR-152-3p in ESC. Moreover, HOTAIR promoted migration and invasion of ESC. The oncogenic activity of HOTAIR was partly through its negative regulation of miR-152-3p. LIN28B was identified to be a direct target of miR-152-3p. A negative correlation between LIN28B and miR-152-3p was observed in ESC. In addition, overexpression of miR-152-3p suppressed the progression of ESC by directly targeting and regulating LIN28B. CONCLUSIONS Our results reveal that HOTAIR may be a driver of ESC through inhibiting miR-152-3p, a tumor suppressor, suggesting that miR-152-3p may be a potential target for advanced ESC therapeutic treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Dan Liu
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Liping Liu
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Sanxiu Huang
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Aiping Ma
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Xiaohong Zhang
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| |
Collapse
|
26
|
Wang J, Chen J, Jing G, Dong D. LncRNA HOTAIR Promotes Proliferation of Malignant Melanoma Cells through NF-ϰB Pathway. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1931-1939. [PMID: 33346222 PMCID: PMC7719654 DOI: 10.18502/ijph.v49i10.4696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: To study the effects of long non-coding ribonucleic acid (lncRNA) HOX transcript antisense intergenic RNA (HOTAIR) on the proliferation and apoptosis of malignant melanoma cells, and to explore its specific regulatory mechanism through the nuclear factor-kappa B (NF-ϰB) signaling pathway. Methods: LncRNA HOTAIR small-interfering RNAs (siRNAs) were designed and synthesized, and the effects of si-HOTAIR transfection on the proliferation and apoptosis of malignant melanoma cells were detected via cell counting kit-8 (CCK-8) assay, 4’,6-diamidino-2-phenylindole (DAPI) staining assay and flow cytometry, respectively. The gene expressions were determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the changes in NF-ϰB pathway-related proteins and apoptosis-associated proteins after interference in lncRNA HOTAIR were detected via Western blotting, and the level of NF-ϰB in each group was determined via ELISA. Results: The results of CCK-8 assay revealed that the cell proliferation rate significantly declined gradually in si-HOTAIR group compared with that in si-NC group and control group (P<0.05). The results of Western blotting and ELISA showed that the activity of NF-ϰB in si-HOTAIR group was weakened (P<0.05), suggesting that down-regulation of HOTAIR can suppress the activity of NF-ϰB. Compared with si-NC group and control group, si-HOTAIR group had remarkably increased gene and protein expressions of pro-apoptotic Bax, and remarkably decreased gene and protein expressions of anti-apoptotic Bcl-2 (P<0.05), demonstrating that down-regulation of HOTAIR can promote apoptosis. Conclusion: Down-regulation of lncRNA HOTAIR can inhibit the proliferation and promote the apoptosis of malignant melanoma cells and suppress the NF-ϰB pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Burn and Skin Repair Surgery, Hainan General Hospital, Haikou, China.,Department of Burn and Skin Repair Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jingxin Chen
- Department of Oraland Maxillofacial Surgery, Hainan General Hospital, Haikou, China.,Department of Oraland Maxillofacial Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Gang Jing
- Department of Burn and Skin Repair Surgery, Hainan General Hospital, Haikou, China.,Department of Burn and Skin Repair Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Daoquan Dong
- Department of Burn and Skin Repair Surgery, Hainan General Hospital, Haikou, China.,Department of Burn and Skin Repair Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
27
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhu X, Shen Z, Man D, Ruan H, Huang S. miR-152-3p Affects the Progression of Colon Cancer via the KLF4/IFITM3 Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8209504. [PMID: 32952601 PMCID: PMC7481932 DOI: 10.1155/2020/8209504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the relationship between miR-152-3p and the KLF4/IFITM3 axis, thereby revealing the mechanism underlying colon cancer occurrence and development, consequently providing a promising target for colon cancer treatment. METHODS Bioinformatics methods were implemented to analyze the differential expression of miRNAs and mRNAs in colon cancer, confirm the target miRNA, and predict the downstream targeted mRNAs. qRT-PCR and Western blot were performed to detect the expression of miR-152-3p, KLF4, and IFITM3. CCK-8 and colony formation assays were conducted for the assessment of cell proliferation, and flow cytometry was carried out for the detection of cell apoptosis. Finally, dual-luciferase reporter gene assay was employed to verify the targeting relationship between miR-152-3p and KLF4. RESULTS miR-152-3p was highly expressed in colon cancer cells, whereas KLF4 was poorly expressed. Dual-luciferase assay verified that miR-152-3p targeted to bind to KLF4 and suppressed its expression. Moreover, silencing miR-152-3p or overexpressing KLF4 was found to downregulate IFITM3, thereby inhibiting cell proliferation and potentiating cell apoptosis. In rescue experiments, we found that miR-152-3p deficiency decreased the expression of IFITM3 and weakened cancer cell proliferation, and such effects were restored when miR-152-3p and KLF4 were silenced simultaneously. CONCLUSION In sum, we discovered that miR-152-3p can affect the pathogenesis of colon cancer via the KLF4/IFITM3 axis.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Colorectal Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310000, China
| | - Zhan Shen
- Department of Colorectal Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310000, China
| | - Da Man
- Department of Colorectal Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310000, China
| | - Hang Ruan
- Department of Colorectal Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310000, China
| | - Sha Huang
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310000, China
| |
Collapse
|
29
|
Drissennek L, Baron C, Brouillet S, Entezami F, Hamamah S, Haouzi D. Endometrial miRNome profile according to the receptivity status and implantation failure. HUM FERTIL 2020; 25:356-368. [DOI: 10.1080/14647273.2020.1807065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Loubna Drissennek
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Chloé Baron
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Sophie Brouillet
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
- Univ Grenoble-Alpes, INSERM 1036, Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l’Infection (BCI), Grenoble, France
| | - Frida Entezami
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- American Hospital of Paris, IVF department, Neuilly-Sur-Seine, France
| | - Samir Hamamah
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
| | - Delphine Haouzi
- Univ Montpellier, INSERM U1203, EmbryoPluripotency, Montpellier, France
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, ART/PDG department, Arnaud de Villeneuve Hospital, Montpellier, Montpellier, France
| |
Collapse
|
30
|
Luo Y, Liu L, Li X, Shi Y. Avasimibe inhibits the proliferation, migration and invasion of glioma cells by suppressing linc00339. Biomed Pharmacother 2020; 130:110508. [PMID: 32682982 DOI: 10.1016/j.biopha.2020.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is one of the most destructive human tumours. Although standard treatment has improved the prognosis for glioma patients, the survival of glioma patients is still unsatisfactory. Avasimibe, an effective inhibitor of cholesterol acyltransferase 1 (ACAT1), has shown anti-tumour efficacy in many kinds of tumours. However, its role and related mechanism in glioma has not been fully elucidated. In the present study, we show that avasimibe effectively inhibits the proliferation, migration and invasion of glioma cell lines. Through LncRNA microarrays, we found that linc00339 levels were closely related to the anti-tumour effect of avasimibe. With the help of a series of functional assays, we show that avasimibe inhibits the proliferation, migration and invasion of glioma cell lines by suppressing linc00339 in vitro and in vivo. Our findings may provide a new approach for glioma therapy.
Collapse
Affiliation(s)
- Yidan Luo
- School of Pharmacy, Nanjing Medical University, Nanjing 210006, China; Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
31
|
Topel H, Bagirsakci E, Comez D, Bagci G, Cakan-Akdogan G, Atabey N. lncRNA HOTAIR overexpression induced downregulation of c-Met signaling promotes hybrid epithelial/mesenchymal phenotype in hepatocellular carcinoma cells. Cell Commun Signal 2020; 18:110. [PMID: 32650779 PMCID: PMC7353702 DOI: 10.1186/s12964-020-00602-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) are both reversible processes, and regulation of phenotypical transition is very important for progression of several cancers including hepatocellular carcinoma (HCC). Recently, it is defined that cancer cells can attain a hybrid epithelial/mesenchymal (hybrid E/M) phenotype. Cells with hybrid E/M phenotype comprise mixed epithelial and mesenchymal properties, they can be more resistant to therapeutics and also more capable of initiating metastatic lesions. However, the mechanisms regulating hybrid E/M in HCC are not well described yet. In this study, we investigated the role of the potential crosstalk between lncRNA HOTAIR and c-Met receptor tyrosine kinase, which are two essential regulators of EMT and MET, in acquiring of hybrid E/M phenotype in HCC. Methods Expression of c-Met and lncRNA HOTAIR were defined in HCC cell lines and patient tissues through HCC progression. lncRNA HOTAIR was overexpressed in SNU-449 cells and its effects on c-Met signaling were analyzed. c-Met was overexpressed in SNU-398 cells and its effect on HOTAIR expression was analyzed. Biological significance of HOTAIR/c-Met interplay was defined in means of adhesion, proliferation, motility behavior, invasion, spheroid formation and metastatic ability. Effect of ectopic lncRNA HOTAIR expression on phenotype was defined with investigation of molecular epithelial and mesenchymal traits. Results In vitro and in vivo experiments verified the pivotal role of lncRNA HOTAIR in acquisition of hybrid E/M phenotype through modulating expression and activation of c-Met and its membrane co-localizing partner Caveolin-1, and membrane organization to cope with the rate limiting steps of metastasis such as survival in adhesion independent microenvironment, escaping from anoikis and resisting to fluidic shear stress (FSS) in HCC. Conclusions Our work provides the first evidence suggesting a role for lncRNA HOTAIR in the modulation of c-Met to promote hybrid E/M phenotype. The balance between lncRNA HOTAIR and c-Met might be critical for cell fate decision and metastatic potential of HCC cells. Video Abstract
Collapse
Affiliation(s)
- Hande Topel
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Dehan Comez
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Gulsun Bagci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
32
|
Luan W, Ding Y, Yuan H, Ma S, Ruan H, Wang J, Lu F, Bu X. Long non-coding RNA LINC00520 promotes the proliferation and metastasis of malignant melanoma by inducing the miR-125b-5p/EIF5A2 axis. J Exp Clin Cancer Res 2020; 39:96. [PMID: 32466797 PMCID: PMC7254730 DOI: 10.1186/s13046-020-01599-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long intergenic non-protein coding RNA 520 (LINC00520), a novel identified lncRNA, has been shown to modulate the malignant phenotype of tumor cells in some malignant tumors. However, the exact role and molecular mechanism of LINC00520 in malignant melanoma has not been studied. METHODS The expression of LINC00520 in melanoma tissues were detected by using RNA-seq analysis and qRT-PCR. Melanoma cases from the public databases (The Cancer Genome Atlas (TCGA), GEO#GSE15605, GEO#GSE34460 and GEO#GSE24996) were included in this study. CCK-8 assay, EdU assay, transwell and scratch wound assay were used to explore the role of LINC00520 in melanoma cells. Luciferase reporter assays, MS2-RIP, RNA pull-down and RNA-ChIP assay were used to demonstrate the molecular biological mechanism of LINC00520 in melanoma. RESULTS We found that LICN00520 was found to be overexpressed in melanoma tissue. High expression of LICN00520 is a risk factor for the prognosis of melanoma patients. LINC00520 promotes the proliferation, invasion and migration of melanoma cells. LICN00520 exerted its oncogenic role by competitive binding miR-125b-5p to promote Eukaryotic initiation factor 5A2 (EIF5A2) expression. We also showed that LICN00520 promotes the growth and metastasis of melanoma in vivo through regulating miR-125b-5p/EIF5A2 axis. CONCLUSIONS All results elucidated the role and molecular mechanism of LINC00520 in the malignant development of melanoma. LINC00520, a new oncogene in melanoma, maybe serve as a survival biomarkers or therapeutic target for melanoma patients.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China.
| | - Yuting Ding
- Department of Rehabilitation, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu, China
| | - Haitao Yuan
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Shaojun Ma
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Hongru Ruan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Jinlong Wang
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Feng Lu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
33
|
Rajagopal T, Talluri S, Akshaya R, Dunna NR. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin Chim Acta 2020; 503:1-18. [DOI: 10.1016/j.cca.2019.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
|
34
|
Niu C, Wang L, Ye W, Guo S, Bao X, Wang Y, Xia Z, Chen R, Liu C, Lin X, Huang X. CCAT2 contributes to hepatocellular carcinoma progression via inhibiting miR-145 maturation to induce MDM2 expression. J Cell Physiol 2020; 235:6307-6320. [PMID: 32037568 DOI: 10.1002/jcp.29630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNA colon cancer-associated transcript 2 (CCAT2) has been recently found to function as an oncogene in hepatocellular carcinoma (HCC). However, the mechanisms of CCAT2 in HCC development remain to be further explored. In the present study, we found that CCAT2 was abnormally upregulated in HCC cells and tissue specimens, exhibiting an inverse correlation with microRNA (miR)-145 expression. Mechanistic investigation showed that CCAT2 selectively blocked miR-145 processing, leading to decreased mature miR-145 presence. Both the in vitro and in vivo effects of CCAT2 knockdown on the proliferation and metastasis of HCC cells were reversed by miR-145 inhibitor, indicating that miR-145 modulation accounts for CCAT2-meditated HCC progression. Furthermore, miR-145 mimic dramatically suppressed HCC cells' proliferation and metastasis, revealing a tumor suppressor role of miR-145 in HCC. Mechanistically, MDM2 was predicted to be a potential target of miR-145. The luciferase and western blot assay demonstrated that miR-145 mimic largely inhibited MDM2 3'-untranslated region luciferase activity and MDM2 expression, followed by the upregulation of p53/p21 expression. Finally, the coexpression of MDM2 in miR-145 mimic-transfected HCC cells was able to largely compromise the inhibitory effects of miR-145 mimic on HCC cells' proliferation and metastasis in vitro and tumor formation in a xenograft model, confirming MDM2 is the critical mediator of miR-145 in HCC. In summary, our findings indicated that CCAT2 selectively blocks the miR-145 maturation process and plays an oncogene in HCC. Furthermore, a novel CCAT2/miR-145/MDM2 axis was revealed in HCC development and might provide a new target in the molecular treatment of HCC.
Collapse
Affiliation(s)
- Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linlin Wang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shikun Guo
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhou Bao
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongbiao Wang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhaobo Xia
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Randong Chen
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chong Liu
- Department of Cardiology, The Central Hospital of Lishui City, Lishui, China
| | - Xiaokun Lin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhong Huang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Ning N, Liu S, Liu X, Tian Z, Jiang Y, Yu N, Tan B, Feng H, Feng X, Zou L. Curcumol inhibits the proliferation and metastasis of melanoma via the miR-152-3p/PI3K/AKT and ERK/NF-κB signaling pathways. J Cancer 2020; 11:1679-1692. [PMID: 32194780 PMCID: PMC7052881 DOI: 10.7150/jca.38624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most aggressive and treatment-resistant form of skin cancer. Curcumol is a Chinese medicinal herb traditionally used as a cancer remedy. However, the molecular mechanisms underlying the anticancer activity of curcumol in melanoma remains largely unknown. In the present study, we observed that Curcumol decreased mouse melanoma B16 cell proliferation and migration. The xenograft tumor assay showed that curcumol reduced melanoma volume and lung metastasis. Curcumol upregulated the expression of E-cadherin and downregulated the expression of N-cadherin, MMP2 and MMP9 in mouse melanoma B16 cell. Western blot analysis revealed that curcumol reduced the translocation of p65 to the nucleus and decreased p-ERK. Furthermore, curcumol attenuated c-MET, P13K and p-AKT protein expression and upregulated miR-152-3p gene expression. The dual-luciferase reporter assay indicated that c-MET was a target gene of miR-152-3p. Reduced expression of miR-152-3p partially attenuated the effect of curcumol on mouse melanoma B16 cell proliferation and migration. The decrease in c-MET, P13K and p-AKT protein expression following curcumol treatment in mouse melanoma B16 cells was notably attenuated by the miR-152-3p inhibitor. Taken together, our findings suggested that curcumol attenuated melanoma progression and concomitantly suppressed ERK/NF-κB signaling and promoted miR-152-3p expression to inactivate the c-MET/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ning Ning
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Sulai Liu
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China.,Hunan Research Center of Biliary Disease, Changsha, Hunan, China
| | - Xiehong Liu
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Zeyu Tian
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Yu Jiang
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Nanhui Yu
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Boyu Tan
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Hao Feng
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Xing Feng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Lianhong Zou
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| |
Collapse
|
36
|
Gabriel AF, Costa MC, Enguita FJ. Interactions Among Regulatory Non-coding RNAs Involved in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:79-104. [PMID: 32285406 DOI: 10.1007/978-981-15-1671-9_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-coding RNAs (ncRNAs) are important regulatory players in human cells that have been shown to modulate different cellular processes and biological functions through controlling gene expression, being also involved in pathological conditions such as cardiovascular diseases. Among them, long non-coding RNAs (lncRNAs) and circular (circRNAs) could act as competing endogenous RNAs (ceRNAs) sequestering other ncRNAs. This entangled network of interactions has been reported to trigger the decay of the targeted ncRNAs having important roles in gene regulation. Growing evidences have been demonstrated that the regulatory mechanism underlying the crosstalk between different ncRNA species, namely lncRNAs, circRNAs and miRNAs has also an important role in the pathophysiological processes of cardiovascular diseases. In this chapter, the main regulatory relationship among lncRNAs, circRNAs and miRNAs were summarized and their role in the control and development of cardiovascular diseases was highlighted.
Collapse
Affiliation(s)
- André F Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal. .,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
37
|
Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, Fu Y, Zhai A, Bi C. The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:814-826. [PMID: 31958697 PMCID: PMC7005423 DOI: 10.1016/j.omtn.2019.11.034] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have been reported to hold promise to accelerate the wound-healing process in diabetic foot ulcer (DFU) due to the multilineage differentiation potential. Hence, this study intended to explore the wound healing role of MSC-derived exosomes containing long noncoding RNA (lncRNA) H19 in DFU. lncRNA H19 was predicated to bind to microRNA-152-3p (miR-152-3p), which targeted phosphatase and tensin homolog (PTEN) deleted on chromosome ten. Fibroblasts in DFU samples exhibited highly expressed miR-152-3p and poorly expressed lncRNA H19 and PTEN, along with an activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt1) signaling pathway. The fibroblasts were cocultured with lncRNA H19-transfected MSCs and MSC-derived exosomes to assess the effect of the lncRNA H19/miR-152-3p/PTEN axis on the biological activities and inflammation in fibroblasts. Mouse models of DFU were developed by streptozotocin, which was injected with MSC-derived exosomes overexpressing lncRNA H19. lncRNA H19 in MSCs was transferred through exosomes to fibroblasts, the mechanism of which improved wound healing in DFU, corresponded to promoted fibroblast proliferation and migration, as well as suppressed apoptosis and inflammation. Wound healing in mice with DFU was facilitated following the injection of MSC-derived exosomes overexpressing lncRNA H19. Taken together, MSC-derived exosomal lncRNA H19 prevented the apoptosis and inflammation of fibroblasts by impairing miR-152-3p-mediated PTEN inhibition, leading to the stimulated wound-healing process in DFU.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Song Luan
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Jing Chen
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yue Zhou
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Tingting Wang
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhijuan Li
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yili Fu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Aixia Zhai
- Department of Microbiology, Harbin Medical University, Harbin 150081, People's Republic of China.
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, People's Republic of China.
| |
Collapse
|
38
|
Ni X, Ding Y, Yuan H, Shao J, Yan Y, Guo R, Luan W, Xu M. Long non-coding RNA ZEB1-AS1 promotes colon adenocarcinoma malignant progression via miR-455-3p/PAK2 axis. Cell Prolif 2019; 53:e12723. [PMID: 31828845 PMCID: PMC6985675 DOI: 10.1111/cpr.12723] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Objective The long non‐coding RNA zinc finger E‐box‐binding homeobox 1 antisense 1 (ZEB1‐AS1) acts as an oncogenic regulator in many human tumours. In the present study, we identify the role and potential molecular biological mechanisms of ZEB1‐AS1 in colon adenocarcinoma (COAD). Methods QRT‐PCR was used to detect the expression of ZEB1‐AS1, miR‐455‐3p and p21‐activated kinases 2 (PAK2) in COAD tissues. CCK8 assay, EdU assay, transwell assay and scratch wound assay were used to explore the biological function of ZEB1‐AS1 in COAD cells. Bioinformatics, luciferase reporter assays and an RNA pull‐down assay were used to demonstrate the mechanism of ZEB1‐AS1. We further explore the role of ZEB1‐AS1 in vivo though xenograft tumour assay. Results We found that ZEB1‐AS1 expression was significantly up‐regulated in COAD tissues, and high ZEB1‐AS1 level was correlated with the poor prognosis of COAD patients. MiR‐455‐3p plays an anti‐cancer role in COAD by targeting PAK2. We confirmed that ZEB1‐AS1 promotes PAK2 expression by sponging miR‐455‐3p, thus facilitating COAD cell growth and metastasis. Conclusions To sum up, this result illustrates the novel molecular mechanism of ZEB1‐AS1 in COAD and provides a new target for the diagnosis and treatment of COAD patients.
Collapse
Affiliation(s)
- Xin Ni
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Ding
- Department of Rehabilitation, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, China
| | - Haitao Yuan
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jinmin Shao
- Department of Liver Disease, Zhenjiang Third People's Hospital, Zhenjiang, China
| | - Yan Yan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rouyu Guo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Chen B, Li Q, Zhou Y, Wang X, Zhang Q, Wang Y, Zhuang H, Jiang X, Xiong W. The long coding RNA AFAP1-AS1 promotes tumor cell growth and invasion in pancreatic cancer through upregulating the IGF1R oncogene via sequestration of miR-133a. Cell Cycle 2019; 17:1949-1966. [PMID: 30300116 DOI: 10.1080/15384101.2018.1496741] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a significant role in the progression of many cancers, including pancreatic cancer (PC). However, the biological function and regulatory mechanisms of lncRNAs in PC remains largely unclear. The aim of this study was to identify and evaluate the potential functions of lncRNAs in PC and reveal the underlying mechanisms of their effects. Screening of published microarray data (GEO accession Nos. GSE16515 and GSE32688), revealed lncRNA AFAP1-AS1 to be one of the most upregulated lncRNAs in PC tissues. High expression of AFAP1-AS1 was correlated with advanced stages, tumor size and lymph node metastasis, as well as with poorer overall survival in patients with PC. Functionally, knockdown of AFAP1-AS1 by transfection with siRNA inhibited the proliferative and invasive capacities of PaCa-2 and SW1990 PC cells, promoted apoptosis of PC cells in vitro, and impaired in-vivo tumorigenicity. In particular, it was hypothesized that AFAP1-AS1 may act as a competitive endogenous RNA (ceRNA), effectively becoming a sink for miR-133a whose expression was found to be downregulated in PC tissues and cell lines, and which was negatively correlated with the expression of AFAP1-AS1. We also found that the IGF1R oncogene which is an important regulator of MEK/ERK signaling pathway, was positively regulated by AFAP1-AS1 through ameliorating miR-133a-mediated IGF1R repression in PC tissues. Moreover, we demonstrated that knockdown of IGF1R by transfection with si-IGF1R suppressed cell proliferation, invasion and migration of PaCa-2 and SW1990 PC cells, suggesting that IGF1R may function as an oncogene in PC cells. Further investigations revealed that miR-133a reversed the biological effects of AFAP1-AS1 on PC cells. Collectively, the findings provide new evidence that AFAP1-AS1 could regulate the progression of pancreatic cancer by acting as a ceRNA, and suggest it has potential for use as both a biomarker for the early detection PC and for the development of individualized therapies for PC.
Collapse
Affiliation(s)
- Bo Chen
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Qinhua Li
- b Department of Hepatology , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yongping Zhou
- c Department of Hepatobiliary Surgery , Wuxi Second Hospital, Nanjing Medical University , Wuxi , Jiangsu , China
| | - Xujing Wang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Qiqi Zhang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yongkun Wang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Huiren Zhuang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaohua Jiang
- d Department of Gastroenterological Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Wujun Xiong
- b Department of Hepatology , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
40
|
Sunil Kumar PV, Gopakumar G. Inferring disease and pathway associations of long non-coding RNAs using heterogeneous information network model. J Bioinform Comput Biol 2019; 17:1950020. [PMID: 31617466 DOI: 10.1142/s0219720019500203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent findings from biological experiments demonstrate that long non-coding RNAs (lncRNAs) are actively involved in critical cellular processes and are associated with innumerable diseases. Computational prediction of lncRNA-disease association draws tremendous research attention nowadays. This paper proposes a machine learning model that predicts lncRNA-disease associations using Heterogeneous Information Network (HIN) of lncRNAs and diseases. A Support Vector Machine classifier is developed using the feature set extracted from a meta-path-based parameter, Association Index derived from the HIN. Performance of the model is validated using standard statistical metrics and it generated an AUC value of 0.87, which is better than the existing methods in the literature. Results are further validated using the recent literature and many of the predicted lncRNA-disease associations are identified as actually existing. This paper also proposes an HIN-based methodology to associate lncRNAs with pathways in which they may have biological influence. A case study on the pathway associations of four well-known lncRNAs (HOTAIR, TUG1, NEAT1, and MALAT1) has been conducted. It has been observed that many times the same lncRNA is associated with more than one biologically related pathways. Further exploration is needed to substantiate whether such lncRNAs have any role in determining the pathway interplay. The script and sample data for the model construction is freely available at http://bdbl.nitc.ac.in/LncDisPath/index.html.
Collapse
Affiliation(s)
- P V Sunil Kumar
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kozhikkode, Kerala 673601, India
| | - G Gopakumar
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kozhikkode, Kerala 673601, India
| |
Collapse
|
41
|
Tang L, Liang Y, Xie H, Yang X, Zheng G. Long non-coding RNAs in cutaneous biology and proliferative skin diseases: Advances and perspectives. Cell Prolif 2019; 53:e12698. [PMID: 31588640 PMCID: PMC6985680 DOI: 10.1111/cpr.12698] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Advances in transcriptome sequencing have revealed that the genome fraction largely encodes for thousands of non‐coding RNAs. Long non‐coding RNAs (lncRNAs), which are a class of non–protein‐coding RNAs longer than approximately 200 nucleotides in length, are emerging as key epigenetic regulators of gene expression recently. Intensive studies have characterized their crucial roles in cutaneous biology and diseases. In this review, we address the promotive or suppressive effects of lncRNAs on cutaneous physiological processes. Then, we focus on the pathogenic role of dysfunctional lncRNAs in a variety of proliferative skin diseases. These evidences suggest that lncRNAs have indispensable roles in the processes of skin biology. Additionally, lncRNAs might be promising biomarkers and therapeutic targets for cutaneous disorders.
Collapse
Affiliation(s)
- Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxin Liang
- School of Bioscience and Bio-pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hesong Xie
- School of Bioscience and Bio-pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaozhi Yang
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, China
| | - Guangjuan Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
42
|
Liu N, Liu Z, Liu X, Chen H. Comprehensive Analysis of a Competing Endogenous RNA Network Identifies Seven-lncRNA Signature as a Prognostic Biomarker for Melanoma. Front Oncol 2019; 9:935. [PMID: 31649871 PMCID: PMC6794712 DOI: 10.3389/fonc.2019.00935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) can act as competing endogenous RNA (ceRNA) involving in tumor initiation and progression. Nevertheless, the prognostic roles of lncRNAs in lncRNA-related ceRNA network of melanoma remain elusive. In this study, RNA sequence profiles were downloaded from The Cancer Genome Atlas (TCGA) database, and there were 2020 differentially expressed messenger RNAs (DEmRNAs), 438 differentially expressed lncRNAs (DElncRNAs) and 65 differentially expressed microRNAs (DEmiRNAs) between primary and metastasis melanoma patients. A ceRNA regulatory network was constructed based on the DElncRNAs-DEmiRNAs and DEmiRNAs-DEmRNAs interactions, which contained 39 lncRNAs, 10 miRNAs, and 16 mRNAs. Furthermore, univariate and multivariate Cox regression analysis were carried out to establish a 7-lncRNA prognostic signature. Subsequently, the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve and the Kaplan-Meier risk survival analysis revealed the significant performance of this signature. Finally, pathway enrichment analyses implied that lncRNA MIR205HG and MIAT were associated with multiple cancer-related pathways, especially epidermis development and immune response. The current study provides novel insights into the lncRNA-related ceRNA network and the potential of lncRNAs to be candidate prognostic biomarkers and therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Liu
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Long non-coding RNA LINC00174 promotes glycolysis and tumor progression by regulating miR-152-3p/SLC2A1 axis in glioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:395. [PMID: 31492194 PMCID: PMC6731586 DOI: 10.1186/s13046-019-1390-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Long non-coding RNA plays a crucial role in the occurrence and progression of glioma. We aimed to explore the function of LINC00174 in cell proliferation, apoptosis, migration, invasion and glycolysis of glioma cells, and investigate the molecular mechanism involved. METHODS LINC00174 expression in glioma tissues and peritumoral brain edema (PTBE) tissues was examined by RT-qPCR and in situ hybridization. The CCK-8, TUNEL, wound healing, transwell, and ELISA assays were performed to identify the effects of LINC00174 knockdown on cell viability, apoptosis, migration, invasion, and glycolysis, respectively. RNA immunoprecipitation, dual-luciferase reporter, RNA pull down, and western blot assays were performed to explore the molecular mechanisms of LINC00174 in glioma cells. A nude mouse xenograft model was used to investigate the role of LINC00174 in xenograft glioma growth. RESULTS LINC00174 was overexpressed in glioma tissues and cell lines. LINC00174 knockdown inhibited cell proliferation, migration, invasion and glycolysis of glioma cells, and LINC00174 exerted a tumorigenesis role. LINC00174 could interact with miR-152-3p/SLC2A1 axes. The miR-152-3p inhibitor or the SLC2A1 overexpression could rescue the anti-tumor effect of LINC00174 knockdown on glioma cells. Moreover, downregulation of LINC00174 also inhibited tumor volume and delayed the tumor growth in vivo. CONCLUSION LINC00174 accelerated carcinogenesis of glioma via sponging miR-1523-3p and increasing the SLC2A1 expression, which could be considered as a molecular target for glioma diagnosis and therapy.
Collapse
|
44
|
Mu X, Mou KH, Ge R, Han D, Zhou Y, Wang LJ. Linc00961 inhibits the proliferation and invasion of skin melanoma by targeting the miR‑367/PTEN axis. Int J Oncol 2019; 55:708-720. [PMID: 31364744 PMCID: PMC6685588 DOI: 10.3892/ijo.2019.4848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNA 00961 (Linc00961) has been identified as a tumor suppressor in various types of cancer. However, the critical roles of Linc00961 in the carcinogenesis and progression of skin melanoma (SM) are yet to be fully elucidated. The present study revealed via reverse transcription‑quantitative PCR analysis that Linc00961 was downregulated in the tissues of patients with SM compared with benign nevi, and in A375, A2058 and SK‑MEL‑28 cell lines compared with human melanocytes. Furthermore, overexpression of Linc00961 inhibited cell proliferation, and promoted the apoptosis of A375 and SK‑MEL‑28 cells in vitro and in vivo, as determined by Cell Counting Kit‑8 and flow cytometry assays, and tumor xenograft studies, respectively. Overexpression of Linc00961 also led to an attenuation of the migration and invasive capabilities of A375 and SK‑MEL‑28 cells, measured using Transwell assays. Functionally, it was demonstrated that Linc00961 acted as a competing endogenous RNA (ceRNA) by competitively sponging microRNA‑367 (miR‑367) in A375 and SK‑MEL‑28 cells; restoration of miR‑367 rescued the inhibitory effects of Linc00961 on A375 and SK‑MEL‑28 cells. Finally, it was observed that phosphate and tension homology deleted on chromosome 10 (PTEN), an established target of miR‑367 in A375 and SK‑MEL‑28 cells, was positively regulated by Linc00961, and its inhibition reversed the inhibitory effects of Linc00961 on the proliferation and invasion of A375 and SK‑MEL‑28 cells. Collectively, the present study revealed that Linc00961 was downregulated in SM, and furthermore, Linc00961 was identified as a ceRNA that inhibits the proliferation and invasion of A375 and SK‑MEL‑28 cells by modulating the miR‑367/PTEN axis.
Collapse
Affiliation(s)
- Xin Mu
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kuan-Hou Mou
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Ge
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Han
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zhou
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Juan Wang
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
45
|
Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu RCN, Walker AL, Liu YY, Huang S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019; 8:cells8080803. [PMID: 31370278 PMCID: PMC6721560 DOI: 10.3390/cells8080803] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors.
Collapse
Affiliation(s)
| | - Tithi Roy
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Sergette Banang-Mbeumi
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
- Division for Research and Innovation, POHOFI Inc., P.O. Box 44067, Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | | | - Anthony L Walker
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Yong-Yu Liu
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
46
|
HOTAIR as a Prognostic Predictor for Diverse Human Cancers: A Meta- and Bioinformatics Analysis. Cancers (Basel) 2019; 11:cancers11060778. [PMID: 31195674 PMCID: PMC6628152 DOI: 10.3390/cancers11060778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023] Open
Abstract
Several studies suggest that upregulated expression of the long non-coding RNA HOX transcript antisense RNA (HOTAIR) is a negative predictive biomarker for numerous cancers. Herein, we performed a meta-analysis to further investigate the prognostic value of HOTAIR expression in diverse human cancers. To this end, a systematic literature review was conducted in order to select scientific studies relevant to the association between HOTAIR expression and clinical outcomes, including overall survival (OS), recurrence-free survival (RFS)/disease-free survival (DFS), and progression-free survival (PFS)/metastasis-free survival (MFS) of cancer patients. Collectively, 53 eligible studies including a total of 4873 patients were enrolled in the current meta-analysis. Pooled hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs) were calculated to assess the relationship between HOTAIR and cancer patients’ survival. Elevated HOTAIR expression was found to be significantly associated with OS, RFS/DFS and PFS/MFS in diverse types of cancers. These findings were also corroborated by the results of bioinformatics analysis on overall survival. Therefore, based on our findings, HOTAIR could serve as a potential biomarker for the prediction of cancer patient survival in many different types of human cancers.
Collapse
|
47
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 958] [Impact Index Per Article: 191.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
48
|
Jiang N, Cui J, Shi Y, Yang G, Zhou X, Hou X, Meng J, Luan Y. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato -Phytophthora infestans interaction. HORTICULTURE RESEARCH 2019; 6:28. [PMID: 30729018 PMCID: PMC6355781 DOI: 10.1038/s41438-018-0096-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 05/05/2023]
Abstract
Our previous studies indicated that tomato miR482b could negatively regulate the resistance of tomato to Phytophthora infestans and the expression of miR482b was decreased after inoculation with P. infestans. However, the mechanism by which the accumulation of miR482b is suppressed remains unclear. In this study, we wrote a program to identify 89 long noncoding RNA (lncRNA)-originated endogenous target mimics (eTMs) for 46 miRNAs from our RNA-Seq data. Three tomato lncRNAs, lncRNA23468, lncRNA01308 and lncRNA13262, contained conserved eTM sites for miR482b. When lncRNA23468 was overexpressed in tomato, miR482b expression was significantly decreased, and the expression of the target genes, NBS-LRRs, was significantly increased, resulting in enhanced resistance to P. infestans. Silencing lncRNA23468 in tomato led to the increased accumulation of miR482b and decreased accumulation of NBS-LRRs, as well as reduced resistance to P. infestans. In addition, the accumulation of both miR482b and NBS-LRRs was not significantly changed in tomato plants that overexpressed lncRNA23468 with a mutated eTM site. Based on the VIGS system, a target gene of miR482b, Solyc02g036270.2, was silenced. The disease symptoms of the VIGS-Solyc02g036270.2 tomato plants were in accordance with those of tomato plants in which lncRNA23468 was silenced after inoculation with P. infestans. More severe disease symptoms were found in the modified plants than in the control plants. Our results demonstrate that lncRNAs functioning as eTMs may modulate the effects of miRNAs in tomato and provide insight into how the lncRNA23468-miR482b-NBS-LRR module regulates tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Yunsheng Shi
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Guanglei Yang
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Xiaoxu Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Xinxin Hou
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
49
|
Wang J, Zhang M, Lu W. Long noncoding RNA GACAT3 promotes glioma progression by sponging miR-135a. J Cell Physiol 2018; 234:10877-10887. [PMID: 30536379 DOI: 10.1002/jcp.27946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
The long noncoding RNA (lncRNA) gastric cancer associated transcript 3 (GACAT3) has been reported to play important roles in human tumorigenesis. However, its expression pattern, functions, and underlying mechanism in glioma remain unclear. In the present study, we showed that GACAT3 is upregulated in glioma tissues and cell lines. Through online databases, luciferase reporter assays and RNA immunoprecipitation (RIP) assays, we determined that GACAT3 acts as a competing endogenous RNA (ceRNA) for microRNA (miR)-135a, which was downregulated and performed as a tumor inhibitor in glioma. Further, nicotinamide phosphoribosyl transferase (NAMPT) was confirmed as a target gene of miR-135a by a series of gain- and loss-of-function assays. Overall, the present study was the first to show that GACAT3 regulates the expression of NAMPT to promote glioma progression by sponging miR-135a. These findings provide a promising therapy strategy for glioma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhang
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weifeng Lu
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Wang X, Liu W, Wang P, Li S. RNA interference of long noncoding RNA HOTAIR suppresses autophagy and promotes apoptosis and sensitivity to cisplatin in oral squamous cell carcinoma. J Oral Pathol Med 2018; 47:930-937. [PMID: 30053324 DOI: 10.1111/jop.12769] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long noncoding RNA HOX transcript antisense RNA (lncRNA HOTAIR) is overexpressed in many types of human cancers and is correlated with clinical stage and lymph node metastasis in oral squamous cell carcinoma (OSCC). Autophagy, an important mechanism of self-protection, plays vital roles in adapting to hypoxia, tolerating external stimulation, and inducing chemotherapy resistance in OSCC cells. This study aims to investigate the effect of HOTAIR on autophagy, apoptosis, and invasion of OSCC cells. METHODS HOTAIR expression in OSCC cells was knocked down by small RNA interference. Transmission electron microscope, Western blot, and flow cytometry assay were used to detect the level of autophagy and apoptosis. OSCC cells were medicated with cisplatin, and median lethal dose (LD50) was performed to evaluate the effect on chemosensitivity of HOTAIR. RESULTS After HOTAIR silence, autophagy was inhibited with the downregulated expression of MAP1LC3B (microtubule-associated protein 1 light chain 3B), beclin1, and autophagy-related gene (ATG) 3 and ATG7. The expressions of mTOR increased. Proliferation, migration, and invasion of OSCC cells were suppressed. Furthermore, apoptosis rate was enhanced, and the sensitivity to cisplatin was promoted when compared with the negative control group. CONCLUSION HOTAIR acts as an oncogene in OSCC cells, and HOTAIR silence may be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong, China.,Department of Oral Pathology, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Liu
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, China
| | - Peiyuan Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, China
| | - Shu Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|