1
|
Strosahl J, Ye K, Pazdro R. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 2024; 25:837. [PMID: 39237910 PMCID: PMC11378601 DOI: 10.1186/s12864-024-10710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β (TGF-β) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Collapse
Affiliation(s)
- Jessica Strosahl
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
2
|
Luo Z, Shah S, Tanasa B, Chang KC, Goldberg JL. Gene regulatory roles of growth and differentiation factors in retinal development. iScience 2024; 27:110100. [PMID: 38947520 PMCID: PMC11214324 DOI: 10.1016/j.isci.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Retinal ganglion cell (RGC) differentiation is tightly controlled by extrinsic and intrinsic factors. Growth and differentiation factor 15 (GDF-15) promotes RGC differentiation, opposite to GDF-11 which inhibits RGC differentiation, both in the mouse retina and in human stem cells. To deepen our understanding of how these two closely related molecules confer opposing effects on retinal development, here we assess the transcriptional profiles of mouse retinal progenitors exposed to exogenous GDF-11 or -15. We find a dichotomous effect of GDF-15 on RGC differentiation, decreasing RGCs expressing residual pro-proliferative genes and increasing RGCs expressing non-proliferative genes, suggestive of greater RGC maturation. Furthermore, GDF-11 promoted the differentiation of photoreceptors and amacrine cells. These data enhance our understanding of the mechanisms underlying the differentiation of RGCs and photoreceptors from retinal progenitors and suggest new approaches to the optimization of protocols for the differentiation of these cell types.
Collapse
Affiliation(s)
- Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil Shah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Bogdan Tanasa
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Wu Z, Zhang Q, Wang H, Zhou S, Fu B, Fang L, Cheng JC, Sun YP. Growth differentiation factor-11 upregulates matrix metalloproteinase 2 expression by inducing Snail in human extravillous trophoblast cells. Mol Cell Endocrinol 2024; 585:112190. [PMID: 38369181 DOI: 10.1016/j.mce.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The human extravillous trophoblast (EVT) cell invasion is an important process during placentation. Although the placenta is normal tissue, the EVT cells exhibit some features common to cancer cells, including high migratory and invasive properties. Snail and Slug are transcription factors that mediate the epithelial-mesenchymal transition (EMT), a crucial event for cancer cell migration and invasion. It has been shown that GDF-11-induced matrix metalloproteinase 2 (MMP2) expression is required for EVT cell invasion. Whether GDF-11 can regulate Snail and Slug expression in human EVT cells remains unknown. If it does, the involvement of Snail and Slug in GDF-11-induced MMP2 expression and EVT cell invasion must also be defined. In the present study, using the immortalized human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells as experimental models, our results show that GDF-11 upregulates Snail and Slug expression. ALK4 and ALK5 mediate the stimulatory effects of GDF-11 on Snail and Slug expression. In addition, we demonstrate that SMAD2 and SMAD3 are required for the GDF-11-upregulated Snail expression, while only SMAD3 is involved in GDF-11-induced Slug expression. Moreover, our results reveal that Snail mediates GDF-11-induced MMP2 expression and cell invasion but not Slug. This study increases our understanding of the biological function of GDF-11 in human EVT cells and provides a novel mechanism for regulating MMP2 and EVT cell invasion.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shenghui Zhou
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingxin Fu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Aslan NA, Avcı E, Şenol H, Güler N. GDF11 level and its effect on prognosis in patients with acute myeloid leukemia. J Investig Med 2024; 72:341-348. [PMID: 38415361 DOI: 10.1177/10815589241238218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the proliferation of CD34 positive self-renewing malignant hematopoietic stem cells. Previous studies have shown that the transforming growth factor beta (TGFβ) pathway plays a role in AML pathogenesis, especially by affecting the microenvironment. Growth differentiation factor 11 (GDF11) is a member of the TGFβ superfamily, involved in embryological development and known as rejuvenating factor. In this study, our aim was to determine the serum GDF11 level in patients with AML, to compare it with the control group, to determine its relationship with follistatin, vimentin, and E-cadherin levels, and to determine whether GDF11 influences AML prognosis. Serum GDF11, vimentin, follistatin, and E-cadherin levels of newly diagnosed or relapsed/refractory AML patients and age- and gender-matched control group were measured by enzyme-linked immunosorbent assay. Serum GDF11 level was higher in the patient group (263.87 ± 126.54 ng/L) compared to the control group (211.54 ± 61.47 ng/L; p = 0.035). GDF11 level did not change according to age, gender, hemoglobin level, and bone marrow blast rate. No correlation was found between GDF11 level, response rates, and survival status of the patients. A positive correlation was detected between GDF11, E-cadherin, and vimentin levels. As a conclusion, increased serum GDF11 levels in AML patients may be linked to the regeneration ability of leukemic stem cells. There is a need for studies investigating GDF11 expression in myeloblasts.
Collapse
Affiliation(s)
| | - Esin Avcı
- Pamukkale University School of Medicine, Denizli, Turkey
| | - Hande Şenol
- Pamukkale University School of Medicine, Denizli, Turkey
| | - Nil Güler
- Pamukkale University School of Medicine, Denizli, Turkey
| |
Collapse
|
5
|
Habibi P, Falamarzi K, Ebrahimi ND, Zarei M, Malekpour M, Azarpira N. GDF11: An emerging therapeutic target for liver diseases and fibrosis. J Cell Mol Med 2024; 28:e18140. [PMID: 38494851 PMCID: PMC10945076 DOI: 10.1111/jcmm.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 03/19/2024] Open
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.
Collapse
Affiliation(s)
- Pardis Habibi
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Kimia Falamarzi
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Zarei
- Renal Division, Brigham & Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- John B. Little Center for Radiation SciencesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Mahdi Malekpour
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Chen CC, Lee TL, Tsai IT, Hsuan CF, Hsu CC, Wang CP, Lu YC, Lee CH, Chung FM, Lee YJ, Wei CT. Tissue Expression of Growth Differentiation Factor 11 in Patients with Breast Cancer. Diagnostics (Basel) 2024; 14:701. [PMID: 38611614 PMCID: PMC11011301 DOI: 10.3390/diagnostics14070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein growth differentiation factor 11 (GDF11) plays crucial roles in cellular processes, including differentiation and development; however, its clinical relevance in breast cancer patients is poorly understood. We enrolled 68 breast cancer patients who underwent surgery at our hospital and assessed the expression of GDF11 in tumorous, ductal carcinoma in situ (DCIS), and non-tumorous tissues using immunohistochemical staining, with interpretation based on histochemical scoring (H-score). Our results indicated higher GDF11 expressions in DCIS and normal tissues compared to tumorous tissues. In addition, the GDF11 H-score was lower in the patients with a tumor size ≥ 2 cm, pathologic T3 + T4 stages, AJCC III-IV stages, Ki67 ≥ 14% status, HER2-negative, and specific molecular tumor subtypes. Notably, the patients with triple-negative breast cancer exhibited a loss of GDF11 expression. Spearman correlation analysis revealed associations between GDF11 expression and various clinicopathological characteristics, including tumor size, stage, Ki67, and molecular subtypes. Furthermore, GDF11 expression was positively correlated with mean corpuscular hemoglobin concentration and negatively correlated with neutrophil count, as well as standard deviation and coefficient of variation of red cell distribution width. These findings suggest that a decreased GDF11 expression may play a role in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Chia-Chi Chen
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (C.-H.L.)
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Department of Physical Therapy, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Occupational Therapy, I-Shou University, Kaohsiung 82445, Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80794, Taiwan
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
- Health Examination Center, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80794, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Chien-Hsun Lee
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (C.-H.L.)
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
| | - Yau-Jiunn Lee
- Lee’s Endocrinologic Clinic, Pingtung 90000, Taiwan;
| | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
7
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
8
|
Zhou R, Li S, Wang Q, Bi Y, Li X, Wang Q. Silencing of GDF11 suppresses hepatocyte apoptosis to relieve LPS/D-GalN acute liver failure. J Biochem Mol Toxicol 2024; 38:e23577. [PMID: 37934488 DOI: 10.1002/jbt.23577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
In this paper, we generated a short hairpin RNA growth differentiation factor-11 (sh-GDF11) and evaluated the effects of sh-GDF11 on the pathogenesis of acute liver failure (ALF) in vitro and in vivo. Through bioinformatics study, the key gene related to ALF was assayed. Lipopolysaccharide (LPS) and D-galactoamine (D-GalN) were applied to establish the mouse model of LPS/D-GalN-induced liver injury, and TNF-α and D-Gal were used to construct an in vitro cell model, followed by treatment of sh-GDF11 for analysis of liver cell proliferation. Bioinformatics analysis showed that the protective effect of sh-GDF11 on ALF may be mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. The results of in vitro study found that sh-GDF11 could promote cell proliferation and inhibit death by blocking the PI3K/Akt/mTOR signaling pathway. In vivo animal experiments further confirmed that sh-GDF11 could suppress hepatocyte apoptosis by inhibiting the PI3K/Akt/mTOR signaling pathway. sh-GDF11 relieved LPS/D-GalN-induced ALF by blocking the PI3K/Akt/mTOR signaling pathway, emphasizing its critical role in LPS/D-GalN-induced ALF treatment.
Collapse
Affiliation(s)
- Rongsheng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Bi
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaogang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Shao Y, Liu T, Wen X, Zhang R, Liu X, Xing D. The regulatory effect of growth differentiation factor 11 on different cells. Front Immunol 2023; 14:1323670. [PMID: 38143761 PMCID: PMC10739301 DOI: 10.3389/fimmu.2023.1323670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) is one of the important factors in the pathophysiological process of animals. It is widely expressed in many tissues and organs of animals, showing its wide biological activity and potential application value. Previous research has demonstrated that GDF11 has a therapeutic effect on various diseases, such as anti-myocardial aging and anti-tumor. This has not only sparked intense interest and enthusiasm among academics but also spurred some for-profit businesses to attempt to develop GDF11 as a medication for regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11 antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are in the preclinical research stage. Therefore, we believe that figuring out which cells GDF11 acts on and its current problems should be an important issue in the scientific and commercial communities. Only through extensive, comprehensive research and discussion can we better understand the role and potential of GDF11, while avoiding unnecessary risks and misinformation. In this review, we aimed to summarize the role of GDF11 in different cells and its current controversies and challenges, providing an important reference for us to deeply understand the function of GDF11 and formulate more effective treatment strategies in the future.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Yamaguchi Y, Zhu M, Moaddel R, Palchamy E, Ferrucci L, Semba RD. Relationships of GDF8 and 11 and Their Antagonists With Decline of Grip Strength Among Older Adults in the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1793-1798. [PMID: 37235639 PMCID: PMC10562884 DOI: 10.1093/gerona/glad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although growth/differentiation factor 11 (GDF11), growth/differentiation factor 8 (GDF8), and their circulating antagonists, which include GDF11 and GDF8 propeptides, follistatin (FST), WAP, Follistatin/Kazal, Immunoglobulin, Kunitz And Netrin Domain Containing (WFIKKN)1, and WFIKKN2, have been shown to influence skeletal muscle and aging in mice, the relationship of these circulating factors with human phenotypes is less clear. This study aimed to characterize the relationship between plasma GDF8, GDF11, FST, WFIKKN1, and WFIKKN2 concentrations with the decline of grip strength in 534 adults, ≥65 years, who participated in the Baltimore Longitudinal Study of Aging and had grip strength measured over time. Plasma GDF8 and GDF11 mature proteins, GDF8 and GDF11 propeptides, FST (isoform FST315 and cleaved form FST303), WFIKKN1, and WFIKKN2 concentrations were measured using selected reaction monitoring-tandem mass spectrometry at baseline. Grip strength was measured at baseline and at follow-up visits (median follow-up 8.87 years). Mean (standard deviation) grip strength declined in men and women by -0.84 (2.45) and -0.60 (1.32) kg/year, respectively. Plasma GDF8 and GDF11 mature proteins, GDF8 and GDF11 propeptides, FST315, FST303, WFIKKN1, and WFIKKN2 concentrations were not independently predictive of the decline of grip strength in men or women in multivariable linear regression analyses that adjusted for potential confounders. In conclusion, circulating GDF8, GDF11, and their antagonists do not appear to influence the decline of grip strength in older men or women.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan
| | - Min Zhu
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ruin Moaddel
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elango Palchamy
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Zhang Y, Bai P, Lu J, Lui KHW, Zhao T, Wen D, He B, Zhu Z. Effect of growth differentiation factor 11 expression after peripheral nerve injury in Sprague-Dawley rats. Neurol Res 2023; 45:835-842. [PMID: 37220327 DOI: 10.1080/01616412.2023.2211446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES We attempt to investigate the expression pattern of GDF11 in the sciatic nerves after injury. METHODS Thirty-six healthy male Sprague Dawley (SD) rats were divided into three groups at random and were labelled as: day 1, day 4, and day 7 post-surgery. The sciatic nerve crush model was established on the left-hind limb, while the right limb was untreated, and served as the control. Nerve samples were collected at post-injury day 1, day 4 and day 7. Nerve samples collected from the proximal and distal stump of the injury site underwent immunofluorescence staining with GDF11, NF200 and CD31. GDF11 mRNA expression was analyzed by qRT-PCR. CCK-8 assay, after si-GDF11 transfection in Schwann cells (RSC96) was applied to verify its effect in cell proliferation rate. RESULTS GDF11 was abundantly expressed in axons stained with NF200 and Schwann cells stained with S100. However, no GDF11 expression was observed in vascular endothelial tissues stained with CD31. From day 4 onwards, the level of GDF11 showed an increasing trend, up to a twofold level at day 7 after injury. Proliferation rate of RSC96 cells showed a significant decrease after the down-regulation of GDF11 by siRNAs compared to the control group. CONCLUSIONS GDF11 may play a role in the proliferation of Schwann cell during nerve regeneration process.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peiwen Bai
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiamin Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Koon Hei Winson Lui
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianjiao Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Di Wen
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo He
- Joint and Orthopedic Trauma, Orthopedic Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer 2023; 1878:188944. [PMID: 37356738 DOI: 10.1016/j.bbcan.2023.188944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles whereas the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the colon or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
13
|
Wu Z, Zhang L, Jia Y, Bi B, Fang L, Cheng JC. GDF-11 downregulates placental human chorionic gonadotropin expression by activating SMAD2/3 signaling. Cell Commun Signal 2023; 21:179. [PMID: 37480123 PMCID: PMC10362589 DOI: 10.1186/s12964-023-01201-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The production of human chorionic gonadotropin (hCG) by the placental trophoblast cells is essential for maintaining a normal pregnancy. Aberrant hCG levels are associated with reproductive disorders. The protein of hCG is a dimer consisting of an α subunit and a β subunit. The β subunit is encoded by the CGB gene and is unique to hCG. Growth differentiation factor-11 (GDF-11), a member of the transforming growth factor-β (TGF-β) superfamily, is expressed in the human placenta and can stimulate trophoblast cell invasion. However, whether the expression of CGB and the production of hCG are regulated by GDF-11 remains undetermined. METHODS Two human choriocarcinoma cell lines, BeWo and JEG-3, and primary cultures of human cytotrophoblast (CTB) cells were used as experimental models. The effects of GDF-11 on CGB expression and hCG production, as well as the underlying mechanisms, were explored by a series of in vitro experiments. RESULTS Our results show that treatment of GDF-11 downregulates the expression of CGB and the production of hCG in both BeWo and JEG-3 cells as well as in primary CTB cells. Using a pharmacological inhibitor and siRNA-mediated approach, we reveal that both ALK4 and ALK5 are required for the GDF-11-induced downregulation of CGB expression. In addition, treatment of GDF-11 activates SMAD2/3 but not SMAD1/5/8 signaling pathways. Moreover, both SMAD2 and SMAD3 are involved in the GDF-11-downregulated CGB expression. ELISA results show that the GDF-11-suppressed hCG production requires the ALK4/5-mediated activation of SMAD2/3 signaling pathways. CONCLUSIONS This study not only discovers the biological function of GDF-11 in the human placenta but also provides important insights into the regulation of the expression of hCG. Video Abstract.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lingling Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Yuanyuan Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Beibei Bi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Mätlik K, Olfat S, Cowlishaw MC, Moreno ED, Ollila S, Andressoo JO. In vivo modulation of endogenous gene expression via CRISPR/Cas9-mediated 3'UTR editing. Heliyon 2023; 9:e13844. [PMID: 36923835 PMCID: PMC10009458 DOI: 10.1016/j.heliyon.2023.e13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The 3' untranslated regions (UTRs) modulate gene expression levels by regulating mRNA stability and translation. We previously showed that the replacement of the negative regulatory elements from the 3'UTR of glial cell line-derived neurotrophic factor (GDNF) resulted in increased endogenous GDNF expression while retaining its normal spatiotemporal expression pattern. Here, we have developed a methodology for the generation of in vivo hyper- and hypomorphic alleles via 3'UTR targeting using the CRISPR/Cas9 system. We demonstrate that CRISPR/Cas9-mediated excision of a long inhibitory sequence from Gdnf native 3'UTR in mouse zygotes increases the levels of endogenous GDNF with similar phenotypic alterations in embryonic kidney development as we described in GDNF constitutive and conditional hypermorphic mice. Furthermore, we show that CRISPR/Cas9-mediated targeting of 3'UTRs in vivo allows the modulation of the expression levels of two other morphogens, Gdf11 and Bdnf. Together, our work demonstrates the power of in vivo 3'UTR editing using the CRISPR/Cas9 system to create hyper- and hypomorphic alleles, suggesting wide applicability in studies on gene function and potentially, in gene therapy.
Collapse
Affiliation(s)
- Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Soophie Olfat
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mark Cary Cowlishaw
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Eva Domenech Moreno
- Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland.,Translational Cancer Medicine Program, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Program, University of Helsinki, 00290 Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
15
|
Lin S, Zhong L, Chen J, Zhao Z, Wang R, Zhu Y, Liu J, Wu Y, Ye C, Jin F, Ren Z. GDF11 inhibits adipogenesis of human adipose-derived stromal cells through ALK5/KLF15/β-catenin/PPARγ cascade. Heliyon 2023; 9:e13088. [PMID: 36755591 PMCID: PMC9900277 DOI: 10.1016/j.heliyon.2023.e13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Obesity is a metabolic disease characterized by excessive fat storage, and the adipogenic differentiation of adipose-derived stromal cells (ADSCs) is closely linked to its occurrence. Growth differentiation factor 11 (GDF11), a well-known molecule in the field of anti-aging, also has great potential in regulating stem cell differentiation. In this study, we found that GDF11 inhibited adipogenic differentiation of human ADSCs in vitro by activating the WNT/β-catenin and SMAD2/3 pathways while inhibiting the AKT pathway. Moreover, the transcription factor Kruppel-like factor 15 (KLF15) was discovered to be an important downstream factor for GDF11 in inhibiting adipogenesis via the WNT/β-catenin pathway. Furthermore, AlphaFold2 structure prediction and inhibitor-blocking experiments revealed that ALK5 is a functional receptor of GDF11. Collectively, we demonstrated that GDF11 is a potential target for inhibiting adipogenic differentiation and combating obesity.
Collapse
Affiliation(s)
- Shimin Lin
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Lishan Zhong
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jingyi Chen
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Zibo Zhao
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Junwei Liu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Cuifang Ye
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Fujun Jin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Gerardo-Ramírez M, German-Ramirez N, Escobedo-Calvario A, Chávez-Rodríguez L, Bucio-Ortiz L, Souza-Arroyo V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE. The hepatic effects of GDF11 on health and disease. Biochimie 2022; 208:129-140. [PMID: 36584866 DOI: 10.1016/j.biochi.2022.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The growth differentiation factor 11 (GDF11), a member of the superfamily of the transforming growth factor β, has gained relevance in the last few years due to its remarkable effects in cellular biology, particularly in the nervous system, skeletal muscle, the heart, and many epithelial tissues. Some controversies have been raised about this growth factor. Many of them have been related to technical factors but also the nature of the cellular target. In liver biology and pathobiology, the GDF11 has shown to be related in many molecular aspects, with a significant impact on the physiology and the initiation and progression of the natural history of liver diseases. GDF11 has been involved as a critical regulator in lipid homeostasis, which, as it is well known, is the first step in the progression of liver disease. However, also it has been reported that the GDF11 is involved in fibrosis, senescence, and cancer. Although there are some controversies, much of the literature indicates that GDF11 displays effects tending to solve or mitigate pathological states of the liver, with reasonable evidence of correlation with other organs or systems. To a large extent, the controversy, as mentioned, is due to technical problems, such as the specificity of GDF11 antibodies, confusion with its closer family member, myostatin, and the state of differentiation in the tissues. In the present work, we reviewed the specific effects of GDF11 in the biology and pathobiology of the liver as a potential and promising factor for therapeutic intervention shortly.
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natanael German-Ramirez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
17
|
Cappellini MD, Taher AT, Verma A, Shah F, Hermine O. Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Rev 2022; 59:101039. [PMID: 36577601 DOI: 10.1016/j.blre.2022.101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The hematologic disorders myelodysplastic syndromes and beta-thalassemia are characterized by ineffective erythropoiesis and anemia, often managed with regular blood transfusions. Erythropoiesis, the process by which sufficient numbers of functional erythrocytes are produced from hematopoietic stem cells, is highly regulated, and defects can negatively affect the proliferation, differentiation, and survival of erythroid precursors. Treatments that directly target the underlying mechanisms of ineffective erythropoiesis are limited, and management of anemia with regular blood transfusions imposes a significant burden on patients, caregivers, and health care systems. There is therefore a strong unmet need for treatments that can restore effective erythropoiesis. Novel therapies are beginning to address this need by targeting a variety of mechanisms underlying erythropoiesis. Herein, we provide an overview of the role of ineffective erythropoiesis in myelodysplastic syndromes and beta-thalassemia, discuss unmet needs in targeting ineffective erythropoiesis, and describe current management strategies and emerging treatments for these disorders.
Collapse
Affiliation(s)
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Halim and Aida Daniel Academic and Clinical Center, Beirut, Lebanon.
| | - Amit Verma
- Albert Einstein College of Medicine, New York, NY, USA.
| | - Farrukh Shah
- Department of Haematology, Whittington Health NHS Trust, London, UK.
| | - Olivier Hermine
- Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Cité, Paris, France; INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
18
|
GDF11 Is a Novel Protective Factor Against Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:852-860. [PMID: 36027600 DOI: 10.1097/fjc.0000000000001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification (VC) occurs via an active cell-mediated process, which involves osteogenic differentiation, apoptosis, and phenotypic transformation of vascular smooth muscle cells (VSMCs). As a member of the transforming growth factor-β family, growth differentiation factor 11 (GDF11) can inhibit apoptosis and osteogenic differentiation and maintain the stability of atherosclerotic plaques. In this study, coronary artery calcium score (CACS) of participants with GDF11 measurements was measured using computed tomography angiography and was scored according to the Agatston score. β-glycerophosphate (10 mM), dexamethasone (100 nM), and l -ascorbic acid (50 µg/mL) [osteogenic medium (OM)] were used to induce calcification of human aortic smooth muscle cells. We found that CACS was negatively correlated with serum GDF11 levels in patients and GDF11 was a strong predictor of elevated CACS (OR = 0.967, 95% CI: 0.945-0.991; P = 0.006), followed by age (OR = 1.151, 95% CI: 1.029-1.286; P = 0.014), triglycerides (OR = 4.743, 95% CI: 1.170-19.236; P = 0.029), C-reactive protein (OR = 1.230, 95% CI: 1.010-1.498; P = 0.04), and hypertension (OR = 7.264, 95% CI: 1.099-48.002; P = 0.04). Furthermore, exogenous GDF11 inhibited OM-induced calcification by inhibiting osteogenic differentiation, the phenotypic transformation and apoptosis of human aortic smooth muscle cells. Our study demonstrates that GDF11 plays a crucial role in reducing vascular calcification and serves as a potential intervention target to vascular calcification.
Collapse
|
19
|
Wei Y, Ran Z, Wang R, Ren Z, Liu CL, Liu CB, Shi C, Wang C, Zhang YH. Twisted Fiber Optic SPR Sensor for GDF11 Concentration Detection. MICROMACHINES 2022; 13:mi13111914. [PMID: 36363935 PMCID: PMC9697599 DOI: 10.3390/mi13111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 05/25/2023]
Abstract
There are few methods and insufficient accuracy for growth differentiation factor 11 (GDF11) concentration detection. In this paper, we designed a twisted fiber cladding surface plasmon resonance (SPR) sensor, which can achieve a high precision detection of GDF11 concentration. The new structure of the fiber cladding SPR sensor was realized by coupling the light in the fiber core to the cladding through fiber thermal fusion twisting micromachining technology; a series of functionalized modifications were made to the sensor surface to obtain a fiber sensor capable of GDF11 specific recognition. The experimental results showed when GDF11 antigen concentration was 1 pg/mL-10 ng/mL, the sensor had a detection sensitivity of 2.518 nm/lgC, a detection limit of 0.34 pg/mL, and a good log-linear relationship. The sensor is expected to play a role in the rapid and accurate concentration detection of pathological study for growth differentiation factors.
Collapse
Affiliation(s)
- Yong Wei
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Ze Ran
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Rui Wang
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Zhuo Ren
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chun-Lan Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chun-Biao Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chen Shi
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chen Wang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Yong-Hui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| |
Collapse
|
20
|
Frohlich J, Kovacovicova K, Raffaele M, Virglova T, Cizkova E, Kucera J, Bienertova-Vasku J, Wabitsch M, Peyrou M, Bonomini F, Rezzani R, Chaldakov GN, Tonchev AB, Di Rosa M, Blavet N, Hejret V, Vinciguerra M. GDF11 inhibits adipogenesis and improves mature adipocytes metabolic function via WNT/β-catenin and ALK5/SMAD2/3 pathways. Cell Prolif 2022; 55:e13310. [PMID: 35920128 PMCID: PMC9528760 DOI: 10.1111/cpr.13310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Objective GDF11 is a member of the TGF‐β superfamily that was recently implicated as potential “rejuvenating” factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. Methods We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre‐adipocyte cell lines. Results Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre‐adipocytes by ALK5‐SMAD2/3 activation in cooperation with the WNT/β‐catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. Conclusion We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11‐based “anti‐obesity” therapy.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Psychogenics Inc, Tarrytown, New York, USA
| | - Marco Raffaele
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tereza Virglova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Eliska Cizkova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Kucera
- Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic.,Faculty of Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czech Republic
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain.,Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.,Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.,Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Nicolas Blavet
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vaclav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Center for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| |
Collapse
|
21
|
Zhao H, Chen W, Chen J, Qi C, Wang T, Zhang J, Qu D, Yu T, Zhang Y. ADSCs Promote Tenocyte Proliferation by Reducing the Methylation Level of lncRNA Morf4l1 in Tendon Injury. Front Chem 2022; 10:908312. [PMID: 35860629 PMCID: PMC9290323 DOI: 10.3389/fchem.2022.908312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Tendons are the special connective tissue that connects bones to muscles and governs joint movement in response to loads passed by muscles. The healing of tendon injuries is still a challenge. In recent years, adipose-derived mesenchymal stem cells (ADSCs) have been increasingly used for tissue regeneration, but the underlying mechanism of tendon injury still remains unclear. Methods: High-throughput sequencing was used to identify a novel lncRNA, whose expression was significantly decreased in injured tendon compared with normal tendon. Furthermore, pyrosequencing, nuclear-cytoplasmic separation, FISH assay and qRT-PCR analysis were used to verify the level of lncRNA methylation in the injured tenocytes. lncRNA was confirmed to promote the proliferation of tenocytes by flow cytometry, wound healing assay, qRT-PCR, and western blot, and the target gene of lncRNA was predicted and verified. To confirm that ADSCs could repair injured tendons, ADSCs and injured tenocytes were co-cultured in vitro, and ADSCs were injected into injured tendons in vitro, respectively. Results: The lncRNA Morf4l1 promoter methylation in injured tendons led to down-regulation of its expression and inhibition of tenocyte proliferation. LncRNA Morf4l1 promoted the expression of TGF-β2 by targeting 3′U of miR-145-5p. After co-cultured ADSCs and injured tenocytes, the expression of lncRNA Morf4l1 was up-regulated, and the proliferation of injured tenocytes in vitro was promoted. The ADSCs were injected into the injured tendon to repair the injured tendon in vivo. Conclusion: This study confirmed that ADSCs promoted tendon wound healing by reducing the methylation level of lncRNA Morf4l1.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Chen
- Third Affiliated Hospital of Hebei Medical University, Shi Jiazhuang, China
| | - Jinli Chen
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Qi
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Di Qu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Tengbo Yu,
| | - Yingze Zhang
- Third Affiliated Hospital of Hebei Medical University, Shi Jiazhuang, China
| |
Collapse
|
22
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
23
|
Wu Z, Fang L, Yang S, Gao Y, Wang Z, Meng Q, Dang X, Sun YP, Cheng JC. GDF-11 promotes human trophoblast cell invasion by increasing ID2-mediated MMP2 expression. Cell Commun Signal 2022; 20:89. [PMID: 35705978 PMCID: PMC9202197 DOI: 10.1186/s12964-022-00899-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor-11 (GDF-11), also known as bone morphogenetic protein-11, belongs to the transforming growth factor-beta superfamily. GDF-11 was first identified as an important regulator during embryonic development. Increasing evidence has demonstrated that GDF-11 regulates the development of various organs and its aberrant expressions are associated with the risk of cardiovascular diseases and cancers. Extravillous trophoblast (EVT) cells invasion is a critical event for placenta development and needs to be finely regulated. However, to date, the biological function of GDF-11 in the human EVT cells remains unknown. METHODS HTR-8/SVneo, a human EVT cell line, and primary cultures of human EVT cells were used to examine the effect of GDF-11 on matrix metalloproteinase 2 (MMP2) expression. Matrigel-coated transwell invasion assay was used to examine cell invasiveness. A series of in vitro experiments were applied to explore the underlying mechanisms that mediate the effect of GDF-11 on MMP2 expression and cell invasion. RESULTS Treatment with GDF-11 stimulates MMP2 expression, in the HTR-8/SVneo and primary human EVT cells. Using a pharmacological inhibitor and siRNA-mediated knockdown approaches, our results demonstrated that the stimulatory effect of GDF-11 on MMP2 expression was mediated by the ALK4/5-SMAD2/3 signaling pathways. In addition, the expression of inhibitor of DNA-binding protein 2 (ID2) was upregulated by GDF-11 and that was required for the GDF-11-stimulated MMP2 expression and EVT cell invasion. CONCLUSIONS These findings discover a new biological function and underlying molecular mechanisms of GDF-11 in the regulation of human EVT cell invasion. Video Abstract.
Collapse
Affiliation(s)
- Ze Wu
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Sizhu Yang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Yibo Gao
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Zhen Wang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Qingxue Meng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Xuan Dang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
24
|
Li Y, Li Y, Li L, Wang H, Wang B, Feng L, Lin S, Li G. The emerging translational potential of GDF11 in chronic wound healing. J Orthop Translat 2022; 34:113-120. [PMID: 35891714 PMCID: PMC9283991 DOI: 10.1016/j.jot.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.
Collapse
|
25
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Zhang C, Lin Y, Zhang K, Meng L, Hu X, Chen J, Zhu W, Yu H. GDF11 enhances therapeutic functions of mesenchymal stem cells for angiogenesis. Stem Cell Res Ther 2021; 12:456. [PMID: 34384486 PMCID: PMC8359078 DOI: 10.1186/s13287-021-02519-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The efficacy of stem cell therapy for ischemia repair has been limited by low cell retention rate. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family, which has multiple effects on development, physiology and diseases. The objective of the study is to investigate whether GDF11 could affect the efficacy of stem cell transplantation. METHODS We explored the effects of GDF11 on proangiogenic activities of mesenchymal stem cells (MSCs) for angiogenic therapy in vitro and in vivo. RESULTS Mouse bone marrow-derived MSCs were transduced with lentiviral vector to overexpress GDF11 (MSCGDF11). After exposed to hypoxia and serum deprivation for 48 h, MSCGDF11 were significantly better in viability than control MSCs (MSCvector). MSCGDF11 also had higher mobility and better angiogenic paracrine effects. The cytokine antibody array showed more angiogenic cytokines in the conditioned medium of MSCGDF11 than that of MSCvector, such as epidermal growth factor, platelet-derived growth factor-BB, placenta growth factor. When MSCs (1 × 106 cells in 50 μl) were injected into ischemic hindlimb of mice after femoral artery ligation, MSCGDF11 had higher retention rate in the muscle than control MSCs. Injection of MSCGDF11 resulted in better blood reperfusion and limb salvage than that of control MSCs after 14 days. Significantly more CD31+ endothelial cells and α-SMA + smooth muscle cells were detected in the ischemic muscles that received MSCGDF11. The effects of GDF11 were through activating TGF-β receptor and PI3K/Akt signaling pathway. CONCLUSION Our study demonstrated an essential role of GDF11 in promoting therapeutic functions of MSCs for ischemic diseases by enhancing MSC viability, mobility, and angiogenic paracrine functions.
Collapse
Affiliation(s)
- Chi Zhang
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Yinuo Lin
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Ke Zhang
- grid.13402.340000 0004 1759 700XDepartment of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang Province China
| | - Luyang Meng
- grid.440280.aDepartment of Vascular Surgery, Hangzhou Third People’s Hospital, Hangzhou, 310009 Zhejiang Province China
| | - Xinyang Hu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Jinghai Chen
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Wei Zhu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Hong Yu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| |
Collapse
|
27
|
Chen L, Luo G, Liu Y, Lin H, Zheng C, Xie D, Zhu Y, Chen L, Huang X, Hu D, Xie J, Chen Z, Liao W, Bin J, Wang Q, Liao Y. Growth differentiation factor 11 attenuates cardiac ischemia reperfusion injury via enhancing mitochondrial biogenesis and telomerase activity. Cell Death Dis 2021; 12:665. [PMID: 34215721 PMCID: PMC8253774 DOI: 10.1038/s41419-021-03954-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
It has been reported that growth differentiation factor 11 (GDF11) protects against myocardial ischemia/reperfusion (IR) injury, but the underlying mechanisms have not been fully clarified. Considering that GDF11 plays a role in the aging/rejuvenation process and that aging is associated with telomere shortening and cardiac dysfunction, we hypothesized that GDF11 might protect against IR injury by activating telomerase. Human plasma GDF11 levels were significantly lower in acute coronary syndrome patients than in chronic coronary syndrome patients. IR mice with myocardial overexpression GDF11 (oe-GDF11) exhibited a significantly smaller myocardial infarct size, less cardiac remodeling and dysfunction, fewer apoptotic cardiomyocytes, higher telomerase activity, longer telomeres, and higher ATP generation than IR mice treated with an adenovirus carrying a negative control plasmid. Furthermore, mitochondrial biogenesis-related proteins and some antiapoptotic proteins were significantly upregulated by oe-GDF11. These cardioprotective effects of oe-GDF11 were significantly antagonized by BIBR1532, a specific telomerase inhibitor. Similar effects of oe-GDF11 on apoptosis and mitochondrial energy biogenesis were observed in cultured neonatal rat cardiomyocytes, whereas GDF11 silencing elicited the opposite effects to oe-GDF11 in mice. We concluded that telomerase activation by GDF11 contributes to the alleviation of myocardial IR injury through enhancing mitochondrial biogenesis and suppressing cardiomyocyte apoptosis.
Collapse
MESH Headings
- Aminobenzoates/pharmacology
- Animals
- Apoptosis
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Growth Differentiation Factors/genetics
- Growth Differentiation Factors/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/genetics
- Mitochondria, Heart/pathology
- Myocardial Infarction/enzymology
- Myocardial Infarction/genetics
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Naphthalenes/pharmacology
- Organelle Biogenesis
- Rats
- Signal Transduction
- Telomerase/antagonists & inhibitors
- Telomerase/metabolism
- Mice
Collapse
Affiliation(s)
- Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guangjin Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yameng Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dongxiao Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Donghong Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhuan Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Opstad TB, Berg TJ, Holte KB, Arnesen H, Solheim S, Seljeflot I. Reduced leukocyte telomere lengths and sirtuin 1 gene expression in long-term survivors of type 1 diabetes: A Dialong substudy. J Diabetes Investig 2021; 12:1183-1192. [PMID: 33249778 PMCID: PMC8264411 DOI: 10.1111/jdi.13470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022] Open
Abstract
AIMS/INTRODUCTION The shortening of leukocyte telomere length with age has been associated with coronary disease, whereas the association with type 1 diabetes is unclear. We aimed to explore telomere lengths in diabetes patients with regard to coronary artery disease, compared with healthy controls. The longevity factors sirtuin 1 and growth-differentiating factor 11 were investigated accordingly. MATERIALS AND METHODS We carried out a cross-sectional study of 102 participants with long-term type 1 diabetes and 75 controls (mean age 62 and 63 years, respectively), where 88 cases and 60 controls without diagnosed coronary artery disease completed computed tomography coronary angiography. Telomere lengths and gene expression of sirtuin 1 and growth-differentiating factor 11 were quantified in leukocytes. RESULTS Telomere lengths and sirtuin 1 were reduced in diabetes patients versus controls, medians (25th to 75th percentiles): 0.97 (0.82-1.15) versus 1.08 (0.85-1.29) and 0.88 (0.65-1.14) vs 1.01 (0.78-1.36), respectively, adjusted P < 0.05, both. Previous coronary artery disease in diabetes patients (n = 15) was associated with lower sirtuin 1 and growth-differentiating factor 11 messenger ribonucleic acid expression (adjusted P < 0.03, both). In the combined diabetes and control group, previous artery coronary disease (n = 18) presented with significantly shorter telomeres (adjusted P = 0.038). Newly diagnosed obstructive coronary artery disease, defined as >50% stenosis, was not associated with the investigated variables. CONCLUSIONS Long-term type 1 diabetes presented with reduced telomeres and sirtuin 1 expression, with additional reduction in diabetes patients with previous coronary artery disease, showing their importance for cardiovascular disease development with potential as novel biomarkers in diabetes and coronary artery disease.
Collapse
Affiliation(s)
- Trine Baur Opstad
- Department of CardiologyCenter for Clinical Heart ResearchOslo University HospitalUllevålNorway
- Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Tore Julsrud Berg
- Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Endocrinology, Prevention and ObesityUniversity of OsloOsloNorway
| | - Kristine Bech Holte
- Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Endocrinology, Prevention and ObesityUniversity of OsloOsloNorway
| | - Harald Arnesen
- Department of CardiologyCenter for Clinical Heart ResearchOslo University HospitalUllevålNorway
- Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Svein Solheim
- Department of CardiologyCenter for Clinical Heart ResearchOslo University HospitalUllevålNorway
- Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| | - Ingebjørg Seljeflot
- Department of CardiologyCenter for Clinical Heart ResearchOslo University HospitalUllevålNorway
- Faculty of MedicineInstitute of Clinical MedicineUniversity of OsloOsloNorway
| |
Collapse
|
29
|
Frohlich J, Mazza T, Sobolewski C, Foti M, Vinciguerra M. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158920. [PMID: 33684566 DOI: 10.1016/j.bbalip.2021.158920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the fastest-growing causes of cancer-related mortalities worldwide and this trend is mimicked by the surge of non-alcoholic fatty liver disease (NAFLD). Altered hepatic lipid metabolism promotes HCC development through inflammation and activation of oncogenes. GDF11 is a member of the TGF-β superfamily and recent data have implicated GDF11 as an anti-aging factor that can alleviate high-fat diet induced obesity, hyperglycemia, insulin resistance and NAFLD. However, its role in hepatic lipid metabolism is still not fully delineated. The aim of the present study was to characterize the role of GDF11 in hepatic and HCC cells lipid accumulation. To achieve this, we performed imaging, biochemical, lipidomic, and transcriptomic analyses in primary hepatocytes and in HCC cells treated with GDF11 to study the GDF11-activated signaling pathways. GDF11 treatment rapidly triggered ALK5-dependent SMAD2/3 nuclear translocation and elevated lipid droplets in HCC cells, but not in primary hepatocytes. In HCC cells, ALK5 inhibition hampered GDF11-mediated SMAD2/3 signaling and attenuated lipid accumulation. Using ultra-high-performance liquid chromatography/mass spectrometry, we detected increased accumulation of longer acyl-chain di/tri-acylglycerols and glycerophospholipids. Unbiased transcriptomic analysis identified TGF-β and PI3K-AKT signaling among the top pathways/cellular processes activated in GDF11 treated HCC cells. In summary, GDF11 supplementation promotes pro-lipogenic gene expression and lipid accumulation in HCC cells. Integration of our "omics" data pointed to a GDF11-induced upregulation of de novo lipogenesis through activation of ALK5/SMAD2/3/PI3K-AKT pathways. Thus, GDF11 could contribute to metabolic reprogramming and dysregulation of lipid metabolism in HCC cells, without effects on healthy hepatocytes.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cyril Sobolewski
- Department of Cell Physiology & Metabolism and Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism and Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic; Department of Translational Stem Cell Biology, Medical University of Varna, Varna, Bulgaria; Institute of Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom.
| |
Collapse
|
30
|
Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments. Cells 2021; 10:cells10030516. [PMID: 33671024 PMCID: PMC7997313 DOI: 10.3390/cells10030516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor prognosis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers, as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and respiratory muscle wasting was also associated with improved survival. However, the definitive proof that improved survival directly results from muscle preservation following blockade of ACVR2 signaling is still lacking, especially considering that concurrent beneficial effects in organs other than skeletal muscle have also been described in the presence of cancer or following chemotherapy treatments paired with counteraction of ACVR2 signaling. Hence, here, we aim to provide an up-to-date literature review on the multifaceted anti-cachectic effects of ACVR2 blockade in preclinical models of cancer, as well as in combination with anticancer treatments.
Collapse
|
31
|
Grootendorst S, de Wilde J, van Dooijeweert B, van Vuren A, van Solinge W, Schutgens R, van Wijk R, Bartels M. The Interplay between Drivers of Erythropoiesis and Iron Homeostasis in Rare Hereditary Anemias: Tipping the Balance. Int J Mol Sci 2021; 22:ijms22042204. [PMID: 33672223 PMCID: PMC7927117 DOI: 10.3390/ijms22042204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
Rare hereditary anemias (RHA) represent a group of disorders characterized by either impaired production of erythrocytes or decreased survival (i.e., hemolysis). In RHA, the regulation of iron metabolism and erythropoiesis is often disturbed, leading to iron overload or worsening of chronic anemia due to unavailability of iron for erythropoiesis. Whereas iron overload generally is a well-recognized complication in patients requiring regular blood transfusions, it is also a significant problem in a large proportion of patients with RHA that are not transfusion dependent. This indicates that RHA share disease-specific defects in erythroid development that are linked to intrinsic defects in iron metabolism. In this review, we discuss the key regulators involved in the interplay between iron and erythropoiesis and their importance in the spectrum of RHA.
Collapse
Affiliation(s)
- Simon Grootendorst
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Jonathan de Wilde
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Birgit van Dooijeweert
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Annelies van Vuren
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
| | - Wouter van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Roger Schutgens
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Marije Bartels
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
- Correspondence:
| |
Collapse
|
32
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
33
|
Pham HG, Mukherjee S, Choi MJ, Yun JW. BMP11 regulates thermogenesis in white and brown adipocytes. Cell Biochem Funct 2021; 39:496-510. [PMID: 33527439 DOI: 10.1002/cbf.3615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein-11 (BMP11), also known as growth differentiation factor-11 (GDF11), is implicated in skeletal development and joint morphogenesis in mammals. However, its functions in adipogenesis and energy homeostasis are mostly unknown. The present study investigates crucial roles of BMP11 in cultured 3T3-L1 white and HIB1B brown adipocytes, using Bmp11 gene depletion and pharmacological inhibition of BMP11. The silencing of Bmp11 markedly decreases the expression levels of brown-fat signature proteins and beige-specific genes in white adipocytes and significantly down-regulates the expression levels of brown fat-specific genes in brown adipocytes. The deficiency of Bmp11 reduces the expressions of lipolytic protein markers in white and brown adipocytes. Moreover, BMP11 induces browning of 3T3-L1 adipocytes via coordination of multiple signalling pathways, including mTORC1-COX2 and p38MAPK-PGC-1α as non-canonical pathways, as well as Smad1/5/8 as a canonical pathway. We believe this study is the first to provide evidence of the potential roles of BMP11 for improvement of lipid catabolism in both cultured white and brown adipocytes, as well as the effect on browning of white adipocytes. Taken together, these results demonstrate the therapeutic potential for the treatment of obesity.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Min Ji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
34
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
35
|
Frohlich J, Kovacovicova K, Mazza T, Emma MR, Cabibi D, Foti M, Sobolewski C, Oben JA, Peyrou M, Villarroya F, Soresi M, Rezzani R, Cervello M, Bonomini F, Alisi A, Vinciguerra M. GDF11 induces mild hepatic fibrosis independent of metabolic health. Aging (Albany NY) 2020; 12:20024-20046. [PMID: 33126224 PMCID: PMC7655202 DOI: 10.18632/aging.104182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Background & aims: Growth Differentiation Factor 11 (GDF11) is an anti-aging factor, yet its role in liver diseases is not established. We evaluated the role of GDF11 in healthy conditions and in the transition from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Results: GDF11 mRNA levels positively correlated with NAFLD activity score and with CPT1, SREBP, PPARγ and Col1A1 mRNA levels, and associated to portal fibrosis, in morbidly obese patients with NAFLD/NASH. GDF11-treated mice showed mildly exacerbated hepatic collagen deposition, accompanied by weight loss and without changes in liver steatosis or inflammation. GDF11 triggered ALK5-dependent SMAD2/3 nuclear translocation and the pro-fibrogenic activation of HSC. Conclusions: GDF11 supplementation promotes mild liver fibrosis. Even considering its beneficial metabolic effects, caution should be taken when considering therapeutics that regulate GDF11. Methods: We analyzed liver biopsies from a cohort of 33 morbidly obese adults with NAFLD/NASH. We determined the correlations in mRNA expression levels between GDF11 and genes involved in NAFLD-to-NASH progression and with pathological features. We also exposed wild type or obese mice with NAFLD to recombinant GDF11 by daily intra-peritoneal injection and monitor the hepatic pathological changes. Finally, we analyzed GDF11-activated signaling pathways in hepatic stellate cells (HSC).
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jude A Oben
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, Barcelona, Catalonia, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| | - Maurizio Soresi
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, Brescia, Italy
| | - Anna Alisi
- Research Area for Multifactorial Diseases, Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, United Kingdom
| |
Collapse
|
36
|
BMP11 Negatively Regulates Lipid Metabolism in C2C12 Muscle Cells. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Mazini L, Rochette L, Malka G. Adipose-Derived Stem Cells (ADSCs) and Growth Differentiation Factor 11 (GDF11): Regenerative and Antiaging Capacity for the Skin. Regen Med 2020. [DOI: 10.5772/intechopen.91233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
Hudobenko J, Ganesh BP, Jiang J, Mohan EC, Lee S, Sheth S, Morales D, Zhu L, Kofler JK, Pautler RG, McCullough LD, Chauhan A. Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice. Aging (Albany NY) 2020; 12:8049-8066. [PMID: 32365331 PMCID: PMC7244081 DOI: 10.18632/aging.103122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Growth differentiation factor (GDF) 11 levels decline with aging. The age-related loss of GDF 11 has been implicated in the pathogenesis of a variety of age-related diseases. GDF11 supplementation reversed cardiac hypertrophy, bone loss, and pulmonary dysfunction in old mice, suggesting that GDF11 has a rejuvenating effect. Less is known about the potential of GDF11 to improve recovery after an acute injury, such as stroke, in aged mice. GDF11/8 levels were assessed in young and aged male mice and in postmortem human brain samples. Aged mice were subjected to a transient middle cerebral artery occlusion (MCAo). Five days after MCAo, mice received and bromodeoxyuridine / 5-Bromo-2'-deoxyuridine (BrdU) and either recombinant GDF11 or vehicle for five days and were assessed for recovery for one month following stroke. MRI was used to determine cerebrospinal fluid (CSF) volume, corpus callosum (CC) area, and brain atrophy at 30 days post-stroke. Immunohistochemistry was used to assess gliosis, neurogenesis, angiogenesis and synaptic density. Lower GDF11/8 levels were found with age in both mice and humans (p<0.05). GDF11 supplementation reduced mortality and improved sensorimotor deficits after stroke. Treatment also reduced brain atrophy and gliosis, increased angiogenesis, improved white matter integrity, and reduced inflammation after stroke. GDF11 may have a role in brain repair after ischemic injury.
Collapse
Affiliation(s)
- Jacob Hudobenko
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Eric C Mohan
- University of Connecticut Health Science Center, Farmington, CT 06030, USA
| | - Songmi Lee
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sunil Sheth
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Diego Morales
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
39
|
Wang S, Wang L, Shi S, Wang X, He C, Yuan L, Ding F, Song Y, Zhang S. Inhibition of GDF11 could promote bone healing in the tooth extraction socket and facilitate mesenchymal stem cell osteogenic differentiation in T2DM pigs. J Periodontol 2020; 91:1645-1652. [PMID: 32281654 DOI: 10.1002/jper.20-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) might be a key factor responsible for the weakening of mesenchymal stem cell (MSC) osteogenic differentiation in tooth extraction sockets in patients with type 2 diabetes mellitus (T2DM). This study aimed to confirm that inhibition of GDF11 could promote bone healing in tooth extraction sockets and facilitate MSC osteogenic differentiation under T2DM conditions. METHODS Three streptozotocin-induced T2DM pig models and two control pig models were established. The T2DM pigs were treated with an intrasocket injection of GDF11 inhibitor in the left mandible, whereas the right side was maintained for natural healing. The postextraction socket healing of the T2DM pigs was compared with that of nondiabetic controls. Healing was quantitatively verified by microcomputed tomography, and the GDF11 expression level was detected. MSCs from T2DM pig sockets were cultured and treated with a GDF11 inhibitor. The osteogenic differentiation ability of MSCs was also compared among groups. RESULTS The expression of GDF11 in the tooth extraction sockets from T2DM pigs increased significantly post extraction. Bone healing was promoted by periodic injection of the GDF11 inhibitor into the extraction sockets of T2DM pigs. Furthermore, the osteogenic differentiation ability of T2DM-MSCs was improved in pigs treated with the GDF11 inhibitor. CONCLUSIONS GDF11 inhibition could promote bone healing in the tooth extraction socket and facilitate MSC osteogenic differentiation under T2DM conditions. GDF11 could be a potential therapeutic target for undesirable alveolar bone healing in T2DM patients.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of Oral Disease, School of Stomatology, The Air Force Medical University, Xi'an, China
| | - Lei Wang
- Department of Implant Dentistry, School of Stomatology, The Air Force Medical University, Xi'an, China
| | - Shaojie Shi
- Department of Implant Dentistry, School of Stomatology, The Air Force Medical University, Xi'an, China
| | - Xingxing Wang
- Department of Implant Dentistry, School of Stomatology, The Air Force Medical University, Xi'an, China
| | - Chunxia He
- Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lijuan Yuan
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Feng Ding
- Department of Implant Dentistry, School of Stomatology, The Air Force Medical University, Xi'an, China
| | - Yingliang Song
- Department of Implant Dentistry, School of Stomatology, The Air Force Medical University, Xi'an, China
| | - Sijia Zhang
- Department of Implant Dentistry, School of Stomatology, The Air Force Medical University, Xi'an, China.,Department of Biochemistry and Molecular Biology, Center for DNA Typing, Air Force Medical University, Xi'an, China
| |
Collapse
|
40
|
Anti-Aging Effects of GDF11 on Skin. Int J Mol Sci 2020; 21:ijms21072598. [PMID: 32283613 PMCID: PMC7177281 DOI: 10.3390/ijms21072598] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is composed of three layers: the epidermis, the dermis, and the hypodermis. The epidermis has four major cell layers made up of keratinocytes in varying stages of progressive differentiation. Skin aging is a multi-factorial process that affects every phase of its biology and function. The expression profiles of inflammation-related genes analyzed in resident immune cells demonstrated that these cells have a strong ability to regenerate adult skin stem cells and to produce endogenous substances such as growth differentiation factor 11 (GDF11). GDF11 appears to be the key to progenitor proliferation and/or differentiation. The preservation of youthful phenotypes has been tied to the presence of GDF11 in different human tissues, and, in the skin, this factor inhibits inflammatory responses. The protective role of GDF11 depends on a multi-factorial process implicating various types of skin cells such as keratinocytes, fibroblasts and inflammatory cells. GDF11 should be further studied for the purpose of developing novel therapies for the treatment of skin diseases.
Collapse
|
41
|
Korean Red Ginseng Plays An Anti-Aging Role by Modulating Expression of Aging-Related Genes and Immune Cell Subsets. Molecules 2020; 25:molecules25071492. [PMID: 32218338 PMCID: PMC7181072 DOI: 10.3390/molecules25071492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Despite previous reports of anti-aging effects of Korean red ginseng (KRG), the underlying mechanisms remain poorly understood. Therefore, this study investigated possible mechanisms of KRG-mediated anti-aging effects in aged mice. KRG significantly inhibited thymic involution in old mice. Interestingly, KRG only increased protein expression, but not mRNA expression, of aging-related genes Lin28a, GDF-11, Sirt1, IL-2, and IL-17 in the thymocytes of old mice. KRG also modulated the population of some types of immune cells in old mice. KRG increased the population of regulatory T cells and interferon-gamma (IFN-γ)-expressing natural killer (NK) cells in the spleen of old mice, but serum levels of regulatory T cell-specific cytokines IL-10 and TGF-β were unaffected. Finally, KRG recovered mRNA expression of Lin28a, GDF-11, and Sirt1 artificially decreased by concanavalin A (Con A) in both thymocytes and splenocytes of old mice without cytotoxicity. These results suggest that KRG exerts anti-aging effects by preventing thymic involution, as well as modulating the expression of aging-related genes and immune cell subsets.
Collapse
|
42
|
Mazini L, Rochette L, Admou B, Amal S, Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int J Mol Sci 2020; 21:E1306. [PMID: 32075181 PMCID: PMC7072889 DOI: 10.3390/ijms21041306] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue derived stem cells (ADSCs) are mesenchymal stem cells identified within subcutaneous tissue at the base of the hair follicle (dermal papilla cells), in the dermal sheets (dermal sheet cells), in interfollicular dermis, and in the hypodermis tissue. These cells are expected to play a major role in regulating skin regeneration and aging-associated morphologic disgraces and structural deficits. ADSCs are known to proliferate and differentiate into skin cells to repair damaged or dead cells, but also act by an autocrine and paracrine pathway to activate cell regeneration and the healing process. During wound healing, ADSCs have a great ability in migration to be recruited rapidly into wounded sites added to their differentiation towards dermal fibroblasts (DF), endothelial cells, and keratinocytes. Additionally, ADSCs and DFs are the major sources of the extracellular matrix (ECM) proteins involved in maintaining skin structure and function. Their interactions with skin cells are involved in regulating skin homeostasis and during healing. The evidence suggests that their secretomes ensure: (i) The change in macrophages inflammatory phenotype implicated in the inflammatory phase, (ii) the formation of new blood vessels, thus promoting angiogenesis by increasing endothelial cell differentiation and cell migration, and (iii) the formation of granulation tissues, skin cells, and ECM production, whereby proliferation and remodeling phases occur. These characteristics would be beneficial to therapeutic strategies in wound healing and skin aging and have driven more insights in many clinical investigations. Additionally, it was recently presented as the tool key in the new free-cell therapy in regenerative medicine. Nevertheless, ADSCs fulfill the general accepted criteria for cell-based therapies, but still need further investigations into their efficiency, taking into consideration the host-environment and patient-associated factors.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Centre interface Applications Médicales (CIAM), Université Mohammed VI Polytechnique, Ben-Guerir 43 150, Morocco;
| | - Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France;
| | - Brahim Admou
- Laboratoire d’immunologie, Centre de Recherche Clinique, Faculté de Médecine et Pharmacie, Université Cadi Ayyad, Centre Hospitalier Universitaire, Marrakech 40 000, Morocco;
| | - Said Amal
- Service de dermatologie, Faculté de Médecine et Pharmacie, Université Cadi Ayyad, Centre hospitalier universitaire, Marrakech 40000, Morocco;
| | - Gabriel Malka
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Centre interface Applications Médicales (CIAM), Université Mohammed VI Polytechnique, Ben-Guerir 43 150, Morocco;
| |
Collapse
|
43
|
Parenté A, Boukredine A, Baraige F, Duprat N, Gondran-Tellier V, Magnol L, Blanquet V. GASP-2 overexpressing mice exhibit a hypermuscular phenotype with contrasting molecular effects compared to GASP-1 transgenics. FASEB J 2020; 34:4026-4040. [PMID: 31960486 DOI: 10.1096/fj.201901220r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/27/2019] [Accepted: 12/31/2019] [Indexed: 01/19/2023]
Abstract
Muscle atrophy is associated with many diseases including genetic disorders, sarcopenia, or cachexia syndromes. Myostatin (Mstn), a transforming growth factor-beta (TGF-β) member, plays a key role in skeletal muscle homeostasis as a powerful negative regulator. Over the last decade, about 15 clinical trials aimed at inhibiting the Mstn pathway, failed to produce conclusive results. In this context, we investigated whether growth and differentiation factor-associated serum protein-1 (GASP-1) or GASP-2, two natural inhibitors of Mstn, might represent a potential therapeutic. As we previously reported, mice overexpressing Gasp-1 (Tg(Gasp-1)) present an increase of muscle mass but develop metabolic disorders with aging. Here, we showed that overexpression of Gasp-2 increases the muscular mass without metabolic defects. We also found that Tg(Gasp-2) mice displayed, like Mstn-/- mice, a switch from slow- to fast-twitch myofibers whereas Tg(Gasp-1) mice exhibit a reverse switch. Our studies supported the fact that GASP-2 has less affinity than GASP-1 for Mstn, leading to a constitutive Mstn upregulation only in Tg(Gasp-1) mice, responsible for the observed phenotypic differences. Altogether, our findings highlighted a gene expression regulatory network of TGF-β members and their inhibitors in muscle.
Collapse
Affiliation(s)
- Alexis Parenté
- INRA, PEIRENE EA7500, USC1061 GAMAA, Université de Limoges, Limoges, France
| | - Axel Boukredine
- INRA, PEIRENE EA7500, USC1061 GAMAA, Université de Limoges, Limoges, France
| | - Fabienne Baraige
- INRA, PEIRENE EA7500, USC1061 GAMAA, Université de Limoges, Limoges, France
| | - Nathalie Duprat
- INRA, PEIRENE EA7500, USC1061 GAMAA, Université de Limoges, Limoges, France
| | | | - Laetitia Magnol
- INRA, PEIRENE EA7500, USC1061 GAMAA, Université de Limoges, Limoges, France
| | - Véronique Blanquet
- INRA, PEIRENE EA7500, USC1061 GAMAA, Université de Limoges, Limoges, France
| |
Collapse
|
44
|
Bin Z, Yanli Y, Zhen Q, Qingtao M, Zhongyuan X. GDF11 ameliorated myocardial ischemia reperfusion injury by antioxidant stress and up-regulating autophagy in STZ-induced type 1 diabetic rats. Acta Cir Bras 2020; 34:e201901106. [PMID: 31939595 PMCID: PMC6958563 DOI: 10.1590/s0102-865020190110000006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/13/2019] [Indexed: 01/25/2023] Open
Abstract
Purpose: To investigate whether GDF11 ameliorates myocardial ischemia reperfusion (MIR) injury in diabetic rats and explore the underlying mechanisms. Methods: Diabetic and non-diabetic rats subjected to MIR (30 min of coronary artery occlusion followed by 120 min of reperfusion) with/without GDF11 pretreatment. Cardiac function, myocardial infarct size, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) 15-F2tisoprostane, autophagosome, LC3II/I ratio and Belcin-1 level were determined to reflect myocardial injury, oxidative stress and autophagy, respectively. In in vitro study, H9c2 cells cultured in high glucose (HG, 30mM) suffered hypoxia reoxygenation (HR) with/without GDF11, hydrogen peroxide (H2O2) and autophagy inhibitor 3-methyladenine (3-MA) treatment, cell injury; oxidative stress and autophagy were assessed. Results: Pretreatment with GDF11 significantly improved cardiac morphology and function in diabetes, concomitant with decreased arrhythmia severity, infarct size, CK-MB, LDH and 15-F2tisoprostane release, increased SOD activity and autophagy level. In addition, GDF11 notably reduced HR injury in H9c2 cells with HG exposure, accompanied by oxidative stress reduction and autophagy up-regulation. However, those effects were completely reversed by H2O2 and 3-MA. Conclusion: GDF11 can provide protection against MIR injury in diabetic rats, and is implicated in antioxidant stress and autophagy up-regulation.
Collapse
Affiliation(s)
- Zhou Bin
- Renmin Hospital of Wuhan University, China
| | - Yu Yanli
- Renmin Hospital of Wuhan University, China
| | - Qiu Zhen
- Renmin Hospital of Wuhan University, China
| | | | | |
Collapse
|
45
|
Yang ZX, Zhan JQ, Xiong JW, Wei B, Fu YH, Liu ZP, Tu YT, Yang YJ, Wan AL. Decreased Plasma Levels of Growth Differentiation Factor 11 in Patients With Schizophrenia: Correlation With Psychopathology and Cognition. Front Psychiatry 2020; 11:555133. [PMID: 33364986 PMCID: PMC7750308 DOI: 10.3389/fpsyt.2020.555133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is linked with abnormal neurodevelopment, on which growth differentiation factor 11 (GDF-11) has a great impact. However, a direct evidence linking GDF-11 to the pathophysiology of schizophrenia is still lacking. The current study aimed to investigate the relationship between plasma GDF-11 levels and both psychopathological symptoms and cognitive function in schizophrenia. Eighty-seven schizophrenia patients and 76 healthy controls were enrolled in the present study. The symptomatology of schizophrenia was evaluated using the Positive and Negative Syndrome Scale (PANSS). Cognitive function was assessed by Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) including twelve neurocognitive tests in five aspects of cognitive function. Plasma GDF-11 levels were determined by enzyme-linked immunosorbent assay (ELISA). We found that plasma levels of GDF-11 were significantly lower in schizophrenia patients relative to healthy controls. Correlation analysis showed significant negative correlations between the GDF-11 levels and the PANSS total score, the positive symptoms score, the negative symptoms score or the general score. Additionally, positive associations were observed between plasma GDF-11 levels and the visuospatial/constructional, attention, immediate memory, or delayed memory in patients. Partial correlation analysis showed that these correlations were still significant after adjusting for age, gender, education years, body mass index, duration of illness, and age of onset except for the visuospatial/constructional and attention index. Multiple regression analysis revealed that GDF-11 was an independent contributor to the immediate memory, delayed memory and RBANS total score in patients. Collectively, the correlations between plasma GDF-11 and psychopathological and cognitive symptoms suggest that abnormal GDF-11 signaling might contribute to schizophrenic psychopathology and cognitive impairments and GDF-11 could be a potential and promising biomarker for schizophrenia.
Collapse
Affiliation(s)
- Zhao-Xi Yang
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Jian-Wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, China
| | - Bo Wei
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, China
| | - Yong-Hui Fu
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Zhi-Peng Liu
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Ya-Ting Tu
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yuan-Jian Yang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, China
| | - Ai-Lan Wan
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
46
|
Lu B, Zhong J, Pan J, Yuan X, Ren M, Jiang L, Yang Y, Zhang G, Liu D, Zhang C. Gdf11 gene transfer prevents high fat diet-induced obesity and improves metabolic homeostasis in obese and STZ-induced diabetic mice. J Transl Med 2019; 17:422. [PMID: 31847906 PMCID: PMC6915940 DOI: 10.1186/s12967-019-02166-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
Background The growth differentiation factor 11 (GDF11) was shown to reverse age-related hypertrophy on cardiomyocytes and considered as anti-aging rejuvenation factor. The role of GDF11 in regulating metabolic homeostasis is unclear. In this study, we investigated the functions of GDF11 in regulating metabolic homeostasis and energy balance. Methods Using a hydrodynamic injection approach, plasmids carrying a mouse Gdf11 gene were delivered into mice and generated the sustained Gdf11 expression in the liver and its protein level in the blood. High fat diet (HFD)-induced obesity was employed to examine the impacts of Gdf11 gene transfer on HFD-induced adiposity, hyperglycemia, insulin resistance, and hepatic lipid accumulation. The impacts of GDF11 on metabolic homeostasis of obese and diabetic mice were examined using HFD-induced obese and STZ-induced diabetic models. Results Gdf11 gene transfer alleviates HFD-induced obesity, hyperglycemia, insulin resistance, and fatty liver development. In obese and STZ-induced diabetic mice, Gdf11 gene transfer restores glucose metabolism and improves insulin resistance. Mechanism study reveals that Gdf11 gene transfer increases the energy expenditure of mice, upregulates the expression of genes responsible for thermoregulation in brown adipose tissue, downregulates the expression of inflammatory genes in white adipose tissue and those involved in hepatic lipid and glucose metabolism. Overexpression of GDF11 also activates TGF-β/Smad2, PI3K/AKT/FoxO1, and AMPK signaling pathways in white adipose tissue. Conclusions These results demonstrate that GDF11 plays an important role in regulating metabolic homeostasis and energy balance and could be a target for pharmacological intervention to treat metabolic disease.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China.,Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, 330031, Jiangxi, China
| | - Jianing Zhong
- The Science Research Center, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Jianfei Pan
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China.,Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, 330031, Jiangxi, China
| | - Xiaopeng Yuan
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China.,Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, 330031, Jiangxi, China
| | - Mingzhi Ren
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China.,Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, 330031, Jiangxi, China
| | - Liping Jiang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China.,Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, 330031, Jiangxi, China
| | - Yuqing Yang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China.,Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, 330031, Jiangxi, China
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, 30602, USA
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China. .,Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
47
|
Zhao L, Zhang S, Cui J, Huang W, Wang J, Su F, Chen N, Gong Q. TERT assists GDF11 to rejuvenate senescent VEGFR2 +/CD133 + cells in elderly patients with myocardial infarction. J Transl Med 2019; 99:1661-1688. [PMID: 31292540 DOI: 10.1038/s41374-019-0290-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 11/09/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a transforming growth factor β superfamily member with a controversial role in rejuvenating old stem cells after acute injury in the elderly population. This study aimed to evaluate the effects of telomerase reverse transcriptase (TERT) on GDF11-mediated rejuvenation of senescent late-outgrowth endothelial progenitor cells (EPCs), defined as VEGFR2+/CD133+ cells, in elderly patients with acute myocardial infarction (AMI). We compared the quantity and capabilities of VEGFR2+/CD133+ cells from old (>60 years), middle-aged (45-60 years), and young (<45 years) AMI patients. The decline in circulating count and survival of VEGFR2+/CD133+ cells with age was accompanied by decrease in their TERT and GDF11 expression levels in patients with AMI. Further, upregulation of TERT could trigger GDF11-mediated rejuvenation of old VEGFR2+/CD133+ cells by renewing their survival and angiogenic abilities through activation of canonical (Smad2/3) and noncanonical (eNOS) signaling pathways. Depletion of GDF11 or TERT caused senescence of young VEGFR2+/CD133+ cells leading to impaired vascular function and angiogenesis in vitro and in vivo, whereas adTERT and rhGDF11 rescued this senescence. TERT cooperates with GDF11 to enhance regenerative capabilities of old VEGFR2+/CD133+ cells. When combined with TERT, GDF11 may represent a potential therapeutic target for the treatment of elderly patients with MI.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Cardiology, Guangzhou Red Cross Hospital, Medical College of Ji-Nan University, 396 Tongfuzhong Road, Haizhu District, 510220, Guangzhou, China.,Department of Cardiology, Dahua Hospital, 901 Laohumin Road, Xuhui District, 200237, Shanghai, China
| | - Shaoheng Zhang
- Department of Cardiology, Guangzhou Red Cross Hospital, Medical College of Ji-Nan University, 396 Tongfuzhong Road, Haizhu District, 510220, Guangzhou, China. .,Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090, Shanghai, PR China.
| | - Jin Cui
- Department of Cardiology, Guangzhou Red Cross Hospital, Medical College of Ji-Nan University, 396 Tongfuzhong Road, Haizhu District, 510220, Guangzhou, China
| | - Weiguang Huang
- Department of Cardiology, Guangzhou Red Cross Hospital, Medical College of Ji-Nan University, 396 Tongfuzhong Road, Haizhu District, 510220, Guangzhou, China
| | - Jiahong Wang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090, Shanghai, PR China
| | - Feng Su
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090, Shanghai, PR China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090, Shanghai, PR China
| | - Qunlin Gong
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090, Shanghai, PR China
| |
Collapse
|
48
|
Simoni-Nieves A, Gerardo-Ramírez M, Pedraza-Vázquez G, Chávez-Rodríguez L, Bucio L, Souza V, Miranda-Labra RU, Gomez-Quiroz LE, Gutiérrez-Ruiz MC. GDF11 Implications in Cancer Biology and Metabolism. Facts and Controversies. Front Oncol 2019; 9:1039. [PMID: 31681577 PMCID: PMC6803553 DOI: 10.3389/fonc.2019.01039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023] Open
Abstract
Growth Differentiation Factor 11 (GDF11), a member of the super family of the Transforming Growth Factor β, has gained more attention in the last few years due to numerous reports regarding its functions in other systems, which are different to those related to differentiation and embryonic development, such as age-related muscle dysfunction, skin biology, metabolism, and cancer. GDF11 is expressed in many tissues, including skeletal muscle, pancreas, kidney, nervous system, and retina, among others. GDF11 circulating levels and protein content in tissues are quite variable and are affected by pathological conditions or age. Although, GDF11 biology had a lot of controversies, must of them are only misunderstandings regarding the variability of its responses, which are independent of the tissue, grade of cellular differentiation or pathologies. A blunt fact regarding GDF11 biology is that its target cells have stemness feature, a property that could be found in certain adult cells in health and in disease, such as cancer cells. This review is focused to present and analyze the recent findings in the emerging research field of GDF11 function in cancer and metabolism, and discusses the controversies surrounding the biology of this atypical growth factor.
Collapse
Affiliation(s)
- Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Monserrat Gerardo-Ramírez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Gibrán Pedraza-Vázquez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio
- Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Verónica Souza
- Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Fisiología Celular y Biología Molecular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| |
Collapse
|
49
|
Fang Z, Zhu Z, Zhang H, Peng Y, Liu J, Lu H, Li J, Liang L, Xia S, Wang Q, Fu B, Wu K, Zhang L, Ginzburg Y, Liu J, Chen H. GDF11 contributes to hepatic hepcidin (HAMP) inhibition through SMURF1-mediated BMP-SMAD signalling suppression. Br J Haematol 2019; 188:321-331. [PMID: 31418854 DOI: 10.1111/bjh.16156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Hepcidin (HAMP) synthesis is suppressed by erythropoiesis to increase iron availability for red blood cell production. This effect is thought to result from factors secreted by erythroid precursors. Growth differentiation factor 11 (GDF11) expression was recently shown to increase in erythroid cells of β-thalassaemia, and decrease with improvement in anaemia. Whether GDF11 regulates hepatic HAMP production has never been experimentally studied. Here, we explore GDF11 function during erythropoiesis-triggered HAMP suppression. Our results confirm that exogenous erythropoietin significantly increases Gdf11 as well as Erfe (erythroferrone) expression, and Gdf11 is also increased, albeit at a lower degree than Erfe, in phlebotomized wild type and β-thalassaemic mice. GDF11 is expressed predominantly in erythroid burst forming unit- and erythroid colony-forming unit- cells during erythropoiesis. Exogeneous GDF11 administration results in HAMP suppression in vivo and in vitro. Furthermore, exogenous GDF11 decreases BMP-SMAD signalling, enhances SMAD ubiquitin regulatory factor 1 (SMURF1) expression and induces ERK1/2 (MAPK3/1) signalling. ERK1/2 signalling activation is required for GDF11 or SMURF1-mediated suppression in BMP-SMAD signalling and HAMP expression. This research newly characterizes GDF11 in erythropoiesis-mediated HAMP suppression, in addition to ERFE.
Collapse
Affiliation(s)
- Zheng Fang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Zesen Zhu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Haihang Zhang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Yuanliang Peng
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Jin Liu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Hongyu Lu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Jiang Li
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Changsha, China
| | - Long Liang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Shenghua Xia
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Qiguang Wang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Changsha, China
| | - Bin Fu
- Department of Haematology, Central South University Xiangya Hospital, Changsha, China
| | - Kunlu Wu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Centre of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yelena Ginzburg
- Division of Haematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Huiyong Chen
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
50
|
Circulating factors in young blood as potential therapeutic agents for age-related neurodegenerative and neurovascular diseases. Brain Res Bull 2019; 153:15-23. [PMID: 31400495 DOI: 10.1016/j.brainresbull.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Recent animal studies on heterochronic parabiosis (a technique combining the blood circulation of two animals) have revealed that young blood has a powerful rejuvenating effect on brain aging. Circulating factors, especially growth differentiation factor 11 (GDF11) and C-C motif chemokine 11 (CCL11), may play a key role in this effect, which inspires hope for novel approaches to treating age-related cerebral diseases in humans, such as neurodegenerative and neurovascular diseases. Recently, attempts have begun to translate these astonishing and exciting findings from mice to humans and from bench to bedside. However, increasing reports have shown contradictory data, questioning the capacity of these circulating factors to reverse age-related brain dysfunction. In this review, we summarize the current research on the role of young blood, as well as the circulating factors GDF11 and CCL11, in the aging brain and age-related cerebral diseases. We highlight recent controversies, discuss related challenges and provide a future outlook.
Collapse
|