1
|
Wu CC, Chen MS, Lee TY, Huang TS, Cho DY, Chen JY. Epstein-Barr Virus BRLF1 Induces PD-L1 Expression in Nasopharyngeal Carcinoma Cells. Viral Immunol 2024; 37:115-123. [PMID: 38498796 DOI: 10.1089/vim.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a specific human malignancy with unique geographic distribution and genetic backgrounds. Although early treatment with radio-chemotherapy has been proven effective for NPC therapy, its therapeutic efficacy substantially diminishes in the late stages of this malignancy. In the tumor microenvironment of NPC, PD-L1 has been demonstrated as a critical factor in impairing T cell activation. As an etiological role for NPC development, it is found that Epstein-Barr virus (EBV) latent proteins upregulated PD-L1 expression. However, whether EBV lytic protein affects PD-L1 expression remains unclear. In this study, through monitoring the mRNA expression pattern of lytic genes and PD-L1 in EBV-positive NPC cell line NA, EBV immediately-early gene BRLF1(Rta) was found to have the potential for PD-L1 activation. Furthermore, we identified that Rta expression enhanced PD-L1 expression in mRNA and protein levels through quantitative real-time polymerase chain reaction and western blotting analysis. The luciferase reporter assay revealed that Rta expression enhanced PD-L1 promoter activity. We also demonstrated that Rta-induced PD-L1 expressions could impair interleukin 2 secretion of T cells, and this mechanism may be through ERK activation. These results displayed the importance of EBV Rta in PD-L1 expression in NPC and may give an alternative target for NPC therapy.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ting-Ying Lee
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Der-Yang Cho
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung City, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
2
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Tan H, Gong Y, Liu Y, Long J, Luo Q, Faleti OD, Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed Pharmacother 2023; 164:114916. [PMID: 37229802 DOI: 10.1016/j.biopha.2023.114916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus associated with lymphomas and epithelial cell cancers. It establishes two separate infection phases, latent and lytic, in the host. Upon infection of a new host cell, the virus activates several pathways, to induce the expression of lytic EBV antigens and the production of infectious virus particles. Although the carcinogenic role of latent EBV infection has been established, recent research suggests that lytic reactivation also plays a significant role in carcinogenesis. In this review, we summarize the mechanism of EBV reactivation and recent findings about the role of viral lytic antigens in tumor formation. In addition, we discuss the treatment of EBV-associated tumors with lytic activators and the targets that may be therapeutically effective in the future.
Collapse
Affiliation(s)
- Haiqi Tan
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yibing Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yi Liu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Qingshuang Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Oluwasijibomi Damola Faleti
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999000, Hong Kong Special Administrative Region of China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
5
|
Dorothea M, Xie J, Yiu SPT, Chiang AKS. Contribution of Epstein–Barr Virus Lytic Proteins to Cancer Hallmarks and Implications from Other Oncoviruses. Cancers (Basel) 2023; 15:cancers15072120. [PMID: 37046781 PMCID: PMC10093119 DOI: 10.3390/cancers15072120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Epstein–Barr virus (EBV) is a prevalent human gamma-herpesvirus that infects the majority of the adult population worldwide and is associated with several lymphoid and epithelial malignancies. EBV displays a biphasic life cycle, namely, latent and lytic replication cycles, expressing a diversity of viral proteins. Among the EBV proteins being expressed during both latent and lytic cycles, the oncogenic roles of EBV lytic proteins are largely uncharacterized. In this review, the established contributions of EBV lytic proteins in tumorigenesis are summarized according to the cancer hallmarks displayed. We further postulate the oncogenic properties of several EBV lytic proteins by comparing the evolutionary conserved oncogenic mechanisms in other herpesviruses and oncoviruses.
Collapse
Affiliation(s)
- Mike Dorothea
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jia Xie
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
The lytic phase of Epstein-Barr virus plays an important role in tumorigenesis. Virus Genes 2023; 59:1-12. [PMID: 36242711 DOI: 10.1007/s11262-022-01940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023]
Abstract
Epstein-Barr virus (EBV) is a recognized oncogenic virus that is related to the occurrence of lymphoma, nasopharyngeal carcinoma (NPC), and approximately 10% of gastric cancer (GC). EBV is a herpesvirus, and like other herpesviruses, EBV has a biphasic infection mode made up of latent and lytic infections. It has been established that latent infection promotes tumorigenesis in previous research, but in recent years, there has been new evidence that suggests that the lytic infection mode could also promote tumorigenesis. In this review, we mainly discuss the contribution of the EBV lytic phase to tumorigenesis, and graphically illustrate their relationship in detail. In addition, we described the relationship between the lytic cycle of EBV and autophagy. Finally, we also preliminarily explored the influence of the tumorigenesis effect of the EBV lytic phase on the future treatment of EBV-associated tumors.
Collapse
|
7
|
Wu CC, Lee TY, Cheng YJ, Cho DY, Chen JY. The Dietary Flavonol Kaempferol Inhibits Epstein-Barr Virus Reactivation in Nasopharyngeal Carcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238158. [PMID: 36500249 PMCID: PMC9736733 DOI: 10.3390/molecules27238158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Kaempferol (KP, 3,4',5,7-tetrahydroxyflavone), a dietary flavonol, has anti-cancer, antioxidant, anti-inflammatory, antimicrobial, and antimutagenic functions. However, it is unknown whether kaempferol possesses anti-Epstein-Barr virus (EBV) activity. Previously, we demonstrated that inhibition of EBV reactivation represses nasopharyngeal carcinoma (NPC) tumourigenesis, suggesting the importance of identifying EBV inhibitors. In this study, Western blotting, immunofluorescence staining, and virion detection showed that kaempferol repressed EBV lytic gene protein expression and subsequent virion production. Specifically, kaempferol was found to inhibit the promoter activities of Zta and Rta (Zp and Rp) under various conditions. A survey of the mutated Zp constructs revealed that Sp1 binding regions are critical for kaempferol inhibition. Kaempferol treatment repressed Sp1 expression and decreased the activity of the Sp1 promoter, suggesting that Sp1 expression was inhibited. In conclusion, kaempferol efficiently inhibits EBV reactivation and provides a novel choice for anti-EBV therapy and cancer prevention.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.)
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.)
| |
Collapse
|
8
|
Liu X, Deng Y, Huang Y, Ye J, Xie S, He Q, Chen Y, Lin Y, Liang R, Wei J, Li Y, Zhang J. Nasopharyngeal Carcinoma Progression: Accumulating Genomic Instability and Persistent Epstein–Barr Virus Infection. Curr Oncol 2022; 29:6035-6052. [PMID: 36135044 PMCID: PMC9498130 DOI: 10.3390/curroncol29090475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022] Open
Abstract
Genomic instability facilitates the evolution of cells, tissues, organs, and species. The progression of human malignancies can be regarded as the accumulation of genomic instability, which confers a high evolutionary potential for tumor cells to adapt to continuous changes in the tumor microenvironment. Nasopharyngeal carcinoma (NPC) is a head-and-neck squamous-cell carcinoma closely associated with Epstein–Barr virus (EBV) infection. NPC progression is driven by a combination of accumulated genomic instability and persistent EBV infection. Here, we present a review of the key characteristics of genomic instability in NPC and the profound implications of EBV infection. We further discuss the significance of profiling genomic instability for the assessment of disease progression and treatment efficacy, as well as the opportunities and challenges of targeted therapies for NPC based on its unique genomic instability.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Sifang Xie
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
- Correspondence: (Y.L.); (J.Z.)
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
- Correspondence: (Y.L.); (J.Z.)
| |
Collapse
|
9
|
Malat P, Ekalaksananan T, Heawchaiyaphum C, Suebsasana S, Roytrakul S, Yingchutrakul Y, Pientong C. Andrographolide Inhibits Epstein–Barr Virus Lytic Reactivation in EBV-Positive Cancer Cell Lines through the Modulation of Epigenetic-Related Proteins. Molecules 2022; 27:molecules27144666. [PMID: 35889536 PMCID: PMC9316603 DOI: 10.3390/molecules27144666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Reactivation of Epstein–Barr virus (EBV) is associated with EBV-associated malignancies and is considered to be a benefit target for treatment. Andrographolide is claimed to have antiviral and anti-tumor activities. Therefore, this study aimed to investigate the effect of andrographolide on the inhibition of EBV lytic reactivation in EBV-positive cancer cells. The cytotoxicity of andrographolide was firstly evaluated in EBV-positive cancer cells; P3HR1, AGS-EBV and HONE1-EBV cells, using an MTT assay. Herein, the spontaneous expression of EBV lytic genes; BALF5, BRLF1 and BZLF1, was significantly inhibited in andrographolide-treated cells. Accordingly, andrographolide inhibited the expression of Zta and viral production in sodium butyrate (NaB)-induced EBV lytic reactivation. Additionally, proteomics and bioinformatics analysis revealed the differentially expressed proteins that inhibit EBV lytic reactivation in all treated cell lines were functionally related with the histone modifications and chromatin organization, such as histone H3-K9 modification and histone H3-K27 methylation. Taken together, andrographolide inhibits EBV reactivation in EBV-positive cancer cells by inhibiting EBV lytic genes, probably, through the histone modifications.
Collapse
Affiliation(s)
- Praphatson Malat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Center, Thammasart University, Pathum Thani 12120, Thailand;
| | - Supawadee Suebsasana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Bangkok 10200, Thailand;
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Yodying Yingchutrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
10
|
Nakamura T, Kobayashi E, Hamana H, Hayakawa Y, Muraguchi A, Hayashi A, Ozawa T, Kishi H. Evaluation of chimeric antigen receptor of humanized rabbit-derived T cell receptor-like antibody. Cancer Sci 2022; 113:3321-3329. [PMID: 35766417 DOI: 10.1111/cas.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
T-cell receptor (TCR)-like antibodies that specifically recognize antigenic peptides presented on major histocompatibility complex (MHC) molecules have been developed for next-generation cancer immunotherapy. Recently, we reported a rapid and efficient method to generate TCR-like antibodies using a rabbit system. We humanized previously generated rabbit-derived TCR-like antibodies reacting Epstein-Barr virus peptide (BRLF1p, TYPVLEEMF) in the context of HLA-A24 molecules, produced CAR-T cells, and evaluated their anti-tumor effects using in vitro and in vivo tumor models. Humanization of the rabbit-derived TCR-like antibodies using the complementarity-determining region grafting technology maintained their specificity and affinity. We prepared a second-generation chimeric antigen receptor (CAR) using scFv of the humanized TCR-like antibodies and then transduced them into human T-cells. The CAR-T cells specifically recognized BRLF1p/MHC molecules and lysed the target cells in an antigen-specific manner in vitro. They also demonstrated anti-tumor activity in a mouse xenograft model. We report the generation of CAR-T cells using humanized rabbit-derived TCR-like antibodies. Together with our established and efficient generation procedure for TCR-like antibodies using rabbits, our platform for the clinical application of humanized rabbit-derived TCR-like antibodies to CAR-T cells will help improve next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Tomoko Nakamura
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan.,Department of Ophthalmology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshihiro Hayakawa
- Section of Host Defences, Department of Bioscience, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Patel PD, Alghareeb R, Hussain A, Maheshwari MV, Khalid N. The Association of Epstein-Barr Virus With Cancer. Cureus 2022; 14:e26314. [PMID: 35911302 PMCID: PMC9314235 DOI: 10.7759/cureus.26314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 12/02/2022] Open
Abstract
Epstein-Barr virus (EBV) is classified as a herpesvirus and is known for being one of the few viruses that can lead to the development of cancer. This study has gathered several studies to provide evidence as to this association as well as some of the mechanisms specific to EBV that allow this to happen. The development of EBV into cancer as well as the proteins involved in this oncogenesis play a crucial role in understanding this problem as well as creating a solution for mitigating this disease process in the future. This study summarized three of the most common malignancies caused by EBV in order to consolidate information about each of them. Additional emphasis was placed on finding which EBV serum markers were seen to be most indicative of prognosis and likelihood of developing malignancy. Higher serum EBV viral DNA loads were seen to be a useful indicator in assessing the risk of various cancers and should be studied further in relation to cancers that were not mentioned in this review.
Collapse
|
12
|
Li DK, Chen XR, Wang LN, Wang JH, Wen YT, Zhou ZY, Li JK, Liu JX, Cai LB, Zhong SS, Lyu XM, Damola FO, Li MY, Zhang JJ, Zeng YM, Wang QL, Zhang QB, Lyu H, Fu XY, Wang W, Li X, Huang ZX, Yao KT. Epstein-Barr Virus Induces Lymphangiogenesis and Lympth Node Metastasis via Upregulation of VEGF-C in Nasopharyngeal Carcinoma. Mol Cancer Res 2021; 20:161-175. [PMID: 34654722 DOI: 10.1158/1541-7786.mcr-21-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Lymphatic metastasis is a common clinical symptom in nasopharyngeal carcinoma (NPC), the most common Epstein-Barr virus (EBV)-associated head and neck malignancy. However, the effect of EBV on NPC lymph node (LN) metastasis is still unclear. In this study, we demonstrated that EBV infection is strongly associated with advanced clinical N stage and lymphangiogenesis of NPC. We found that NPC cells infected with EBV promote LN metastasis by inducing cancer-associated lymphangiogenesis, whereas these changes were abolished upon clearance of EBV genomes. Mechanistically, EBV-induced VEGF-C contributed to lymphangiogenesis and LN metastasis, and PHLPP1, a target of miR-BART15, partially contributed to AKT/HIF1a hyperactivity and subsequent VEGF-C transcriptional activation. In addition, administration of anti-VEGF-C antibody or HIF1α inhibitors attenuated the lymphangiogenesis and LN metastasis induced by EBV. Finally, we verified the clinical significance of this prometastatic EBV/VEGF-C axis by determining the expression of PHLPP1, AKT, HIF1a, and VEGF-C in NPC specimens with and without EBV. These results uncover a reasonable mechanism for the EBV-modulated LN metastasis microenvironment in NPC, indicating that EBV is a potential therapeutic target for NPC with lymphatic metastasis. IMPLICATIONS: This research demonstrates that EBV induces lymphangiogenesis in NPC by regulating PHLPP1/p-AKT/HIF1a/VEGF-C, providing a new therapeutic target for NPC with lymphatic metastasis.
Collapse
Affiliation(s)
- Deng-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Xing-Rui Chen
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Li-Na Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, P.R. China
| | - Jia-Hong Wang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yue-Ting Wen
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zi-Ying Zhou
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Ji-Ke Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jing-Xian Liu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Lin-Bo Cai
- Guangdong Sanjiu Brain Hospital, Guangzhou, P.R. China
| | | | - Xiao-Ming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Faleti Oluwasijibomi Damola
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Min-Ying Li
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, P.R. China
| | - Jing-Jing Zhang
- Department of Radiotherapy, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, P.R. China
| | - Yu-Mei Zeng
- Department of Pathology, Tumor Hospital of Zhongshan People's Hospital, Zhongshan, P.R. China
| | - Qian-Li Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, P.R. China
| | - Qian-Bing Zhang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Hao Lyu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Xiao-Yan Fu
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command, People's Liberation Army of China, Guangzhou, P.R. China
| | - Wei Wang
- Department of Pathology, General Hospital of Southern Theater Command, People's Liberation Army of China, Guangzhou, P.R. China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, P.R. China.
| | - Zhong-Xi Huang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.
| | - Kai-Tai Yao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.
| |
Collapse
|
13
|
Lin M, Zhang XL, You R, Yang Q, Zou X, Yu K, Liu YP, Zou RH, Hua YJ, Huang PY, Wang J, Zhao Q, Jiang XB, Tang J, Gu YK, Yu T, He GP, Xie YL, Wang ZQ, Liu T, Chen SY, Zuo ZX, Chen MY. Neoantigen landscape in metastatic nasopharyngeal carcinoma. Theranostics 2021; 11:6427-6444. [PMID: 33995666 PMCID: PMC8120206 DOI: 10.7150/thno.53229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Reportedly, nasopharyngeal carcinoma (NPC) patients with MHC I Class aberration are prone to poor survival outcomes, which indicates that the deficiency of tumor neoantigens might represent a mechanism of immune surveillance escape in NPC. Methods: To clearly delineate the landscape of neoantigens in NPC, we performed DNA and RNA sequencing on paired primary tumor, regional lymph node metastasis and distant metastasis samples from 26 patients. Neoantigens were predicted using pVACseq pipeline. Subtype prediction model was built using random forest algorithm. Results: Portraying the landscape of neoantigens in NPC for the first time, we found that the neoantigen load of NPC was above average compared to that of other cancers in The Cancer Genome Atlas program. While the quantity and quality of neoantigens were similar among primary tumor, regional lymph node metastasis and distant metastasis samples, neoantigen depletion was more severe in metastatic sites than in primary tumors. Upon tracking the clonality change of neoantigens, we found that neoantigen reduction occurred during metastasis. Building a subtype prediction model based on reported data, we observed that subtype I lacked T cells and suffered from severe neoantigen depletion, subtype II highly expressed immune checkpoint molecules and suffered from the least neoantigen depletion, and subtype III was heterogenous. Conclusions: These results indicate that neoantigens are conducive to the guidance of clinical treatment, and personalized therapeutic vaccines for NPC deserve deeper basic and clinical investigations to make them feasible in the future.
Collapse
|
14
|
Wu CC, Chen MS, Cheng YJ, Ko YC, Lin SF, Chiu IM, Chen JY. Emodin Inhibits EBV Reactivation and Represses NPC Tumorigenesis. Cancers (Basel) 2019; 11:cancers11111795. [PMID: 31731581 PMCID: PMC6896023 DOI: 10.3390/cancers11111795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique malignancy derived from the epithelium of the nasopharynx. Despite great advances in the development of radiotherapy and chemotherapy, relapse and metastasis in NPC patients remain major causes of mortality. Evidence accumulated over recent years indicates that Epstein-Barr virus (EBV) lytic replication plays an important role in the pathogenesis of NPC and inhibition of EBV reactivation is now being considered as a goal for the therapy of EBV-associated cancers. With this in mind, a panel of dietary compounds was screened and emodin was found to have potential anti-EBV activity. Through Western blotting, immunofluorescence, and flow cytometric analysis, we show that emodin inhibits the expression of EBV lytic proteins and blocks virion production in EBV- positive epithelial cell lines. In investigating the underlying mechanism, reporter assays indicated that emodin represses Zta promoter (Zp) and Rta promoter (Rp) activities, triggered by various inducers. Mapping of the Zp construct reveals that the SP1 binding region is important for emodin-triggered repression and emodin is shown to be able to inhibit SP1 expression, suggesting that it likely inhibits EBV reactivation by suppression of SP1 expression. Moreover, we also show that emodin inhibits the tumorigenic properties induced by repeated EBV reactivation, including micronucleus formation, cell proliferation, migration, and matrigel invasiveness. Emodin administration also represses the tumor growth in mice which is induced by EBV activation. Taken together, our results provide a potential chemopreventive agent in restricting EBV reactivation and NPC recurrence.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 350, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.); Tel.: +886-37-206166 (ext. 31718) (C.-C.W.); +886-37-206166 (ext. 35123) (J.-Y.C.)
| | - Mei-Shu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 350, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
| | - Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 350, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.); Tel.: +886-37-206166 (ext. 31718) (C.-C.W.); +886-37-206166 (ext. 35123) (J.-Y.C.)
| |
Collapse
|
15
|
Chung AK, OuYang CN, Liu H, Chao M, Luo JD, Lee CY, Lu YJ, Chung IC, Chen LC, Wu SM, Tsang NM, Chang KP, Hsu CL, Li HP, Chang YS. Targeted sequencing of cancer-related genes in nasopharyngeal carcinoma identifies mutations in the TGF-β pathway. Cancer Med 2019; 8:5116-5127. [PMID: 31328403 PMCID: PMC6718742 DOI: 10.1002/cam4.2429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Approximately, 25% of nasopharyngeal carcinoma (NPC) patients develop recurrent disease. NPC may involve relatively few genomic alterations compared to other cancers due to its association with Epstein‐Barr virus (EBV). We envisioned that in‐depth sequencing of tumor tissues might provide new insights into the genetic alterations of this cancer. Thirty‐three NPC paired tumor/adjacent normal or peripheral blood mononuclear cell samples were deep‐sequenced (>1000×) with respect to a panel of 409 cancer‐related genes. Newly identified mutations and its correlation with clinical outcomes were evaluated. Profiling of somatic mutations and copy number variations (CNV) in NPC tumors identified alterations in RTK/RAS/PI3K, NOTCH, DNA repair, chromatin remodeling, cell cycle, NF‐κB, and TGF‐β pathways. In addition, patients harbored CNV among 409 cancer‐related genes and missense mutations in TGF‐β/SMAD signaling were associated with poor overall survival and poor recurrence‐free survival, respectively. The CNV events were correlated with plasma EBV copies, while mutations in TGFBR2 and SMAD4 abrogate SMAD‐dependent TGF‐β signaling. Functional analysis revealed that the new TGFBR2 kinase domain mutants were incapable of transducing the signal, leading to failure of phosphorylation of SMAD2/3 and activation of downstream TGF‐β‐mediated cell growth arrest. This study provides evidence supporting CNV and dysregulated TGF‐β signaling contributes to exacerbating the NPC pathogenesis.
Collapse
Affiliation(s)
- An-Ko Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Biochemistry, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, Republic of China
| | - Mei Chao
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, Republic of China
| | - Ji-Dung Luo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Bioinformatics Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Cheng-Yang Lee
- Research Information Session, Office of Information Technology, Taipei Medical University, Taipei City, Taiwan, Republic of China
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., Taipei City, Taiwan, Republic of China
| | - I-Che Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Shao-Min Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Ngan-Ming Tsang
- Department of Radiation, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Hsin-Pai Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| |
Collapse
|
16
|
Abstract
Infections by DNA viruses including, Epstein–Barr virus (EBV), typically induce cellular DNA damage responses (DDR), in particular double-stranded break signaling. To avoid apoptosis associated with constitutive DDR signaling, downstream steps of this pathway must be inactivated. EBV has developed multiple ways of disabling the DDR using several different viral proteins expressed at various stages of EBV infection. Here the interplay between EBV and host DDRs is discussed at each stage of EBV infection, along with the EBV proteins and miRNAs that are known to interfere with DDR signaling. The newly discovered APOBEC editing of EBV DNA and protection from this mutation is also discussed.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Wu CC, Fang CY, Huang SY, Chiu SH, Lee CH, Chen JY. Perspective: Contribution of Epstein-Barr virus (EBV) Reactivation to the Carcinogenicity of Nasopharyngeal Cancer Cells. Cancers (Basel) 2018; 10:cancers10040120. [PMID: 29673164 PMCID: PMC5923375 DOI: 10.3390/cancers10040120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma derived from the epithelium of the post-nasal cavity, with a unique geographic and ethnic distribution. Epstein–Barr virus (EBV) is an etiological agent of NPC, but how it contributes to carcinogenesis is not completely clear. Although it is thought that EBV latency participates in the development of NPC, increasing evidence reveals that the lytic cycle also plays an important role in the carcinogenic process. In this review, we summarize our recent studies on how EBV reactivation causes genomic instability and accelerates tumorigenesis in epithelial cells. The roles of three lytic genes, namely, BRLF1, BGLF5 and BALF3, in this process are also introduced. Moreover, blocking EBV reactivation using natural compounds may help delay the progression of NPC tumorigenesis. These studies provide a new insight into NPC carcinogenesis and raise the possibility that inhibition of EBV reactivation may be a novel approach to prevent the relapse of NPC.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Chih-Yeu Fang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Shih-Hsin Chiu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|