1
|
Yang FF, Hu T, Liu JQ, Yu XQ, Ma LY. Histone deacetylases (HDACs) as the promising immunotherapeutic targets for hematologic cancer treatment. Eur J Med Chem 2022; 245:114920. [PMID: 36399875 DOI: 10.1016/j.ejmech.2022.114920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
2
|
Perego P. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732911220324115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Paola Perego
- Fondazione IRCCS
Istituto Nazionale dei Tumori
Milan
Italy
| |
Collapse
|
3
|
Histone Deacetylase (HDAC) Inhibitors: A Promising Weapon to Tackle Therapy Resistance in Melanoma. Int J Mol Sci 2022; 23:ijms23073660. [PMID: 35409020 PMCID: PMC8998190 DOI: 10.3390/ijms23073660] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Melanoma is an aggressive malignant tumor, arising more commonly on the skin, while it can also occur on mucosal surfaces and the uveal tract of the eye. In the context of the unresectable and metastatic cases that account for the vast majority of melanoma-related deaths, the currently available therapeutic options are of limited value. The exponentially increasing knowledge in the field of molecular biology has identified epigenetic reprogramming and more specifically histone deacetylation (HDAC), as a crucial regulator of melanoma progression and as a key driver in the emergence of drug resistance. A variety of HDAC inhibitors (HDACi) have been developed and evaluated in multiple solid and hematologic malignancies, showing promising results. In melanoma, various experimental models have elucidated a critical role of histone deacetylases in disease pathogenesis. They could, therefore, represent a promising novel therapeutic approach for advanced disease. A number of clinical trials assessing the efficacy of HDACi have already been completed, while a few more are in progress. Despite some early promising signs, a lot of work is required in the field of clinical studies, and larger patient cohorts are needed in order for more valid conclusions to be extracted, regarding the potential of HDACi as mainstream treatment options for melanoma.
Collapse
|
4
|
Adeshakin AO, Adeshakin FO, Yan D, Wan X. Regulating Histone Deacetylase Signaling Pathways of Myeloid-Derived Suppressor Cells Enhanced T Cell-Based Immunotherapy. Front Immunol 2022; 13:781660. [PMID: 35140716 PMCID: PMC8818783 DOI: 10.3389/fimmu.2022.781660] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has emerged as a promising approach to combat immunosuppressive tumor microenvironment (TME) for improved cancer treatment. FDA approval for the clinical use of programmed death receptor 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors revolutionized T cell-based immunotherapy. Although only a few cancer patients respond to this treatment due to several factors including the accumulation of immunosuppressive cells in the TME. Several immunosuppressive cells within the TME such as regulatory T cells, myeloid cells, and cancer-associated fibroblast inhibit the activation and function of T cells to promote tumor progression. The roles of epigenetic modifiers such as histone deacetylase (HDAC) in cancer have long been investigated but little is known about their impact on immune cells. Recent studies showed inhibiting HDAC expression on myeloid-derived suppressor cells (MDSCs) promoted their differentiation to less suppressive cells and reduced their immunosuppressive effect in the TME. HDAC inhibitors upregulated PD-1 or PD-L1 expression level on tumor or immune cells sensitizing tumor-bearing mice to anti-PD-1/PD-L1 antibodies. Herein we discuss how inhibiting HDAC expression on MDSCs could circumvent drawbacks to immune checkpoint inhibitors and improve cancer immunotherapy. Furthermore, we highlighted current challenges and future perspectives of HDAC inhibitors in regulating MDSCs function for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| |
Collapse
|
5
|
Cui Y, Cai J, Wang W, Wang S. Regulatory Effects of Histone Deacetylase Inhibitors on Myeloid-Derived Suppressor Cells. Front Immunol 2021; 12:690207. [PMID: 34149732 PMCID: PMC8208029 DOI: 10.3389/fimmu.2021.690207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are antitumor drugs that are being developed for use in clinical settings. HDACIs enhance histone or nonhistone acetylation and promote gene transcription via epigenetic regulation. Importantly, these drugs have cytotoxic or cytostatic properties and can directly inhibit tumor cells. However, how HDACIs regulate immunocytes in the tumor microenvironment, such as myeloid-derived suppressor cells (MDSCs), has yet to be elucidated. In this review, we summarize the effects of different HDACIs on the immunosuppressive function and expansion of MDSCs based on the findings of relevant studies.
Collapse
Affiliation(s)
- Yudan Cui
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingshan Cai
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenxin Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Perego P. Meet Our Editorial Board Member. Curr Med Chem 2021. [DOI: 10.2174/092986732811210416084503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori Milan,Italy
| |
Collapse
|
7
|
Sinatra L, Bandolik JJ, Roatsch M, Sönnichsen M, Schoeder CT, Hamacher A, Schöler A, Borkhardt A, Meiler J, Bhatia S, Kassack MU, Hansen FK. Hydroxamic Acids Immobilized on Resins
(HAIRs): Synthese von Dual‐Target‐HDAC‐Inhibitoren und HDAC‐PROTACs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laura Sinatra
- Institut für Wirkstoffentwicklung Medizinische Fakultät Universität Leipzig Brüderstraße 34 04103 Leipzig Deutschland
| | - Jan J. Bandolik
- Institut für Pharmazeutische und Medizinische Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Martin Roatsch
- Institut für Wirkstoffentwicklung Medizinische Fakultät Universität Leipzig Brüderstraße 34 04103 Leipzig Deutschland
- Center for Biopharmaceuticals Department of Drug Design and Pharmacology University of Copenhagen Universitetsparken 2 2100 Copenhagen Denmark
| | - Melf Sönnichsen
- Klinik für Kinder-Onkologie, -Hämatologie und klinische Immunologie Medizinische Fakultät Heinrich-Heine -Universität Düsseldorf Moorenstr. 5 40225 Düsseldorf Deutschland
| | - Clara T. Schoeder
- Center for Structural Biology Department of Chemistry Vanderbilt University Nashville TN 37221 USA
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Andrea Schöler
- Institut für Wirkstoffentwicklung Medizinische Fakultät Universität Leipzig Brüderstraße 34 04103 Leipzig Deutschland
| | - Arndt Borkhardt
- Klinik für Kinder-Onkologie, -Hämatologie und klinische Immunologie Medizinische Fakultät Heinrich-Heine -Universität Düsseldorf Moorenstr. 5 40225 Düsseldorf Deutschland
| | - Jens Meiler
- Institut für Wirkstoffentwicklung Medizinische Fakultät Universität Leipzig Brüderstraße 34 04103 Leipzig Deutschland
- Center for Structural Biology Department of Chemistry Vanderbilt University Nashville TN 37221 USA
| | - Sanil Bhatia
- Klinik für Kinder-Onkologie, -Hämatologie und klinische Immunologie Medizinische Fakultät Heinrich-Heine -Universität Düsseldorf Moorenstr. 5 40225 Düsseldorf Deutschland
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische Chemie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Deutschland
| | - Finn K. Hansen
- Institut für Wirkstoffentwicklung Medizinische Fakultät Universität Leipzig Brüderstraße 34 04103 Leipzig Deutschland
- Pharmazeutische und Zellbiologische Chemie Pharmazeutisches Institut Universität Bonn An der Immenburg 4 53121 Bonn Deutschland
| |
Collapse
|
8
|
Sinatra L, Bandolik JJ, Roatsch M, Sönnichsen M, Schoeder CT, Hamacher A, Schöler A, Borkhardt A, Meiler J, Bhatia S, Kassack MU, Hansen FK. Hydroxamic Acids Immobilized on Resins (HAIRs): Synthesis of Dual-Targeting HDAC Inhibitors and HDAC Degraders (PROTACs). Angew Chem Int Ed Engl 2020; 59:22494-22499. [PMID: 32780485 PMCID: PMC7756583 DOI: 10.1002/anie.202006725] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Inhibition of more than one cancer-related pathway by multi-target agents is an emerging approach in modern anticancer drug discovery. Here, based on the well-established synergy between histone deacetylase inhibitors (HDACi) and alkylating agents, we present the discovery of a series of alkylating HDACi using a pharmacophore-linking strategy. For the parallel synthesis of the target compounds, we developed an efficient solid-phase-supported protocol using hydroxamic acids immobilized on resins (HAIRs) as stable and versatile building blocks for the preparation of functionalized HDACi. The most promising compound, 3 n, was significantly more active in apoptosis induction, activation of caspase 3/7, and formation of DNA damage (γ-H2AX) than the sum of the activities of either active principle alone. Furthermore, to demonstrate the utility of our preloaded resins, the HAIR approach was successfully extended to the synthesis of a proof-of-concept proteolysis-targeting chimera (PROTAC), which efficiently degrades histone deacetylases.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute for Drug Discovery, Medical FacultyLeipzig UniversityBrüderstraße 3404103LeipzigGermany
| | - Jan J. Bandolik
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Martin Roatsch
- Institute for Drug Discovery, Medical FacultyLeipzig UniversityBrüderstraße 3404103LeipzigGermany
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Melf Sönnichsen
- Department of Pediatric OncologyHematology and Clinical ImmunologyMedical FacultyHeinrich Heine University DüsseldorfMoorenstr. 540225DüsseldorfGermany
| | - Clara T. Schoeder
- Center for Structural BiologyDepartment of ChemistryVanderbilt UniversityNashvilleTN37221USA
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical FacultyLeipzig UniversityBrüderstraße 3404103LeipzigGermany
| | - Arndt Borkhardt
- Department of Pediatric OncologyHematology and Clinical ImmunologyMedical FacultyHeinrich Heine University DüsseldorfMoorenstr. 540225DüsseldorfGermany
| | - Jens Meiler
- Institute for Drug Discovery, Medical FacultyLeipzig UniversityBrüderstraße 3404103LeipzigGermany
- Center for Structural BiologyDepartment of ChemistryVanderbilt UniversityNashvilleTN37221USA
| | - Sanil Bhatia
- Department of Pediatric OncologyHematology and Clinical ImmunologyMedical FacultyHeinrich Heine University DüsseldorfMoorenstr. 540225DüsseldorfGermany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Finn K. Hansen
- Institute for Drug Discovery, Medical FacultyLeipzig UniversityBrüderstraße 3404103LeipzigGermany
- Pharmaceutical and Cell Biological ChemistryPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
9
|
Identifying States of Collateral Sensitivity during the Evolution of Therapeutic Resistance in Ewing's Sarcoma. iScience 2020; 23:101293. [PMID: 32623338 PMCID: PMC7334607 DOI: 10.1016/j.isci.2020.101293] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Advances in the treatment of Ewing's sarcoma (EWS) are desperately needed, particularly in the case of metastatic disease. A deeper understanding of collateral sensitivity, where the evolution of therapeutic resistance to one drug aligns with sensitivity to another drug, may improve our ability to effectively target this disease. For the first time in a solid tumor, we produced a temporal collateral sensitivity map that demonstrates the evolution of collateral sensitivity and resistance in EWS. We found that the evolution of collateral resistance was predictable with some drugs but had significant variation in response to other drugs. Using this map of temporal collateral sensitivity in EWS, we can see that the path toward collateral sensitivity is not always repeatable, nor is there always a clear trajectory toward resistance or sensitivity. Identifying transcriptomic changes that accompany these states of transient collateral sensitivity could improve treatment planning for patients with EWS. Ewing's sarcoma cell lines were evolved to become resistant to standard chemotherapy A temporal collateral sensitivity map shows response to alternative drugs over time Collateral drug response is repeatable in some instances and stochastic in others Differential gene expression elucidates potential biomarkers of drug response
Collapse
|
10
|
Babu T, Sarkar A, Karmakar S, Schmidt C, Gibson D. Multiaction Pt(IV) Carbamate Complexes Can Codeliver Pt(II) Drugs and Amine Containing Bioactive Molecules. Inorg Chem 2020; 59:5182-5193. [PMID: 32207294 DOI: 10.1021/acs.inorgchem.0c00445] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiaction Pt(IV) prodrugs can overcome resistance associated with the FDA approved Pt(II) drugs like cisplatin. Intracellular reduction of the octahedral Pt(IV) derivatives of cisplatin releases cisplatin and the two axial ligands. When the released axial ligands act synergistically with cisplatin to kill the cancer cells, we have multiaction prodrugs. Most Pt(IV) multiaction prodrugs have bioactive ligands possessing a carboxylate that is conjugated to the Pt(IV) because breaking the Pt(IV)-ligand bond releases the active moiety. As many drugs that act synergistically with cisplatin do not have carboxylates, a major challenge is to prepare multiaction Pt(IV) complexes with drugs that have amino groups or hydroxyl groups such that following reduction, the drugs are released in their active form. Our objective was to prepare multiaction Pt(IV) prodrugs that release bioactive molecules having amino groups. Because we cannot conjugate amino groups to the axial position of Pt(IV), we developed a novel and efficient approach for the synthesis of Pt(IV)-carbamato complexes and demonstrated that following reduction of the Pt(IV), the released carbamates undergo rapid decarboxylation, releasing the free amine, as in the case of the PARP-1 inhibitor 3-aminobenzamide and the amino derivative of the HDAC inhibitor SAHA. Pt(IV)-carbamato complexes are stable in cell culture medium and are reduced by ascorbate. They are reduced slower than their carboxylato and carbonato analogues. We believe that this approach paves the way for preparing novel classes of multiaction Pt(IV) prodrugs with amino containing bioactive molecules that up to now were not accessible.
Collapse
Affiliation(s)
| | | | | | | | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 9112102, Israel
| |
Collapse
|
11
|
Abd-Rabou AA, Ahmed HH. Bevacizumab and CCR2 Inhibitor Nanoparticles Induce Cytotoxicity-Mediated Apoptosis in Doxorubicin-Treated Hepatic and Non-Small Lung Cancer Cells. Asian Pac J Cancer Prev 2019; 20:2225-2238. [PMID: 31350989 PMCID: PMC6745235 DOI: 10.31557/apjcp.2019.20.7.2225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) are very common in certain population around the world. Despite the recent advances in their diagnosis and therapy, their prognosis remains poor due to the development resistance to drug. Although doxorubicin (DOX) is considered to be one of the most anti-solid tumor drugs, developed resistance is contributing to unsuccessful outcome. The rationale of the current study is to explore the sensitizing capability of the DOX-treated cancer cells using the anticancer agents; bevacizumab (avastin; AV) and CCR2 inhibitor (CR) in their free- and nano-formulations. Here, the average size, polydispersity index (PDI), zeta potential, and entrpment effeciency (EE%) of the synthesized nanoparticles were measured. We investigated the effect of these platforms on the proliferation, apoptosis, necrosis, nitric oxide (NO), malondialdehyde (MDA), and zinc levels of human HCC (HepG2 and Huh-7) and NSCLC (A549) cancer cell lines. Glucose consumption rates using Huh-7 and A549 cancer cells were tested upon treatments. We demonstrated that AV and CR nano-treatments significantly suppressed A549 cell viability and activated apoptosis by NO level elevation. We concluded that AVCR NP plus DOX significantly induces A549 cytotoxicity-mediated apoptosis more than Huh-7 and HepG2 cells. This drug-drug nano-combination induced Huh-7 cytotoxicity-mediated apoptosis more than HepG2 cells. In conclusion, AVCR NP sensitized DOX-treated A549 and Huh-7 cells through reactive oxygen species (ROS)-stimulated apoptosis. Taken together, our data suggested that the CR plus AV nano-platforms would be a potential personalized medicine-based strategy for treating CCR2-positive NSCLC and HCC patients in the near future.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Center of Excellence for Advanced Science, National Research Centre, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Center of Excellence for Advanced Science, National Research Centre, Giza, Egypt
| |
Collapse
|
12
|
Cristiani CM, Turdo A, Ventura V, Apuzzo T, Capone M, Madonna G, Mallardo D, Garofalo C, Giovannone ED, Grimaldi AM, Tallerico R, Marcenaro E, Pesce S, Del Zotto G, Agosti V, Costanzo FS, Gulletta E, Rizzo A, Moretta A, Karre K, Ascierto PA, Todaro M, Carbone E. Accumulation of Circulating CCR7 + Natural Killer Cells Marks Melanoma Evolution and Reveals a CCL19-Dependent Metastatic Pathway. Cancer Immunol Res 2019; 7:841-852. [PMID: 30940644 DOI: 10.1158/2326-6066.cir-18-0651] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
Immune checkpoint blockade therapy has changed prognoses for many melanoma patients. However, immune responses that correlate with clinical progression of the disease are still poorly understood. To identify immune responses correlating with melanoma clinical evolution, we analyzed serum cytokines as well as circulating NK and T-cell subpopulations from melanoma patients. The patients' immune profiles suggested that melanoma progression leads to changes in peripheral blood NK and T-cell subsets. Stage IV melanoma was characterized by an increased frequency of CCR7+CD56bright NK cells as well as high serum concentrations of the CCR7 ligand CCL19. CCR7 expression and CCL19 secretion were also observed in melanoma cell lines. The CCR7+ melanoma cell subpopulation coexpressed PD-L1 and Galectin-9 and had stemness properties. Analysis of melanoma-derived cancer stem cells (CSC) showed high CCR7 expression; these CSCs were efficiently recognized and killed by NK cells. An accumulation of CCR7+, PD-L1+, and Galectin-9+ melanoma cells in melanoma metastases was demonstrated ex vivo Altogether, our data identify biomarkers that may mark a CCR7-driven metastatic melanoma pathway.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Alice Turdo
- Department of Surgical, Oncological and Stomatological Sciences (Di.Chir.On.S), University of Palermo, Palermo, Italy
| | - Valeria Ventura
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Tiziana Apuzzo
- Department of Surgical, Oncological and Stomatological Sciences (Di.Chir.On.S), University of Palermo, Palermo, Italy
| | - Mariaelena Capone
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emilia Dora Giovannone
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Antonio M Grimaldi
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Rossana Tallerico
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Genny Del Zotto
- Core Facilities Laboratory, Department of Translational Research, Laboratory Medicine, Diagnosis and Services, Istituto Giannina Gaslini, Genoa, Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Elio Gulletta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Aroldo Rizzo
- Unit of Pathology, Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Klas Karre
- Department of Microbiology, Cell and Tumor biology, Karolinska Intitutet, Stockholm, Sweden
| | - Paolo A Ascierto
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Matilde Todaro
- Department of PROMISE, University of Palermo, Palermo, Italy.
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
- Department of Microbiology, Cell and Tumor biology, Karolinska Intitutet, Stockholm, Sweden
| |
Collapse
|
13
|
Ogawa M, Yaginuma T, Nakatomi C, Nakajima T, Tada-Shigeyama Y, Addison WN, Urata M, Matsubara T, Watanabe K, Matsuo K, Sato T, Honda H, Hikiji H, Watanabe S, Kokabu S. Transducin-like enhancer of split 3 regulates proliferation of melanoma cells via histone deacetylase activity. Oncotarget 2019; 10:404-414. [PMID: 30719233 PMCID: PMC6349449 DOI: 10.18632/oncotarget.26552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Melanoma, one of the most aggressive neoplasms, is characterized by rapid cell proliferation. Transducin-like Enhancer of Split (TLE) is an important regulator of cell proliferation via Histone deacetylase (HDAC) recruitment. Given that HDAC activity is associated with melanoma progression, we examined the relationship between TLE3, a TLE family member, and melanoma. TLE3 expression was increased during the progression of human patient melanoma (p < 0.05). Overexpression of Tle3 in B16 murine melanoma cells led to an increase in cell proliferation (p < 0.01) as well as the number of cyclinD1-positive cells. in vivo injection of mice with B16 cells overexpressing Tle3 resulted in larger tumor formation than in mice injected with control cells (p < 0.05). In contrast, siRNA-mediated knockdown of Tle3 in B16 cells or TLE3 in HMV-II human melanoma cells decreased proliferation (p < 0.01). Treatment of B16 cells with trichostatin A (2.5 μM), a class I and II HDAC inhibitor, prevented the effect s of Tle3 on proliferation. In conclusion, these data indicate that Tle3 is required, at least in part, for proliferation in the B16 mouse melanoma model.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuki Yaginuma
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chihiro Nakatomi
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tsuyoshi Nakajima
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yukiyo Tada-Shigeyama
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Research Unit, Shriners Hospitals for Children-Canada, Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mariko Urata
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Koji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kou Matsuo
- Division of Oral Pathology, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hiromi Honda
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Hisako Hikiji
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Seiji Watanabe
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
14
|
An J, Xue Y, Long M, Zhang G, Zhang J, Su H. Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget 2018; 8:39230-39240. [PMID: 28424406 PMCID: PMC5503609 DOI: 10.18632/oncotarget.16837] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/09/2017] [Indexed: 11/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, which is the leading cancer killer in the world. Despite the recent advances in its diagnosis and therapy, the prognosis of NSCLC patients remains very poor, mainly due to the development of drug resistance and metastasis. Both the chemokine network and the matrix metalloproteinase (MMP) system play important roles in cancer cell metastasis. The disruption of CCL2/CCR2 chemokine signaling has been shown to suppress cancer cellviability and metastasis. CCL2-neutralizing antibodies, which have shown promising therapeutic efficacy in several cancer models, are not widely used due to technical issues. CCR2 antagonism has thus become an alternative method for cancer treatment. However, the effect of CCR2 antagonists on NSCLC progression remains poorly understood. Here, we investigated the effect of CCR2 antagonist (CAS445479-97-0) on the proliferation, migration and invasion of human lung adenocarcinoma A549 cells by using WST-1 cell viability assay, transwell migration assay, wound healing scratch assay and Matrigel invasion assay. We demonstrated that CCL2 treatment promoted A549 cell viability, motility and invasion by upregulating MMP-9 expression and that this induction was significantly suppressed by CAS 445479-97-0. Taken together, our data suggested that the CCR2 antagonist would be a potential drug for treating CCR2-positive NSCLC patients.
Collapse
Affiliation(s)
- Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Ying Xue
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Meijun Long
- Breast Cancer Center and Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junhang Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Hang Su
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
Copper-Free 'Click' Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia. Int J Mol Sci 2018. [PMID: 29534020 PMCID: PMC5877699 DOI: 10.3390/ijms19030838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a difficult to treat disease due to the absence of the three unique receptors estrogen, progesterone and herceptin-2 (HER-2). To improve the current therapy and overcome the resistance of TNBC, there is unmet need to develop an effective targeted therapy. In this regard, one of the logical and economical approaches is to develop a tumor hypoxia-targeting drug formulation platform for selective delivery of payload to the drug-resistant and invasive cell population of TNBC tumors. Toward this, we developed a Carbonic Anhydrase IX (CA IX) receptor targeting human serum albumin (HSA) carriers to deliver the potent anticancer drug, Paclitaxel (PTX). We used Acetazolamide (ATZ), a small molecule ligand of CA IX to selectively deliver HSA-PTX in TNBC cells. A novel method of synthesis involving copper free ‘click’ chemistry (Dibenzocyclooctyl, DBCO) moiety with an azide-labeled reaction partner, known as Strain-Promoted Alkyne Azide Cycloaddition (SPAAC) along with a desolvation method for PTX loading were used in the present study to arrive at the CA IX selective nano-carriers, HSA-PTX-ATZ. The anticancer effect of HSA-PTX-ATZ is higher compared to HSA, PTX and non-targeted HSA-PTX in MDA-MB-231 and MDA-MB-468 cells. The cell killing effect is associated with induction of early and late phases of apoptosis. Overall, our proof-of-concept study shows a promising avenue for hypoxia-targeted drug delivery that can be adapted to several types of cancers.
Collapse
|
16
|
Yang J, Lv X, Chen J, Xie C, Xia W, Jiang C, Zeng T, Ye Y, Ke L, Yu Y, Liang H, Guan XY, Guo X, Xiang Y. CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway. Oncotarget 2017; 7:15632-47. [PMID: 26701209 PMCID: PMC4941266 DOI: 10.18632/oncotarget.6695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Distant metastasis remains the major failure of nasopharyngeal carcinoma (NPC). In this study, the roles of chemokine C-C motif ligand 2 (CCL2), and its receptor chemokine C-C motif receptor type 2 (CCR2) on NPC metastasis were investigated. Serum CCL2 and CCL2/CCR2 expression level were remarkably increased in NPC patients compared to non-tumor patients by ELISA and IHC analyses. High expressions of CCL2/CCR2 were significantly associated with NPC metastasis and poor overall survival (OS). High expression of CCR2 is an independent adverse prognostic factor of OS and distant metastasis free survival (DMFS). Overexpressions of CCL2 and CCR2 were detected in high-metastatic NPC cell lines. Upregulating CCL2 and CCR2 respectively in low-metastatic NPC cell lines could promote cell migration and invasion, and exogenous CCL2 enhanced the motility in CCR2-overexpressing cells. On the other hand, downregulating CCL2 and CCR2 respectively in high-metastatic NPC cell lines by shRNA could decrease cell migration and invasion. However, exogenous CCL2 could not rescue the weaken ability of motility of CCR2-silencing cells. In nude mouse model, distant metastasis was significantly facilitated in either CCL2-overexpressing or CCR2-overexpressing groups, which was more obvious in CCR2-overexpressing group. Also, distant metastasis was considerably inhibited in either CCL2-silencing or CCR2-silencing groups. Dual overexpression of CCL2/CCR2 could activate extracellular signal-regulated kinase (ERK1/2) signaling pathway, which sequentially induced matrix metalloproteinase (MMP) 2 and 9 upregulations in the downstream. In conclusion, CCL2-CCR2 axis could promote NPC metastasis by activating ERK1/2-MMP2/9 pathway. This study helps to develop novel therapeutic targets for distant metastasis in NPC.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinna Chen
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Changqing Xie
- Internal Medicine Residency Program, Vidant Medical Center, East Carolina University, Greenville, NC, USA
| | - Weixiong Xia
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chen Jiang
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Tingting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanfang Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangru Ke
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yahui Yu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanqun Xiang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Jeong JH, Hong YS, Park Y, Kim J, Kim JE, Kim KP, Kim SY, Park JH, Kim JH, Park IJ, Lim SB, Yu CS, Kim JC, Kim TW. Phase 1 Study of Preoperative Chemoradiation Therapy With Temozolomide and Capecitabine in Patients With Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2016; 96:289-295. [PMID: 27473815 DOI: 10.1016/j.ijrobp.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Preoperative chemoradiation therapy (CRT) with capecitabine is a standard treatment strategy in patients with locally advanced rectal cancer (LARC). Temozolomide improves the survival of patients with glioblastoma with hypermethylated O(6)-methylguanine DNA methyltransferase (MGMT); MGMT hypermethylation is one of the colorectal carcinogenesis pathways. We aimed to determine the dose-limiting toxicity (DLT) and recommended dose (RD) of temolozomide in combination with capecitabine-based preoperative CRT for LARC. METHODS AND MATERIALS Radiation therapy was delivered with 45 Gy/25 daily fractions with coned-down boost of 5.4 Gy/3 fractions. Concurrent chemotherapy comprised fixed and escalated doses of capecitabine and temozolomide, respectively. The MGMT hypermethylation was evaluated in pretreatment tumor samples. This trial is registered with ClinicalTrials.gov with the number NCT01781403. RESULTS Twenty-two patients with LARC of cT3-4N0 or cTanyN1-2 were accrued. Dose level 3 was chosen as the RD because DLT was noticeably absent in 10 patients treated up to dose level 3. An additional 12 patients were recruited in this group. Grade III adverse events were noted, and pathologic complete response (pCR) was observed in 7 patients (31.8%); MGMT hypermethylation was detected in 16. The pCR rate was 37.5% and 16.7% in the hypermethylated and unmethylated MGMT groups, respectively (P=.616). CONCLUSIONS There was a tendency toward higher pCR rates in patients with hypermethylated MGMT. Future randomized studies are therefore warranted.
Collapse
Affiliation(s)
- Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yangsoon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyu-Pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Hong Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Hoon Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ja Park
- Department of Colorectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seok-Byung Lim
- Department of Colorectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Sik Yu
- Department of Colorectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Cheon Kim
- Department of Colorectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Krumm A, Barckhausen C, Kücük P, Tomaszowski KH, Loquai C, Fahrer J, Krämer OH, Kaina B, Roos WP. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance. Cancer Res 2016; 76:3067-77. [PMID: 26980768 DOI: 10.1158/0008-5472.can-15-2680] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR.
Collapse
Affiliation(s)
- Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Pelin Kücük
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Carmen Loquai
- Department of Dermatology, Medical Center of the University Mainz, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | | | - Bernd Kaina
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany
| | - Wynand Paul Roos
- Institute of Toxicology, Medical Center of the University Mainz, Mainz, Germany.
| |
Collapse
|
19
|
Shrivastava MS, Hussain Z, Giricz O, Shenoy N, Polineni R, Maitra A, Verma A. Targeting chemokine pathways in esophageal adenocarcinoma. Cell Cycle 2015; 13:3320-7. [PMID: 25485576 DOI: 10.4161/15384101.2014.968426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is one of the fastest growing malignancies in the US and needs newer therapeutic and diagnostic strategies. Chronic inflammation plays a role in the pathogenesis of EAC and contributes to the dysplastic conversion of normal esophageal epithelium to Barrett's esophagus and frank adenocarcinoma. Chemokines play important roles in mediating inflammation and recent evidence implicates these ligands and their receptors in the development and spread of various tumors. We demonstrated that the chemokines IL8, CXCL1 and CXCL3 are significantly overexpressed during esophageal carcinogenesis and accompanied by amplification and demethylation of the chr4q21 gene locus. We also demonstrated that IL8 levels can be detected in serum of patients with EAC and can serve as potential biomarkers. We now demonstrate that inhibition of IL8 receptor, CXCR2, leads to decreased invasiveness of esophageal adenocarcinoma derived cells without affecting cellular proliferation. Taken together, these studies reveal the important roles that chemokines play in development of esophageal cancer and demonstrate that these pathways can serve as potential therapeutic targets.
Collapse
|
20
|
Huang HL, Peng CY, Lai MJ, Chen CH, Lee HY, Wang JC, Liou JP, Pan SL, Teng CM. Novel oral histone deacetylase inhibitor, MPT0E028, displays potent growth-inhibitory activity against human B-cell lymphoma in vitro and in vivo. Oncotarget 2015; 6:4976-91. [PMID: 25669976 PMCID: PMC4467128 DOI: 10.18632/oncotarget.3213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/26/2014] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitor has been a promising therapeutic option in cancer therapy due to its ability to induce growth arrest, differentiation, and apoptosis. In this study, we demonstrated that MPT0E028, a novel HDAC inhibitor, reduces the viability of B-cell lymphomas by inducing apoptosis and shows a more potent HDAC inhibitory effect compared to SAHA, the first HDAC inhibitor approved by the FDA. In addition to HDACs inhibition, MPT0E028 also possesses potent direct Akt targeting ability as measured by the kinome diversity screening assay. Also, MPT0E028 reduces Akt phosphorylation in B-cell lymphoma with an IC50 value lower than SAHA. Transient transfection assay revealed that both targeting HDACs and Akt contribute to the apoptosis induced by MPT0E028, with both mechanisms functioning independently. Microarray analysis also shows that MPT0E028 may regulate many oncogenes expression (e.g., TP53, MYC, STAT family). Furthermore, in vivo animal model experiments demonstrated that MPT0E028 (50-200 mg/kg, po, qd) prolongs the survival rate of mice bearing human B-cell lymphoma Ramos cells and inhibits tumor growth in BJAB xenograft model. In summary, MPT0E028 possesses strong in vitro and in vivo activity against malignant cells, representing a potential therapeutic approach for cancer therapy.
Collapse
Affiliation(s)
- Han-Li Huang
- 1 Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Yu Peng
- 2 Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- 3 School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Mei-Jung Lai
- 4 Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- 1 Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- 5 School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Chi Wang
- 6 The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- 5 School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- 6 The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Che-Ming Teng
- 1 Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Abstract
Chemotherapy and targeted therapy have opened new avenues in clinical oncology. However, there is a lack of response in a substantial percentage of cancer patients and diseases frequently relapse in those who even initially respond. Resistance is, at present, the major barrier to conquering cancer, the most lethal age-related pathology. Identification of mechanisms underlying resistance and development of effective strategies to circumvent treatment pitfalls thereby improving clinical outcomes remain overarching tasks for scientists and clinicians. Growing bodies of data indicate that stromal cells within the genetically stable but metabolically dynamic tumor microenvironment confer acquired resistance against anticancer therapies. Further, treatment itself activates the microenvironment by damaging a large population of benign cells, which can drastically exacerbate disease conditions in a cell nonautonomous manner, and such off-target effects should be well taken into account when establishing future therapeutic rationale. In this review, we highlight relevant biological mechanisms through which the tumor microenvironment drives development of resistance. We discuss some unsolved issues related to the preclinical and clinical trial paradigms that need to be carefully devised, and provide implications for personalized medicine. In the long run, an insightful and accurate understanding of the intricate signaling networks of the tumor microenvironment in pathological settings will guide the design of new clinical interventions particularly combinatorial therapies, and it might help overcome, or at least prevent, the onset of acquired resistance.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, 200031, China
- School of Medicine, Shanghai Jiaotong UniversityShanghai, 200025, China
- VA Seattle Medical CenterSeattle, WA, 98108
- Department of Medicine, University of WashingtonSeattle, WA, 98195
| |
Collapse
|