1
|
Peron G, Mastinu A, Peña-Corona SI, Hernández-Parra H, Leyva-Gómez G, Calina D, Sharifi-Rad J. Silvestrol, a potent anticancer agent with unfavourable pharmacokinetics: Current knowledge on its pharmacological properties and future directions for the development of novel drugs. Biomed Pharmacother 2024; 177:117047. [PMID: 38959604 DOI: 10.1016/j.biopha.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer remains a leading cause of death, with increasing incidence. Conventional treatments offer limited efficacy and cause significant side effects, hence novel drugs with improved pharmacological properties and safety are required. Silvestrol (SLV) is a flavagline derived from some plants of the Aglaia genus that has shown potent anticancer effects, warranting further study. Despite its efficacy in inhibiting the growth of several types of cancer cells, SLV is characterized by an unfavorable pharmacokinetics that hamper its use as a drug. A consistent research over the recent years has led to develop novel SLV derivatives with comparable pharmacodynamics and an ameliorated pharmacokinetic profile, demonstrating potential applications in the clinical management of cancer. This comprehensive review aims to highlight the most recent data available on SLV and its synthetic derivatives, addressing their pharmacological profile and therapeutic potential in cancer treatment. A systematic literature review of both in vitro and in vivo studies focusing on anticancer effects, pharmacodynamics, and pharmacokinetics of these compounds is presented. Overall, literature data highlight that rationale chemical modifications of SLV are critical for the development of novel drugs with high efficacy on a broad variety of cancers and improved bioavailability in vivo. Nevertheless, SLV analogues need to be further studied to better understand their mechanisms of action, which can be partially different to SLV. Furthermore, clinical research is still required to assess their efficacy in humans and their safety.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Centro de Estudios Tenológicos y Universitarios del Golfo, Veracruz, Mexico.
| |
Collapse
|
2
|
Klapp V, Gumustekin O, Paggetti J, Moussay E, Largeot A. Assessment of translation rate in leukemic cells and immune cells of the microenvironment by OPP protein synthesis assay. Methods Cell Biol 2024; 189:1-21. [PMID: 39393878 DOI: 10.1016/bs.mcb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Despite being tightly regulated, messenger RNA (mRNA) translation, a manner in which cells control expression of genes and rapidly respond to stimuli, is highly dysfunctional and plastic in pathologies including cancer. Conversely, the investigation of molecular mechanisms whereby mRNA translation becomes aberrant in cancer, as well as inhibition thereof, become critical in developing novel therapeutic approaches. More specifically, in malignancies such as chronic lymphocytic leukemia in which aberrant global and transcript specific translation has been linked with poorer patient outcomes, targeting translation is a relevant approach, with various translation inhibitors under development. Here we elaborate on a protein synthesis assay by flow cytometry, O-propargyl-puromycin, demonstrating global mRNA translation rate with a variety of different applications including cell lines, primary cells or co-culture systems in vitro. This method provides a comprehensive tool in quantifying the rate of global mRNA translation in cancer cells, as well as that of the tumor microenvironment cells, or in response to inhibitory therapeutic agents while offering the possibility to simultaneously assess other cellular markers.
Collapse
Affiliation(s)
- Vanessa Klapp
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ozgu Gumustekin
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jerome Paggetti
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anne Largeot
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
3
|
Lv M, Ding Y, Zhang Y, Liu S. Targeting EBV-encoded products: Implications for drug development in EBV-associated diseases. Rev Med Virol 2024; 34:e2487. [PMID: 37905912 DOI: 10.1002/rmv.2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus, a human gamma-herpesvirus, has a close connection to the pathogenesis of cancers and other diseases, which are a burden for public health worldwide. So far, several drugs or biomolecules have been discovered that can target EBV-encoded products for treatment, such as Silvestrol, affinity toxin, roscovitine, H20, H31, curcumin, thymoquinone, and ribosomal protein L22. These drugs activate or inhibit the function of some biomolecules, affecting subsequent signalling pathways by acting on the products of EBV. These drugs usually target LMP1, LMP2; EBNA1, EBNA2, EBNA3; EBER1, EBER2; Bam-HI A rightward transcript and BHRF1. Additionally, some promising findings in the fields of vaccines, immunological, and cellular therapies have been established. In this review, we mainly summarise the function of drugs mentioned above and unique mechanisms, hoping that we can help giving insight to the design of drugs for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Mengwen Lv
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Rocaglates as Antivirals: Comparing the Effects on Viral Resistance, Anti-Coronaviral Activity, RNA-Clamping on eIF4A and Immune Cell Toxicity. Viruses 2022; 14:v14030519. [PMID: 35336926 PMCID: PMC8950828 DOI: 10.3390/v14030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5′-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like zotatifin or CR-1-31-B have been developed. Here, we compared the effects of rocaglates on viral 5′-UTR-mediated reporter gene expression and binding to an eIF4A-polypurine complex. Furthermore, we analyzed the cytotoxicity of rocaglates on several human immune cells and compared their antiviral activities in coronavirus-infected cells. Finally, the potential for developing viral resistance was evaluated by passaging human coronavirus 229E (HCoV-229E) in the presence of increasing concentrations of rocaglates in MRC-5 cells. Importantly, no decrease in rocaglate-sensitivity was observed, suggesting that virus escape mutants are unlikely to emerge if the host factor eIF4A is targeted. In summary, all three rocaglates are promising antivirals with differences in cytotoxicity against human immune cells, RNA-clamping efficiency, and antiviral activity. In detail, zotatifin showed reduced RNA-clamping efficiency and antiviral activity compared to silvestrol and CR-1-31-B, but was less cytotoxic for immune cells. Our results underline the potential of rocaglates as broad-spectrum antivirals with no indications for the emergence of escape mutations in HCoV-229E.
Collapse
|
5
|
Greger H. Comparative phytochemistry of flavaglines (= rocaglamides), a group of highly bioactive flavolignans from Aglaia species (Meliaceae). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:725-764. [PMID: 34104125 PMCID: PMC8176878 DOI: 10.1007/s11101-021-09761-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 05/07/2023]
Abstract
Flavaglines are formed by cycloaddition of a flavonoid nucleus with a cinnamic acid moiety representing a typical chemical character of the genus Aglaia of the family Meliaceae. Based on biosynthetic considerations 148 derivatives are grouped together into three skeletal types representing 77 cyclopenta[b]benzofurans, 61 cyclopenta[bc]benzopyrans, and 10 benzo[b]oxepines. Apart from different hydroxy, methoxy, and methylenedioxy groups of the aromatic rings, important structural variation is created by different substitutions and stereochemistries of the central cyclopentane ring. Putrescine-derived bisamides constitute important building blocks occurring as cyclic 2-aminopyrrolidines or in an open-chained form, and are involved in the formation of pyrimidinone flavaglines. Regarding the central role of cinnamic acid in the formation of the basic skeleton, rocagloic acid represents a biosynthetic precursor from which aglafoline- and rocaglamide-type cyclopentabenzofurans can be derived, while those of the rocaglaol-type are the result of decarboxylation. Broad-based comparison revealed characteristic substitution trends which contribute as chemical markers to natural delimitation and grouping of taxonomically problematic Aglaia species. A wide variety of biological activities ranges from insecticidal, antifungal, antiprotozoal, and anti-inflammatory properties, especially to pronounced anticancer and antiviral activities. The high insecticidal activity of flavaglines is comparable with that of the well-known natural insecticide azadirachtin. Comparative feeding experiments informed about structure-activity relationships and exhibited different substitutions of the cyclopentane ring essential for insecticidal activity. Parallel studies on the antiproliferative activity of flavaglines in various tumor cell lines revealed similar structural prerequisites that let expect corresponding molecular mechanisms. An important structural modification with very high cytotoxic potency was found in the benzofuran silvestrol characterized by an unusual dioxanyloxy subunit. It possessed comparable cytotoxicity to that of the natural anticancer compounds paclitaxel (Taxol®) and camptothecin without effecting normal cells. The primary effect was the inhibition of protein synthesis by binding to the translation initiation factor eIF4A, an ATP-dependent DEAD-box RNA helicase. Flavaglines were also shown to bind to prohibitins (PHB) responsible for regulation of important signaling pathways, and to inhibit the transcriptional factor HSF1 deeply involved in metabolic programming, survival, and proliferation of cancer cells. Flavaglines were shown to be not only promising anticancer agents but gained now also high expectations as agents against emerging RNA viruses like SARS-CoV-2. Targeting the helicase eIF4A with flavaglines was recently described as pan-viral strategy for minimizing the impact of future RNA virus pandemics.
Collapse
Affiliation(s)
- Harald Greger
- Chemodiversity Research Group, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030 Wien, Austria
| |
Collapse
|
6
|
The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo. Antiviral Res 2021; 186:105012. [PMID: 33422611 PMCID: PMC7791309 DOI: 10.1016/j.antiviral.2021.105012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, a severe respiratory disease with varying clinical presentations and outcomes, and responsible for a major pandemic that started in early 2020. With no vaccines or effective antiviral treatments available, the quest for novel therapeutic solutions remains an urgent priority. Rocaglates, a class of plant-derived cyclopenta[b]benzofurans, exhibit broad-spectrum antiviral activity against multiple RNA viruses including coronaviruses. Specifically, rocaglates inhibit eukaryotic initiation factor 4A (eIF4A)-dependent mRNA translation initiation, resulting in strongly reduced viral RNA translation. Here, we assessed the antiviral activity of the synthetic rocaglate CR-31-B (-) against SARS-CoV-2 using both in vitro and ex vivo cell culture models. In Vero E6 cells, CR-31-B (-) inhibited SARS-CoV-2 replication with an EC50 of ~1.8 nM. In primary human airway epithelial cells, CR-31-B (-) reduced viral titers to undetectable levels at a concentration of 100 nM. Reduced virus reproduction was accompanied by substantially reduced viral protein accumulation and replication/transcription complex formation. The data reveal a potent anti-SARS-CoV-2 activity by CR-31-B (-), corroborating previous results obtained for other coronaviruses and supporting the idea that rocaglates may be used in first-line antiviral intervention strategies against novel and emerging RNA virus outbreaks.
Collapse
|
7
|
Fasnall Induces Atypically Transient Stress Granules Independently of FASN Inhibition. iScience 2020; 23:101550. [PMID: 33083719 PMCID: PMC7516299 DOI: 10.1016/j.isci.2020.101550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Stress Granule formation has been linked to the resistance of some cancer cells to chemotherapeutic intervention. A number of studies have proposed that certain anti-tumor compounds promote cancer cell survival by inducing Stress Granule formation, leading to increased cellular fitness and apoptosis avoidance. Here we show that a potent fatty acid synthase inhibitor, fasnall, known for its anti-tumor capabilities, triggers the formation of atypical Stress Granules, independently of fatty acid synthase inhibition, characterized by high internal mobility and rapid turnover.
Collapse
|
8
|
Blum L, Geisslinger G, Parnham MJ, Grünweller A, Schiffmann S. Natural antiviral compound silvestrol modulates human monocyte-derived macrophages and dendritic cells. J Cell Mol Med 2020; 24:6988-6999. [PMID: 32374474 PMCID: PMC7267175 DOI: 10.1111/jcmm.15360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023] Open
Abstract
Outbreaks of infections with viruses like Sars‐CoV‐2, Ebola virus and Zika virus lead to major global health and economic problems because of limited treatment options. Therefore, new antiviral drug candidates are urgently needed. The promising new antiviral drug candidate silvestrol effectively inhibited replication of Corona‐, Ebola‐, Zika‐, Picorna‐, Hepatis E and Chikungunya viruses. Besides a direct impact on pathogens, modulation of the host immune system provides an additional facet to antiviral drug development because suitable immune modulation can boost innate defence mechanisms against the pathogens. In the present study, silvestrol down‐regulated several pro‐ and anti‐inflammatory cytokines (IL‐6, IL‐8, IL‐10, CCL2, CCL18) and increased TNF‐α during differentiation and activation of M1‐macrophages, suggesting that the effects of silvestrol might cancel each other out. However, silvestrol amplified the anti‐inflammatory potential of M2‐macrophages by increasing expression of anti‐inflammatory surface markers CD206, TREM2 and reducing release of pro‐inflammatory IL‐8 and CCL2. The differentiation of dendritic cells in the presence of silvestrol is characterized by down‐regulation of several surface markers and cytokines indicating that differentiation is impaired by silvestrol. In conclusion, silvestrol influences the inflammatory status of immune cells depending on the cell type and activation status.
Collapse
Affiliation(s)
- Leonard Blum
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany.,Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Michael J Parnham
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Susanne Schiffmann
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Henss L, Scholz T, Grünweller A, Schnierle BS. Silvestrol Inhibits Chikungunya Virus Replication. Viruses 2018; 10:v10110592. [PMID: 30380742 PMCID: PMC6266838 DOI: 10.3390/v10110592] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
Silvestrol, a natural compound that is isolated from plants of the genus Aglaia, is a specific inhibitor of the RNA helicase eIF4A, which unwinds RNA secondary structures in 5′-untranslated regions (UTRs) of mRNAs and allows translation. Silvestrol has a broad antiviral activity against multiple RNA virus families. Here, we show that silvestrol inhibits the replication of chikungunya virus (CHIKV), a positive single-stranded RNA virus. Silvestrol delayed the protein synthesis of non-structural (nsPs) and structural proteins, resulting in a delayed innate response to CHIKV infection. Interferon-α induced STAT1 phosphorylation was not inhibited nor did eIF2α become phosphorylated 16 h post infection in the presence of silvestrol. In addition, the host protein shut-off induced by CHIKV infection was decreased in silvestrol-treated cells. Silvestrol acts by limiting the amount of nsPs, and thereby reducing CHIKV RNA replication. From our results, we propose that inhibition of the host helicase eIF4A might have potential as a therapeutic strategy to treat CHIKV infections.
Collapse
Affiliation(s)
- Lisa Henss
- Paul-Ehrlich-Institut, Department of Virology, 63225 Langen, Germany.
| | - Tatjana Scholz
- Paul-Ehrlich-Institut, Department of Virology, 63225 Langen, Germany.
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.
| | | |
Collapse
|
10
|
Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med 2018; 24:1877-1886. [PMID: 30374200 DOI: 10.1038/s41591-018-0217-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023]
Abstract
Preventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood. Here, we show that the eukaryotic translation initiation complex, eIF4F, which binds the 5' cap of mRNAs, regulates the surface expression of interferon-γ-induced PD-L1 on cancer cells by regulating translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor. eIF4F complex formation correlates with response to immunotherapy in human melanoma. Pharmacological inhibition of eIF4A, the RNA helicase component of eIF4F, elicits powerful antitumor immune-mediated effects via PD-L1 downregulation. Thus, eIF4A inhibitors, in development as anticancer drugs, may also act as cancer immunotherapies.
Collapse
|
11
|
Nguyen TM, Kabotyanski EB, Dou Y, Reineke LC, Zhang P, Zhang XHF, Malovannaya A, Jung SY, Mo Q, Roarty KP, Chen Y, Zhang B, Neilson JR, Lloyd RE, Perou CM, Ellis MJ, Rosen JM. FGFR1-Activated Translation of WNT Pathway Components with Structured 5' UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation. Cancer Res 2018; 78:4229-4240. [PMID: 29844125 PMCID: PMC6072612 DOI: 10.1158/0008-5472.can-18-0631] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/26/2018] [Accepted: 05/23/2018] [Indexed: 11/16/2022]
Abstract
Cooperativity between WNT and FGF signaling is well documented in embryonic development and cancer progression, but the molecular mechanisms underlying this cross-talk remain elusive. In this study, we interrogated the dynamics of RNA levels, ribosome occupancy, and protein expression as a function of inducible FGF signaling in mouse mammary glands with constitutive WNT hyperactivation. Multiomics correlation analysis revealed a substantial discrepancy between RNA and ribosome occupancy levels versus protein levels. However, this discrepancy decreased as cells became premalignant and dynamically responded to FGF signaling, implicating the importance of stringent gene regulation in nontransformed cells. Analysis of individual genes demonstrated that acute FGF hyperactivation increased translation of many stem cell self-renewal regulators, including WNT signaling components, and decreased translation of genes regulating cellular senescence. WNT pathway components translationally upregulated by FGF signaling had long and structured 5' UTRs with a high frequency of polypurine sequences, several of which harbored (CGG)4 motifs that can fold into either stable G-quadruplexes or other stable secondary structures. The FGF-mediated increase in translation of WNT pathway components was compromised by silvestrol, an inhibitor of EIF4A that clamps EIF4A to polypurine sequences to block 43S scanning and inhibits its RNA-unwinding activity important for translation initiation. Moreover, silvestrol treatment significantly delayed FGF-WNT-driven tumorigenesis. Taken together, these results suggest that FGF signaling selectively enhances translation of structured mRNAs, particularly WNT signaling components, and highlight their vulnerability to inhibitors that target the RNA helicase EIF4A.Significance: The RNA helicase EIF4A may serve as a therapeutic target for breast cancers that require FGF and WNT signaling. Cancer Res; 78(15); 4229-40. ©2018 AACR.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Elena B Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Anna Malovannaya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Houston, Texas
| | - Sung Yun Jung
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Qianxing Mo
- Dan L Duncan Comprehensive Cancer Center, Houston, Texas
| | - Kevin P Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew J Ellis
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Houston, Texas
| | - Jeffrey M Rosen
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Burkholderia Lethal Factor 1, a Novel Anti-Cancer Toxin, Demonstrates Selective Cytotoxicity in MYCN-Amplified Neuroblastoma Cells. Toxins (Basel) 2018; 10:toxins10070261. [PMID: 29954071 PMCID: PMC6071135 DOI: 10.3390/toxins10070261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Immunotoxins are being investigated as anti-cancer therapies and consist of a cytotoxic enzyme fused to a cancer targeting antibody. All currently used toxins function via the inhibition of protein synthesis, making them highly potent in both healthy and transformed cells. This non-specific cell killing mechanism causes dose-limiting side effects that can severely limit the potential of immunotoxin therapy. In this study, the recently characterised bacterial toxin Burkholderia lethal factor 1 (BLF1) is investigated as a possible alternative payload for targeted toxin therapy in the treatment of neuroblastoma. BLF1 inhibits translation initiation by inactivation of eukaryotic initiation translation factor 4A (eIF4A), a putative anti-cancer target that has been shown to regulate a number of oncogenic proteins at the translational level. We show that cellular delivery of BLF1 selectively induces apoptosis in neuroblastoma cells that display MYCN amplification but has little effect on non-transformed cells. Future immunotoxins based on this enzyme may therefore have higher specificity towards MYCN-amplified cancer cells than more conventional ribosome-inactivating proteins, leading to an increased therapeutic window and decreased side effects.
Collapse
|
13
|
Hu L, Liu Y, Wang Y, Wang Z, Huang J, Xue Y, Liu J, Liu Z, Chen Y, Zhang Y. Discovery of acylphloroglucinol-based meroterpenoid enantiomers as KSHV inhibitors from Hypericum japonicum. RSC Adv 2018; 8:24101-24109. [PMID: 35539193 PMCID: PMC9081833 DOI: 10.1039/c8ra04073g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/26/2018] [Indexed: 11/28/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) has gained considerable attention as a type of carcinogenic pathogen. Recent research suggests that KSHV has participated in the pathogenesis of Kaposi's sarcoma-related malignant neoplastic diseases. Viral lytic infection might be pivotal for the etiopathogenesis of KSHV-induced diseases; however, most clinical KSHV lytic replication inhibitors like ganciclovir, nelfinavir, or cidofovir do not restrain virus replication effectively enough to achieve clinical efficacy. In our continued pharmaceutical studies on Chinese herbal medicines, new acylphloroglucinol-based meroterpenoid enantiomers have been discovered from Hypericum japonicum. Most of these metabolites have potential inhibitory activities that target KSHV lytic replication. Amongst these analogues, compounds 1a and 1b possess an unreported ring system cyclopenta[b]chromene. Compounds 1a with 4a exhibit stronger inhibitory activities towards the lytic replication of KSHV in Vero cells. In addition, 1a and 4a have IC50 values of 8.30 and 4.90 μM and selectivity indexes of 23.49 and 25.70, respectively. Qualitative and quantitative SAR and molecular docking studies for acylphloroglucinol-based meroterpenoids with regard to anti-KSHV activity were conducted. An explanation for the variation in the activity and selectivity indexes was proposed in accordance with the predicted binding pose found with molecular docking to a putative target, thymidylate synthase (kTS). Compounds 1a and 4a have potential for further development and optimization of their anti-KSHV activities which could lead to new candidate drugs. New enantiomers (1a/1b–4a/4b) were discovered from Hypericum japonicum. 1a/1b possessed a novel ring system cyclopenta[b]chromene. 1a and 4a exhibited promising anti-KSHV activities. QSAR studies for enantiomers on anti-KSHV activity were conducted.![]()
Collapse
|
14
|
Henkin JM, Ren Y, Soejarto DD, Kinghorn AD. The Search for Anticancer Agents from Tropical Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2018; 107:1-94. [PMID: 30178270 DOI: 10.1007/978-3-319-93506-5_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many of the clinically used anticancer agents in Western medicine are derived from secondary metabolites found in terrestrial microbes, marine organisms, and higher plants, with additional compounds of this type being currently in clinical trials. If plants are taken specifically, it is generally agreed that the prospects of encountering enhanced small organic-molecule chemical diversity are better if tropical rather than temperate species are investigated in drug discovery efforts. Plant collection in tropical source countries requires considerable preparation and organization to conduct in a responsible manner that abides by the provisions of the 1992 Rio Convention of Biological Diversity and the 2010 Nagoya Protocol on Access to Genetic Resources. Correct taxonomic identifications and enhanced procedures for processing and documenting plant samples when collected in often difficult terrain are required. Phytochemical aspects of the work involve solvent fractionation, known compound dereplication, preliminary in vitro testing, and prioritization, leading to "activity-guided fractionation", compound structure determination, and analog development. Further evaluation of lead compounds requires solubility, formulation, preliminary pharmacokinetics, and in vivo testing in suitable models. Covering the work of the authors carried out in two sequential multidisciplinary, multi-institutional research projects, examples of very promising compounds discovered from plants acquired from Africa, Southeast Asia, the Americas, and the Caribbean region, and with potential anticancer activity will be mentioned. These include plant secondary metabolites of the diphyllin lignan, cyclopenta[b]benzofuran, triterpenoid, and tropane alkaloid types.
Collapse
Affiliation(s)
- Joshua M Henkin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yulin Ren
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Djaja Djendoel Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - A Douglas Kinghorn
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, Ziebuhr J, Hartmann RK, Grünweller A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res 2017; 150:123-129. [PMID: 29258862 PMCID: PMC7113723 DOI: 10.1016/j.antiviral.2017.12.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Coronaviruses (CoV) and picornaviruses are plus-strand RNA viruses that use 5′ cap-dependent and cap-independent strategies, respectively, for viral mRNA translation initiation. Here, we analyzed the effects of the plant compound silvestrol, a specific inhibitor of the DEAD-box RNA helicase eIF4A, on viral translation using a dual luciferase assay and virus-infected primary cells. Silvestrol was recently shown to have potent antiviral activity in Ebola virus-infected human macrophages. We found that silvestrol is also a potent inhibitor of cap-dependent viral mRNA translation in CoV-infected human embryonic lung fibroblast (MRC-5) cells. EC50 values of 1.3 nM and 3 nM silvestrol were determined for MERS-CoV and HCoV-229E, respectively. For the highly pathogenic MERS-CoV, the potent antiviral activities of silvestrol were also confirmed using peripheral blood mononuclear cells (PBMCs) as a second type of human primary cells. Silvestrol strongly inhibits the expression of CoV structural and nonstructural proteins (N, nsp8) and the formation of viral replication/transcription complexes. Furthermore, potential antiviral effects against human rhinovirus (HRV) A1 and poliovirus type 1 (PV), representing different species in the genus Enterovirus (family Picornaviridae), were investigated. The two viruses employ an internal ribosomal entry site (IRES)-mediated translation initiation mechanism. For PV, which is known to require the activity of eIF4A, an EC50 value of 20 nM silvestrol was determined in MRC-5 cells. The higher EC50 value of 100 nM measured for HRV A1 indicates a less critical role of eIF4A activity in HRV A1 IRES-mediated translation initiation. Taken together, the data reveal a broad-spectrum antiviral activity of silvestrol in infected primary cells by inhibiting eIF4A-dependent viral mRNA translation. The eIF4A inhibitor silvestrol is a potent antiviral compound that inhibits the replication of coronaviruses. Silvestrol is also effective against picornaviruses with an eIF4A-dependent Type 1 IRES element. In primary cells silvestrol has potent antiviral activity and low toxicity. Targeting the host factor eIF4A is a promising broad-spectrum antiviral strategy.
Collapse
Affiliation(s)
- Christin Müller
- Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392 Gießen, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the partner site Gießen-Marburg-Langen, Germany
| | - Falk W Schulte
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Kerstin Lange-Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Wiebke Obermann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Ramakanth Madhugiri
- Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392 Gießen, Germany
| | - Stephan Pleschka
- Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392 Gießen, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the partner site Gießen-Marburg-Langen, Germany
| | - John Ziebuhr
- Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392 Gießen, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the partner site Gießen-Marburg-Langen, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany.
| |
Collapse
|
16
|
Abstract
Efficient viral gene expression is threatened by cellular stress response programmes that rapidly reprioritize the translation machinery in response to varied environmental assaults, including virus infection. This results in inhibition of bulk synthesis of housekeeping proteins and causes the aggregation of messenger ribonucleoprotein complexes into cytoplasmic foci that are known as stress granules, which can entrap viral mRNAs. There is accumulating evidence for the antiviral nature of stress granules, which is supported by the discovery of many viral factors that interfere with stress granule formation and/or function. This Review focuses on recent advances in our understanding of the role of translation inhibition and stress granules in antiviral immune responses.
Collapse
|
17
|
Li X, Li M, Ruan H, Qiu W, Xu X, Zhang L, Yu J. Co-targeting translation and proteasome rapidly kills colon cancer cells with mutant RAS/RAF via ER stress. Oncotarget 2017; 8:9280-9292. [PMID: 28030835 PMCID: PMC5354731 DOI: 10.18632/oncotarget.14063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancers with mutant RAS/RAF are therapy refractory. Deregulated mRNA translation has become an emerging target in cancer treatment. We recently reported that mTOR inhibitors induce apoptosis via ER stress and the extrinsic pathway upon acute inhibition of the eIF4F complex in colon cancer cells and xenografts, while mutant BRAF600E leads to therapeutic resistance via ERK-mediated Mcl-1 stabilization. In this study, we demonstrated that several other translation inhibitors also activate ER stress and the extrinsic apoptotic pathway. Co-targeting translation and proteasome using the combination of Episilvestrol and Bortezomib promoted strong ER stress and rapid killing of colon cancer cells with mutant RAS/RAF in culture and mice. This combination led to marked induction of ER stress and ATF4/CHOP, followed by DR5- and BAX-dependent apoptosis, but unexpectedly with maintained or even increased levels of prosurvival factors such as p-AKT, p-4E-BP1, Mcl-1, and eiF4E targets c-Myc and Bcl-xL. Our study supports that targeting deregulated proteostasis is a promising approach for treating advanced colon cancer via induction of destructive ER stress that overcomes multiple resistance mechanisms associated with translation inhibition.
Collapse
Affiliation(s)
- Xiangyun Li
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Daping, Yu Zhong District, Chongqing 400042, P.R. China
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Mei Li
- Department of Animal Genetics, Breeding and Reproduction, Nanjing Agricultural University, Weigang, Nanjing 210095, P.R. China
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Hang Ruan
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Wei Qiu
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Daping, Yu Zhong District, Chongqing 400042, P.R. China
| | - Xiang Xu
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Daping, Yu Zhong District, Chongqing 400042, P.R. China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Kinghorn AD, DE Blanco EJC, Lucas DM, Rakotondraibe HL, Orjala J, Soejarto DD, Oberlies NH, Pearce CJ, Wani MC, Stockwell BR, Burdette JE, Swanson SM, Fuchs JR, Phelps MA, Xu L, Zhang X, Shen YY. Discovery of Anticancer Agents of Diverse Natural Origin. Anticancer Res 2017; 36:5623-5637. [PMID: 27793884 DOI: 10.21873/anticanres.11146] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023]
Abstract
Recent progress is described in an ongoing collaborative multidisciplinary research project directed towards the purification, structural characterization, chemical modification, and biological evaluation of new potential natural product anticancer agents obtained from a diverse group of organisms, comprising tropical plants, aquatic and terrestrial cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which initial extracts, chromatographic fractions, and purified isolated compounds of these acquisitions are tested. Several promising biologically active lead compounds from each major organism class investigated are described, and these may be seen to be representative of a very wide chemical diversity.
Collapse
Affiliation(s)
- A Douglas Kinghorn
- College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| | | | - David M Lucas
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A.,College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - D Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A.,Field Museum of Natural History, Chicago, IL, U.S.A
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, U.S.A
| | | | - Mansukh C Wani
- Research Triangle Institute, Research Triangle Park, NC, U.S.A
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, U.S.A.,Department of Chemistry, Columbia University, New York, NY, U.S.A
| | - Joanna E Burdette
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - Steven M Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - James R Fuchs
- College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Mitchell A Phelps
- College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| | - Lihui Xu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| | - Xiaoli Zhang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A.,College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | |
Collapse
|
19
|
Biedenkopf N, Lange-Grünweller K, Schulte FW, Weißer A, Müller C, Becker D, Becker S, Hartmann RK, Grünweller A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Res 2016; 137:76-81. [PMID: 27864075 DOI: 10.1016/j.antiviral.2016.11.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
The DEAD-box RNA helicase eIF4A, which is part of the heterotrimeric translation initiation complex in eukaryotes, is an important novel drug target in cancer research because its helicase activity is required to unwind extended and highly structured 5'-UTRs of several proto-oncogenes. Silvestrol, a natural compound isolated from the plant Aglaia foveolata, is a highly efficient, non-toxic and specific inhibitor of eIF4A. Importantly, 5'-capped viral mRNAs often contain structured 5'-UTRs as well, which may suggest a dependence on eIF4A for their translation by the host protein synthesis machinery. In view of the recent Ebola virus (EBOV) outbreak in West Africa, the identification of potent antiviral compounds is urgently required. Since Ebola mRNAs are 5'-capped and harbor RNA secondary structures in their extended 5'-UTRs, we initiated a BSL4 study to analyze silvestrol in EBOV-infected Huh-7 cells and in primary human macrophages for its antiviral activity. We observed that silvestrol inhibits EBOV infection at low nanomolar concentrations, as inferred from large reductions of viral titers. This correlated with an almost complete disappearance of EBOV proteins, comparable in effect to the translational shutdown of expression of the proto-oncoprotein PIM1, a cellular kinase known to be affected by silvestrol. Effective silvestrol concentrations were non-toxic in the tested cell systems. Thus, silvestrol appears to be a promising first-line drug for the treatment of acute EBOV and possibly other viral infections.
Collapse
Affiliation(s)
- Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Kerstin Lange-Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Falk W Schulte
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Aileen Weißer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Christin Müller
- Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Dirk Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany.
| |
Collapse
|
20
|
The Epstein-Barr Virus (EBV) in T Cell and NK Cell Lymphomas: Time for a Reassessment. Curr Hematol Malig Rep 2016; 10:456-67. [PMID: 26449716 DOI: 10.1007/s11899-015-0292-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While Epstein-Barr virus (EBV) was initially discovered and characterized as an oncogenic virus in B cell neoplasms, it also plays a complex and multifaceted role in T/NK cell lymphomas. In B cell lymphomas, EBV-encoded proteins have been shown to directly promote immortalization and proliferation through stimulation of the NF-κB pathway and increased expression of anti-apoptotic genes. In the context of mature T/NK lymphomas (MTNKL), with the possible exception on extranodal NK/T cell lymphoma (ENKTL), the virus likely plays a more diverse and nuanced role. EBV has been shown to shape the tumor microenvironment by promoting Th2-skewed T cell responses and by increasing the expression of the immune checkpoint ligand PD-L1. The type of cell infected, the amount of plasma EBV DNA, and the degree of viral lytic replication have all been proposed to have prognostic value in T/NK cell lymphomas. Latency patterns of EBV infection have been defined using EBV-infected B cell models and have not been definitively established in T/NK cell lymphomas. Identifying the expression profile of EBV lytic proteins could allow for individualized therapy with the use of antiviral medications. More work needs to be done to determine whether EBV-associated MTNKL have distinct biological and clinical features, which can be leveraged for risk stratification, disease monitoring, and therapeutic purposes.
Collapse
|
21
|
Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, Kinghorn AD, Yeo TC. Cyclopenta[b]benzofuran and Secodammarane Derivatives from the Stems of Aglaia stellatopilosa. JOURNAL OF NATURAL PRODUCTS 2016; 79:784-91. [PMID: 26974604 PMCID: PMC4841703 DOI: 10.1021/acs.jnatprod.5b00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
Collapse
Affiliation(s)
- Nuraqilah Othman
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| | - Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michele Mejin
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| | - Julian C.L. Voong
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| | - Hee-byung Chai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Caroline M. Pannell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiong C. Yeo
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| |
Collapse
|
22
|
Daker M, Yeo JT, Bakar N, Abdul Rahman ASAA, Ahmad M, Yeo TC, Khoo ASB. Inhibition of nasopharyngeal carcinoma cell proliferation and synergism of cisplatin with silvestrol and episilvestrol isolated from Aglaia stellatopilosa. Exp Ther Med 2016; 11:2117-2126. [PMID: 27284293 PMCID: PMC4887938 DOI: 10.3892/etm.2016.3201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of tumour that arises from the epithelial cells that line the surface of the nasopharynx. NPC is treated with radiotherapy and cytotoxic chemotherapeutic drugs such as cisplatin and 5-fluorouracil. However, current strategies are often associated with potential toxicities. This has prompted efforts to identify alternative methods of treatment. The present study aimed to investigate silvestrol and episilvestrol-mediated inhibition of cell proliferation in human NPC cells. The growth kinetics of NPC cells treated with silvestrol or episilvestrol were monitored dynamically using a real-time, impedance-based cell analyzer, and dose-response profiles were generated using a colorimetric cell viability assay. Furthermore, apoptosis was evaluated using flow cytometry and high content analysis. In addition, flow cytometry was performed to determine cell cycle distribution. Finally, the effects of combining silvestrol or episilvestrol with cisplatin on NPC cells was examined. Apoptosis was not observed in silvestrol and episilvestrol-treated NPC cells, although cell cycle perturbation was evident. Treatment with both compounds induced a significant increase in the percentage of cells in the G2/M phase, as compared with the control. In vitro cultures combining silvestrol or episilvestrol with cisplatin showed synergistic effects against NPC cells. The results of the present study suggested that silvestrol and episilvestrol had an anti-tumour activity in NPC cells. Silvestrol and episilvestrol, particularly in combination with cisplatin, merit further investigation, so as to determine the cellular mechanisms underlying their action(s) as anti-NPC agents.
Collapse
Affiliation(s)
- Maelinda Daker
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Jiun-Tzen Yeo
- Sarawak Biodiversity Centre, KM20, Semengoh, Kuching, Sarawak 93990, Malaysia
| | - Norhasimah Bakar
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | | | - Munirah Ahmad
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Tiong-Chia Yeo
- Sarawak Biodiversity Centre, KM20, Semengoh, Kuching, Sarawak 93990, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| |
Collapse
|
23
|
Oblinger JL, Burns SS, Akhmametyeva EM, Huang J, Pan L, Ren Y, Shen R, Miles-Markley B, Moberly AC, Kinghorn AD, Welling DB, Chang LS. Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas. Neuro Oncol 2016; 18:1265-77. [PMID: 26951381 DOI: 10.1093/neuonc/now032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/06/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The eukaryotic initiation factor 4F (eIF4F) complex plays a pivotal role in protein translation initiation; however, its importance in malignant and benign Schwann cell tumors has not been explored, and whether blocking eIF4F function is effective for treating these tumors is not known. METHODS Immunostaining was performed on human malignant peripheral nerve sheath tumors (MPNSTs) and vestibular schwannomas (VSs) for eIF4F components. The role of eIF4A and eIF4E in cell growth was assessed by RNA interference. Various natural compounds were screened for their growth-inhibitory activity. Flow cytometry and Western blotting were performed to characterize the action of silvestrol, and its antitumor activity was verified in orthotopic mouse models. RESULTS MPNSTs and VSs frequently overexpressed eIF4A, eIF4E, and/or eIF4G. Depletion of eIF4A1, eIF4A2, and eIF4E substantially reduced MPNST cell growth. From screening a panel of plant-derived compounds, the eIF4A inhibitor silvestrol was identified as a leading agent with nanomolar IC50 values in MPNST and VS cells. Silvestrol induced G2/M arrest in both NF1-deficient and NF1-expressing MPNST cells and primary VS cells. Silvestrol consistently decreased the levels of multiple cyclins, Aurora A, and mitogenic kinases AKT and ERKs. Silvestrol treatment dramatically suppressed tumor growth in mouse models for NF1(-/-) MPNST and Nf2(-/-) schwannoma. This decreased tumor growth was accompanied by elevated phospho-histone H3 and TUNEL labeling, consistent with G2/M arrest and apoptosis in silvestrol-treated tumor cells. CONCLUSIONS The eIF4F complex is a potential therapeutic target in MPNSTs and VS, and silvestrol may be a promising agent for treating these tumors.
Collapse
Affiliation(s)
- Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Sarah S Burns
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Elena M Akhmametyeva
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Jie Huang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Li Pan
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Yulin Ren
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Rulong Shen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Beth Miles-Markley
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Aaron C Moberly
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - A Douglas Kinghorn
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - D Bradley Welling
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| |
Collapse
|