1
|
Kim YH, Park NY, Jo DS, Bae JE, Kim JB, Park K, Jeong K, Kim P, Yeom E, Cho DH. Inhibition of VHL by VH298 Accelerates Pexophagy by Activation of HIF-1α in HeLa Cells. Molecules 2024; 29:482. [PMID: 38257395 PMCID: PMC10819186 DOI: 10.3390/molecules29020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Autophagy is a pivotal biological process responsible for maintaining the homeostasis of intracellular organelles. Yet the molecular intricacies of peroxisomal autophagy (pexophagy) remain largely elusive. From a ubiquitin-related chemical library for screening, we identified several inhibitors of the Von Hippel-Lindau (VHL) E3 ligase, including VH298, thereby serving as potent inducers of pexophagy. In this study, we observed that VH298 stimulates peroxisomal degradation by ATG5 dependently and escalates the ubiquitination of the peroxisomal membrane protein ABCD3. Interestingly, the ablation of NBR1 is similar to the curtailed peroxisomal degradation in VH298-treated cells. We also found that the pexophagy induced by VH298 is impeded upon the suppression of gene expression by the translation inhibitor cycloheximide. Beyond VHL inhibition, we discovered that roxadustat, a direct inhibitor of HIF-α prolyl hydroxylase, is also a potent inducer of pexophagy. Furthermore, we found that VH298-mediated pexophagy is blocked by silencing HIF-1α. In conclusion, our findings suggest that VH298 promotes pexophagy by modulating VHL-mediated HIF-α transcriptional activity.
Collapse
Affiliation(s)
- Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
| | - Doo Sin Jo
- ORGASIS Corp., Suwon 16229, Republic of Korea
| | - Ji-Eun Bae
- KNU LAMP Research Center, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
| | - Kyuhee Park
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Kwiwan Jeong
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp., Suwon 16229, Republic of Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
- KNU LAMP Research Center, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative Bio Research Group, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.H.K.)
- ORGASIS Corp., Suwon 16229, Republic of Korea
- Organelle Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Jin X, Zhu L, Lu S, Li C, Bai M, Xu E, Shen J, Li Y. Baicalin ameliorates CUMS-induced depression-like behaviors through activating AMPK/PGC-1α pathway and enhancing NIX-mediated mitophagy in mice. Eur J Pharmacol 2022; 938:175435. [PMID: 36463946 DOI: 10.1016/j.ejphar.2022.175435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Mitochondrial dysfunction has been reported to be involved in the pathogenesis of depression, and mitophagy is a key pathway for mitochondrial quality control. This study aimed to investigate the effect of baicalin on mitophagy in the hippocampus of mice exposed to chronic unpredictable mild stress (CUMS) and explore its potential mechanism. After exposure to CUMS for 6 weeks, mice were given baicalin (20 mg/kg) or fluoxetine (20 mg/kg) by oral gavage for 4 weeks, and HT22 cells were injured by corticosterone (CORT) in vitro. Depression-like behaviors were assessed by sucrose preference test and tail suspension test. The mitochondrial structure was observed by transmission electron microscopy. Detection of mitophagy and mitophagy-related protein by mitophagy kit and Western blot. The results showed that baicalin improved depressive-like behaviors in CUMS mice, and ameliorated mitochondrial structural impairment in the hippocampus neuron. Baicalin significantly down-regulated light chain 3(LC3)II/I, protein sequestosome 1 (P62), and translocase of the outer membrane 20 (TOM20), and up-regulated Nip-like protein (NIX), Adenylate activated protein kinase (AMPK), and Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α. Furthermore, molecular docking showed that baicalin interacts with AMPK through hydrogen bonding. Baicalin increased NIX and AMPK, and improved mitophagy level and mitochondrial function in HT22 cells. Treatment with Phorbol 12-Myristate 13-acetate demonstrated that up-regulation of NIX ameliorated CORT-induced mitochondrial dysfunction in HT22 cells. In conclusion, the present study suggested that the antidepressant effect of baicalin may be related to the enhancement of NIX-mediated mitophagy through activating the AMPK/PGC-1α pathway by directly binding to AMPK.
Collapse
Affiliation(s)
- Xiaohui Jin
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Leilei Zhu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shuaifei Lu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Caiyin Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ming Bai
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Erping Xu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiduo Shen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yucheng Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Guo J, Yang Y. Parecoxib sodium alleviates ischemia reperfusion-induced pulmonary injury via inhibiting ERK/NF-κB and further activating the HIF-1α pathway. Immun Inflamm Dis 2022; 10:e684. [PMID: 36039646 PMCID: PMC9382860 DOI: 10.1002/iid3.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The lungs are extremely vulnerable to ischemia/reperfusion (I/R), which is characterized by intense inflammation, oxidative stress, alveolar damage, and vascular permeability. Parecoxib sodium (Pare) has been shown to exert protective effects against multiple I/R-induced tissue injuries. However, its role in I/R-induced lung injury remains unknown. This study aimed to reveal the roles and mechanisms of Pare in pulmonary I/R injury. METHODS Sixty-six rats were randomly divided into three groups: The sham-operated group, the pulmonary I/R group, and the Pare-pretreated I/R group. Pare at 10 mg/kg or saline (vehicle control) were intraperitoneally administered to rats once per day for 5 consecutive days before ischemia. Serum and tissue samples were harvested following 2 h of reperfusion. The oxygenation index (OI) and alveolar-arterial oxygen partial pressure difference (PA-aO2 ) were analyzed. The levels or activities of malondialdehyde, superoxidase dismutase, catalase, glutathione peroxidase, intracellular reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-6, and IL-8 were examined. The mitochondrial membrane potential was measured. The protein expression levels of the extracellular signal-regulated kinase (ERK), nuclear factor-κB (NF-κB) and their phosphorylated forms, and hypoxia-inducible factor-1α (HIF-1α) were detected. Histological changes were observed using hematoxylin and eosin staining. Moreover, the survival rate following pulmonary I/R injury was recorded daily. RESULTS Pare significantly increased the OI, decreased the PA-aO2 , increased the levels of antioxidants, while decreasing the levels of oxidants, and alleviated mitochondrial dysfunction and the histopathological damage induced by I/R. Furthermore, Pare inhibited the expression of proinflammatory cytokines, suppressed the activation of ERK and NF-κB, further increased HIF-1α expression, and significantly improved the rat survival rate. CONCLUSIONS Pare pretreatment attenuated lung I/R injury by inhibiting oxidative stress and the inflammatory response possibly via inhibiting the activation of the ERK/NF-κB pathway and further activating the HIF-1α pathway.
Collapse
Affiliation(s)
- Jiantao Guo
- Department of Anesthesiology, Taizhou First People's HospitalHuangyan Hospital Affiliated to Wenzhou Medical UniversityTaizhouZhejiangChina
| | - Yiping Yang
- Department of Anesthesiology, Taizhou First People's HospitalHuangyan Hospital Affiliated to Wenzhou Medical UniversityTaizhouZhejiangChina
| |
Collapse
|
4
|
Su PW, Zhai Z, Wang T, Zhang YN, Wang Y, Ma K, Han BB, Wu ZC, Yu HY, Zhao HJ, Wang SJ. Research progress on astrocyte autophagy in ischemic stroke. Front Neurol 2022; 13:951536. [PMID: 36110390 PMCID: PMC9468275 DOI: 10.3389/fneur.2022.951536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is a highly disabling and potentially fatal disease. After ischemic stroke, autophagy plays a key regulatory role as an intracellular catabolic pathway for misfolded proteins and damaged organelles. Mounting evidence indicates that astrocytes are strongly linked to the occurrence and development of cerebral ischemia. In recent years, great progress has been made in the investigation of astrocyte autophagy during ischemic stroke. This article summarizes the roles and potential mechanisms of astrocyte autophagy in ischemic stroke, briefly expounds on the crosstalk of astrocyte autophagy with pathological mechanisms and its potential protective effect on neurons, and reviews astrocytic autophagy-targeted therapeutic methods for cerebral ischemia. The broader aim of the report is to provide new perspectives and strategies for the treatment of cerebral ischemia and a reference for future research on cerebral ischemia.
Collapse
Affiliation(s)
- Pei-Wei Su
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Zhai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Chun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Yun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Jun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Hai-Jun Zhao
| | - Shi-Jun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shi-Jun Wang
| |
Collapse
|
5
|
Wang K, Chen YS, Chien HW, Chiou HL, Yang SF, Hsieh YH. Melatonin inhibits NaIO3-induced ARPE-19 cell apoptosis via suppression of HIF-1α/BNIP3-LC3B/mitophagy signaling. Cell Biosci 2022; 12:133. [PMID: 35986432 PMCID: PMC9389659 DOI: 10.1186/s13578-022-00879-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Age-related macular degeneration (AMD) leads to gradual central vision loss and eventual irreversible blindness. Melatonin, an endogenous hormone, exhibits anti-inflammatory and antitumor effects; however, the role it plays in AMD remains unclear. Herein, we investigated the anti-AMD molecular mechanism of melatonin after sodium iodate (NaIO3) treatment of ARPE-19 cells in vitro and in animal models with the goal of improving the therapeutic effect. Results The in vitro results showed that melatonin protected against NaIO3-induced cell viability decline, mitochondrial dysfunction and apoptosis in ARPE-19 cells, and melatonin also alleviated NaIO3-induced reactive oxygen species (ROS) production, mitochondrial dysfunction and mitophagy activation. Melatonin reduced NaIO3-induced mitophagy activation through HIF-1α-targeted BNIP3/LC3B transcription, whereas ROS inhibition realized with N-acetylcysteine (NAC, a ROS inhibitor) combined with melatonin reduced the effect of NaIO3 on mitophagy. An animal model of AMD was established to confirm the in vitro data. Mouse tail vein injection of NaIO3 and melatonin was associated with enhanced repair of retinal layers within 7 days, as observed by optical coherence tomography (OCT) and hematoxylin and eosin (H&E) staining. A reduction in BNIP3 and HIF-1α levels, as determined by immunohistochemistry (IHC) assay, was also observed. Conclusions These results indicate that melatonin attenuated NaIO3-induced mitophagy of ARPE-19 cells via reduction in ROS-mediated HIF-1α targeted BNIP3/LC3B signaling in vitro and in vivo. Melatonin may be a potential therapeutic drug in the treatment of AMD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00879-3.
Collapse
|
6
|
Niu N, Li H, Du X, Wang C, Li J, Yang J, Liu C, Yang S, Zhu Y, Zhao W. Effects of NRF-1 and PGC-1α cooperation on HIF-1α and rat cardiomyocyte apoptosis under hypoxia. Gene 2022; 834:146565. [PMID: 35569770 DOI: 10.1016/j.gene.2022.146565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypoxia is a primary inducer of cardiomyocyte injury, its significant marker being hypoxia-induced cardiomyocyte apoptosis. Nuclear respiratory factor-1 (NRF-1) and hypoxia-inducible factor-1α (HIF-1α) are transcriptional regulatory elements implicated in multiple biological functions, including oxidative stress response. However, their roles in hypoxia-induced cardiomyocyte apoptosis remain unknown. The effect HIF-1α, together with NRF-1, exerts on cardiomyocyte apoptosis also remains unclear. METHODS We established a myocardial hypoxia model and investigated the effects of these proteins on the proliferation and apoptosis of rat cardiomyocytes (H9C2) under hypoxia. Further, we examined the association between NRF-1 and HIF-1α to improve the current understanding of NRF-1 anti-apoptotic mechanisms. RESULTS The results show that NRF-1 and HIF-1α are important anti-apoptotic molecules in H9C2 cells under hypoxia, although their regulatory mechanisms differ. NRF-1 could bind to the promoter region of Hif1a and negatively regulate its expression. Additionally, HIF-1β exhibited competitive binding with NRF-1 and HIF-1α, demonstrating a synergism between NRF-1 and the peroxisome proliferator-activated receptor-gamma coactivator-1α. CONCLUSION These results indicate that cardiomyocytes can regulate different molecular patterns to tolerate hypoxia, providing a novel methodological framework for studying cardiomyocyte apoptosis under hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Hui Li
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Xiancai Du
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Chan Wang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Junliang Li
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Jihui Yang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Cheng Liu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Songhao Yang
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Yazhou Zhu
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli South Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
7
|
Lee S, Lee J, Batjikh I, Yu H, Kang SH. Ultrasensitive Hypoxia Sensing at the Single-Molecule Level via Super-Resolution Quantum Dot-Linked Immunosandwich Assay. ACS Sens 2022; 7:1372-1380. [PMID: 35437012 DOI: 10.1021/acssensors.1c02572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activated hypoxia-inducible factor-1alpha (HIF-1α) plays an important role in the adaptive response of tumor cells to oxygen changes through the transcriptional activation of genes that regulate important biological processes required for tumor survival and progression. In this study, we developed an ultrasensitive hypoxia sensor based on read-out with quantum dots on a gold nanodisc (quantum dot-linked immunosandwich assay, QLISA) with excellent selectivity for HIF-1α. The immunoassay platform was established by comparing the immune response results using Qdot525 as a detection nanoprobe instead of a fluorescent dye (Alexa488) (fluorescent-linked immunosandwich assay, FLISA). In addition, using three-dimensional total internal reflection fluorescence microscopy, the platform was optically sectioned along the z-axis at 10 nm intervals to compare the height difference between the nanodisc and the nanoprobe following the QLISA and FLISA procedures and to localize the target location. Here, the super-resolution QLISA (srQLISA)-based hypoxia sensor exhibited high accuracy and precision for the detection of HIF-1α-extracted samples in cancer spheroids compared with the super-resolution FLISA (srFLISA) method. The developed nanobiosensor method demonstrated a wide dynamic linear detection range of 32.2 zM-8.0 pM with a limit of detection of 16 zM under optimal experimental conditions for HIF-1α, an approximate 106-fold enhanced detection sensitivity compared with the conventional enzyme-linked immunosorbent assay method based on absorbance. The detection of HIF-1α using the newly developed srQLISA sensor allows for independently predicting tumor progression and early cancer onset increases in the microvasculature density of tumor lesions.
Collapse
Affiliation(s)
- Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Junghwa Lee
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Indra Batjikh
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Hyunung Yu
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
8
|
Liu G, Li M, Qian S, Yu L, Qian L, Feng X. Interleukin-35 exhibits protective effects in a rat model of hypoxic-ischemic encephalopathy through the inhibition of microglia-mediated inflammation. Transl Pediatr 2022; 11:651-662. [PMID: 35685068 PMCID: PMC9173876 DOI: 10.21037/tp-22-100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) brain damage is related to inflammatory responses and oxidative stress. Interleukin (IL)-35 is an antioxidant and anti-inflammatory cytokine. Thus, the effect of IL-35 treatment on neonatal rats with hypoxic-ischemic brain injury was investigated. METHODS A total of 96 7-day-old Sprague Dawley rats were randomly divided into three groups: sham group, HIE group, and IL-35 group. After left common carotid occlusion and 2.5 h hypoxia (HI injury), IL-35 (20 µg/g) was intraperitoneally (i.p.) administered to the pups. In vitro, BV2 cells were treated with or without IL-35 6 h before oxygen-glucose deprivation (OGD) insult and the microglia culture medium (MCM) was co-cultured with b.End3 cerebral vascular endothelial cells. Microglial polarization and activation were assessed by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). Endothelial cell dysfunction was measured by cell counting kit-8 and Western blot assays. RESULTS Administration of IL-35 alleviated neurological deficiencies, decreased brain edema, ameliorated cerebral infarction, and limited M1 microglial polarization in HI-injured pups. Meanwhile, IL-35 decreased pro-inflammatory cytokines, tumor necrosis factor-α, IL-1β, and reactive oxygen species generation in OGD-induced bEnd.3 cells. Furthermore, IL-35 treatment could reverse the vascular endothelial cell injury induced by microglial polarization. Finally, IL-35 markedly suppressed the activation of hypoxia-inducible factor-1α (HIF-1α) and the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. CONCLUSIONS IL-35 relieved hypoxic-ischemic-induced brain injury and inhibited the inflammatory response by suppressing microglial polarization and activation. These results suggest that IL-35 might have potential applications for the treatment of HIE.
Collapse
Affiliation(s)
- Guangliang Liu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Binhai County People's Hospital, Bianhai, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Shuang Qian
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Yu
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Lei Qian
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Li Y, Halterman MW. The MAP Kinase Phosphatase MKP-1 Modulates Neurogenesis via Effects on BNIP3 and Autophagy. Biomolecules 2021; 11:biom11121871. [PMID: 34944516 PMCID: PMC8699509 DOI: 10.3390/biom11121871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Inherited and acquired defects in neurogenesis contribute to neurodevelopmental disorders, dysfunctional neural plasticity, and may underlie pathology in a range of neurodegenerative conditions. Mitogen-activated protein kinases (MAPKs) regulate the proliferation, survival, and differentiation of neural stem cells. While the balance between MAPKs and the family of MAPK dual-specificity phosphatases (DUSPs) regulates axon branching and synaptic plasticity, the specific role that DUSPs play in neurogenesis remains unexplored. In the current study, we asked whether the canonical DUSP, MAP Kinase Phosphatase-1 (MKP-1), influences neural stem cell differentiation and the extent to which DUSP-dependent autophagy is operational in this context. Under basal conditions, Mkp-1 knockout mice generated fewer doublecortin (DCX) positive neurons within the dentate gyrus (DG) characterized by the accumulation of LC3 puncta. Analyses of wild-type neural stem cell (NSC) differentiation in vitro revealed increased Mkp-1 mRNA expression during the initial 24-h period. Notably, Mkp-1 KO NSC differentiation produced fewer Tuj1-positive neurons and was associated with increased expression of the BCL2/adenovirus E1B 19-kD protein-interacting protein 3 (BNIP3) and levels of autophagy. Conversely, Bnip3 knockdown in differentiated Mkp-1 KO NSCs reduced levels of autophagy and increased neuronal yields. These results indicate that MKP-1 exerts a pro-neurogenic bias during a critical window in NSC differentiation by regulating BNIP3 and basal autophagy levels.
Collapse
|
10
|
Abstract
Cerebral ischemic injury may lead to a series of serious brain diseases, death or different degrees of disability. Hypoxia-inducible factor-1α (HIF-1α) is an oxygen-sensitive transcription factor, which mediates the adaptive metabolic response to hypoxia and serves a key role in cerebral ischemia. HIF-1α is the main molecule that responds to hypoxia. HIF-1α serves an important role in the development of cerebral ischemia by participating in numerous processes, including metabolism, proliferation and angiogenesis. The present review focuses on the endogenous protective mechanism of cerebral ischemia and elaborates on the role of HIF-1α in cerebral ischemia. In addition, it focuses on cerebral ischemia interventions that act on the HIF-1α target, including biological factors, non-coding RNA, hypoxic-ischemic preconditioning and drugs, and expands upon the measures to strengthen the endogenous compensatory response to support HIF-1α as a therapeutic target, thus providing novel suggestions for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Qingna Li
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Hua Han
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
11
|
Wang K, Lei L, Cao J, Qiao Y, Liang R, Duan J, Feng Z, Ding Y, Ma Y, Yang Z, Zhang E. Network pharmacology-based prediction of the active compounds and mechanism of Buyang Huanwu Decoction for ischemic stroke. Exp Ther Med 2021; 22:1050. [PMID: 34434264 PMCID: PMC8353622 DOI: 10.3892/etm.2021.10484] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Buyang Huanwu Decoction (BYHWD) is used to promote blood circulation and is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. However, the mechanism and active compounds of BYHWD used to treat ischemic stroke are not well understood. The current study aimed to identify the potential active components of BYHWD and explore its mechanism using network pharmacology and bioinformatics analyses. The compounds of BYHWD were obtained from public databases. Oral bioavailability and drug-likeness were screened using the absorption, distribution, metabolism and excretion (ADME) criteria. Components of BYHWD, alongside the candidate targets of each component and the known therapeutic targets of ischemic stroke were collected. A network of target gene compounds and cerebral ischemia compounds was established using network pharmacology data sources. The enrichment of key targets and pathways was analyzed using STRING and DAVID databases. Moreover, three of key targets [IL6, VEGFA and hypoxia-inducible-factor-1α (HIF-1α)] were verified using western blot analysis. Network analysis determined 102 compounds in seven herbal medicines that were subjected to ADME screening. A total of 42 compounds as well as 79 genes formed the principal pathways associated with ischemic stroke. The 16 key compounds identified were baicalein, beta-carotene, baicalin, kaempferol, luteolin, quercetin, hydroxysafflor yellow A, isorhamnetin, bifendate, formononetin, calycosin, astragaloside IV, stigmasterol, sitosterol, Z-ligustilide, and dihydrocapsaicin. The core genes in this network were IL6, TNF, VEGFA, HIF-1α, MAPK1, MAPK3, JUN, STAT3, IL1B and IL10. Furthermore, the TNF, IL17, apoptosis, PI3K-Akt, toll-like receptor, MAPK, NF-κB and HIF-1 signaling pathways were identified to be associated with ischemic stroke. Compared with the control group (no treatment), BYHWD significantly inhibited the expression of IL6 and increase the expression of HIF-1α and VEGFA. Network pharmacology analyses can help to reveal close interactions between multi-components and multi-targets and enhance understanding of the potential effects of BYHWD on ischemic stroke.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Lu Lei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ruimin Liang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhijun Feng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Enhu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
12
|
Zhai M, Han M, Huang X, Kang F, Yang CH, Li J. Dexmedetomidine Protects Human Renal Tubular Epithelial HK-2 Cells against Hypoxia/Reoxygenation Injury by Inactivating Endoplasmic Reticulum Stress Pathway. CELL JOURNAL 2021; 23:457-464. [PMID: 34455722 PMCID: PMC8405080 DOI: 10.22074/cellj.2021.7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
Objective The study was aimed to investigate the effects and potential mechanisms of Dexmedetomidine (Dex) on
hypoxia/reoxygenation (H/R) injury in human renal tubular epithelial HK-2 cells. Materials and Methods In this experimental study, HK-2 cells were divided into four groups: control group, Dex
group, H/R group, and Dex+H/R group. The cells in control group received no treatment, and cells in Dex group were
only treated with 0.1 nmol/L Dex. The cells in H/R group and Dex+H/R group were all treated with H/R (hypoxia for
24 hours and normoxia for 4 hours), and only the cells in Dex+H/R group were pre-administrated with 0.1 nmol/L
Dex. Following treatments at 37˚C for 28 hours, cell viability and apoptosis were measured by MTT assay and flow
cytometry, respectively. Also, the expressions of hypoxia-inducible factor 1 (HIF-1α), glucose-regulated protein 78
(GRP78), C/EBP homologous protein (CHOP), caspase-12 and cleaved caspase-3 were determined by western blot.
Results The cell viability was significant decreased in H/R group compared with control group (P<0.05), while was
significantly increased in Dex+H/R group compared with that in H/R group (P<0.05). However, the change tendency
of the cell apoptosis was opposite to that of cell viability. Compared with H/R group, the expression of HIF-1α was
evidently up-regulated, while GRP78, CHOP, capase-12 and cleaved caspase-3 expressions were all obviously down-
regulated in Dex+H/R group (P<0.05). In addition, the concentrations of malondialdehyde (MDA) in H/R group and
Dex+H/R group were 1.68 ± 0.22 nmol/mgprot and 0.85 ± 0.16 nmol/mgprot, respectively. The superoxide dismutase
(SOD) activity was higher in Dex+H/R group (121 ± 11 U/L), which which was more than twice larger than that in H/R
group (57 ± 10 U/L).
Conclusion Dex could promote cell viability and inhibit apoptosis through up-regulating HIF-1α, reducing endoplasmic
reticulum (ER) stress and mediating oxidative stress, thus ameliorating the H/R injury.
Collapse
Affiliation(s)
- Mingyu Zhai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - C Hengwei Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Juan Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
13
|
Zhang YN, Pang YX, Liu DW, Hu HJ, Xie RQ, Cui W. JMJD5 attenuates oxygen-glucose deprivation and reperfusion-induced injury in cardiomyocytes through regulation of HIF-1α-BNIP3. Kaohsiung J Med Sci 2021; 38:38-48. [PMID: 34369657 DOI: 10.1002/kjm2.12434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Proteins in Jumonji family function as histone demethylases and participate in cardiac development. Jumonji domain containing 5 (JMJD5) is responsible for the embryonic development through removing methyl moieties from H3K36me2 histone, and has pro-proliferative effect on heart and eye development. However, the protective role of JMJD5 against oxygen-glucose deprivation and reperfusion (OGD/R)-induced injury in cardiomyocytes has not been fully understood. Firstly, myocardial ischemia/reperfusion (I/R) rat model was established by ligation of left coronary artery. OGD/R was performed in non-transfected H9C2 or H9C2 transfected with pcDNA-JMJD5 plasmid to induce cell cytotoxicity. Data from qRT-PCR and western blot showed that JMJD5 was reduced in the heart tissues of myocardial I/R rat model and OGD/R-induced H9C2. Secondly, JMJD5 over-expression attenuated OGD/R-induced decrease in cell viability and increase in lactate dehydrogenase secretion and cell apoptosis in H9C2. Mitophagy was promoted by pcDNA-mediated over-expression of JMJD5 with enhanced protein expression of LC3-I, LC3-II, Atg5, and Beclin 1. Thirdly, knockdown of JMJD5 aggravated OGD/R-induced decrease in hypoxia-inducible factor-1α (HIF-1α), whereas JMJD5 over-expression enhanced BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein) through upregulation of HIF-1α. Lastly, BNIP3 silencing promoted cell apoptosis, suppressed mitophagy, and attenuated the protective effects of JMJD5 over-expression against OGD/R-induced injury in H9C2. In conclusion, JMJD5 exerted protective effects against OGD/R-induced injury in cardiomyocytes through upregulation of HIF-1α-BNIP3.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Ya-Xiang Pang
- Experimental Center of Clinical College, The Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Da-Wei Liu
- Department of Cardiology, Workers' Hospital of Tangshan, Tangshan City, Hebei Province, China
| | - Hai-Juan Hu
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Rui-Qin Xie
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Wei Cui
- First Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
14
|
Lei L, Yang S, Lu X, Zhang Y, Li T. Research Progress on the Mechanism of Mitochondrial Autophagy in Cerebral Stroke. Front Aging Neurosci 2021; 13:698601. [PMID: 34335233 PMCID: PMC8319822 DOI: 10.3389/fnagi.2021.698601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial autophagy is an early defense and protection process that selectively clears dysfunctional or excessive mitochondria through a distinctive mechanism to maintain intracellular homeostasis. Mitochondrial dysfunction during cerebral stroke involves metabolic disbalance, oxidative stress, apoptosis, endoplasmic reticulum stress, and abnormal mitochondrial autophagy. This article reviews the research progress on the mechanism of mitochondrial autophagy in ischemic stroke to provide a theoretical basis for further research on mitochondrial autophagy and the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Lei
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Shuaifeng Yang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Xiaoyang Lu
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| |
Collapse
|
15
|
Sankorrakul K, Qian L, Thangnipon W, Coulson EJ. Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 2021; 158:1292-1306. [PMID: 34109634 DOI: 10.1111/jnc.15451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Cholinergic basal forebrain (cBF) neurons are particularly vulnerable to degeneration following trauma and in neurodegenerative conditions. One reason for this is their characteristic expression of the p75 neurotrophin receptor (p75NTR ), which is up-regulated and mediates neuronal death in a range of neurological and neurodegenerative conditions, including dementia, stroke and ischaemia. The signalling pathway by which p75NTR signals cell death is incompletely characterised, but typically involves activation by neurotrophic ligands and signalling through c-Jun kinase, resulting in caspase activation via mitochondrial apoptotic signalling pathways. Less well appreciated is the link between conditions of oxidative stress and p75NTR death signalling. Here, we review the literature describing what is currently known regarding p75NTR death signalling in environments of oxidative stress and hypoxia to highlight the overlap in signalling pathways and the implications for p75NTR signalling in cBF neurons. We propose that there is a causal relationship and define key questions to test this assertion.
Collapse
Affiliation(s)
- Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Lei Qian
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| |
Collapse
|
16
|
Kim EJ, Lee JE, Yoon S, Lee DJ, Mai HN, Ida-Yonemochi H, Choi J, Jung HS. Hypoxia-Responsive Oxygen Nanobubbles for Tissues-Targeted Delivery in Developing Tooth Germs. Front Cell Dev Biol 2021; 9:626224. [PMID: 33659251 PMCID: PMC7917193 DOI: 10.3389/fcell.2021.626224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia is a state of inadequate supply of oxygen. Increasing evidence indicates that a hypoxic environment is strongly associated with abnormal organ development. Oxygen nanobubbles (ONBs) are newly developed nanomaterials that can deliver oxygen to developing tissues, including hypoxic cells. However, the mechanisms through which nanobubbles recover hypoxic tissues, such as developing tooth germs remain to be identified. In this study, tooth germs were cultured in various conditions: CO2 chamber, hypoxic chamber, and with 20% ONBs for 3 h. The target stages were at the cap stage (all soft tissue) and bell stage (hard tissue starts to form). Hypoxic tooth germs were recovered with 20% ONBs in the media, similar to the tooth germs incubated in a CO2 chamber (normoxic condition). The tooth germs under hypoxic conditions underwent apoptosis both at the cap and bell stages, and ONBs rescued the damaged tooth germs in both the cap and bell stages. Using kidney transplantation for hard tissue formation in vivo, amelogenesis and dentinogenesis imperfecta in hypoxic conditions at the bell stage were rescued with ONBs. Furthermore, glucose uptake by tooth germs was highly upregulated under hypoxic conditions, and was restored with ONBs to normoxia levels. Our findings indicate that the strategies to make use of ONBs for efficient oxygen targeted delivery can restore cellular processes, such as cell proliferation and apoptosis, glucose uptake, and hypomineralization in hypoxic environments.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ji-Eun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Semi Yoon
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Han Ngoc Mai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
17
|
BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun 2021; 12:487. [PMID: 33473105 PMCID: PMC7817668 DOI: 10.1038/s41467-020-20679-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Stress-induced glucocorticoids disturb mitochondrial bioenergetics and dynamics; however, instead of being removed via mitophagy, the damaged mitochondria accumulate. Therefore, we investigate the role of glucocorticoids in mitophagy inhibition and subsequent synaptic defects in hippocampal neurons, SH-SY5Y cells, and ICR mice. First, we observe that glucocorticoids decrease both synaptic density and vesicle recycling due to suppressed mitophagy. Screening data reveal that glucocorticoids downregulate BNIP3-like (BNIP3L)/NIX, resulting in the reduced mitochondrial respiration function and synaptic density. Notably, we find that glucocorticoids direct the glucocorticoid receptor to bind directly to the PGC1α promoter, downregulating its expression and nuclear translocation. PGC1α downregulation selectively decreases NIX-dependent mitophagy. Consistent with these results, NIX enhancer pre-treatment of a corticosterone-exposed mouse elevates mitophagy and synaptic density in hippocampus, improving the outcome of a spatial memory task. In conclusion, glucocorticoids inhibit mitophagy via downregulating NIX and that NIX activation represents a potential target for restoring synapse function. Stress-induced glucocorticoids cause mitochondrial damage in neurons, but they are not cleared by mitophagy. Here, the authors show that glucocorticoids inhibit NIX-dependent basal mitophagy, contributing to neurodegeneration in a mouse model that can be reversed by pretreatment with a NIX enhancer.
Collapse
|
18
|
A paradox: Fe2+-containing agents decreased ROS and apoptosis induced by CoNPs in vascular endothelial cells by inhibiting HIF-1α. Biosci Rep 2021; 41:227394. [PMID: 33345265 PMCID: PMC7796189 DOI: 10.1042/bsr20203456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Cobalt nanoparticles (CoNPs) released from hip joint implants are known to have a toxic effect on several organs probably through increasing reactive oxygen species (ROS). Ferrous ion (Fe2+) is well-known to enhance oxidative stress by catalysing the production of ROS. However, in our pilot study, we found that Fe2+ conversely inhibited the ROS production induced by CoNPs. To elucidate the underlying mechanism, the present study treated vascular endothelial HUVEC and HMEC-1 cells with CoNPs alone or in combination with ferrous lactate [Fe(CH3CHOHCOO)2], ferrous succinate [Fe(CH2COO)2], and ferrous chloride (FeCl2). CoNP toxicity was evaluated by measuring cell viability, rate of apoptosis and lactose dehydrogenase (LDH) release, and intracellular ROS levels. Treatment with CoNPs decreased cell viability, LDH release, and ROS production and increased apoptosis. CoNPs increased hypoxia-inducible factor-1α (HIF-1α) protein level and mRNA levels of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1) downstream of HIF-1α signalling. Silencing HIF-1α attenuated CoNP toxicity, as seen by recovery of cell viability, LDH release, and ROS levels and reduced apoptosis. CoNPs caused a pronounced reduction of Fe2+ in cells, but supplementation with Fe(CH3CHOHCOO)2, Fe(CH2COO)2, and FeCl2 restored Fe2+ levels and inhibited HIF-1α activation. Moreover, all three Fe2+-containing agents conferred protection from CoNPs; Fe(CH3CHOHCOO)2 and Fe(CH2COO)2 more effectively than FeCl2. In summary, the present study revealed that CoNPs exert their toxicity on human vascular endothelial cells by depleting intracellular Fe2+ level, which causes activation of HIF-1α signalling. Supplements of Fe2+, especially in the form of Fe(CH3CHOHCOO)2 and Fe(CH2COO)2, mitigated CoNP toxicity.
Collapse
|
19
|
Zhao Y, Zhang M, Lu GL, Huang BX, Wang DW, Shao Y, Lu MJ. Hypoxic Preconditioning Enhances Cellular Viability and Pro-angiogenic Paracrine Activity: The Roles of VEGF-A and SDF-1a in Rat Adipose Stem Cells. Front Cell Dev Biol 2020; 8:580131. [PMID: 33330455 PMCID: PMC7719676 DOI: 10.3389/fcell.2020.580131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
To achieve the full therapeutic potential of implanted adipose stem cells (ASCs) in vivo, it is crucial to improve the viability and pro-angiogenic properties of the stem cells. Here, we first simulated the conditions of ischemia and hypoxia using the in vitro oxygen-glucose deprivation (OGD) model and confirmed that hypoxic preconditioning of ASCs could provide improved protection against OGD and enhance ASC viability. Second, we assessed the effect of hypoxic preconditioning on pro-angiogenic potential of ASCs, with a particular focus on the role of vascular endothelial growth factor-A (VEGF-A) and stromal derived factor-1a (SDF-1a) paracrine activity in mediating angiogenesis. We found that the conditioned medium of ASCs (ASCCM) with hypoxic preconditioning enhanced angiogenesis by a series of angiogenesis assay models in vivo and in vitro through the upregulation of and a synergistic effect between VEGF-A and SDF-1a. Finally, to investigate the possible downstream mechanisms of VEGF/VEGFR2 and SDF-1a/CXCR4 axes-driven angiogenesis, we evaluated relevant protein kinases involved the signal transduction pathway of angiogenesis and showed that VEGF/VEGFR2 and SDF-1a/CXCR4 axes may synergistically promote angiogenesis by activating Akt. Collectively, our findings demonstrate that hypoxic preconditioning may constitute a promising strategy to enhance cellular viability and angiogenesis of transplanted ASCs, therein improving the success rate of stem cell-based therapies in tissue engineering.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Liang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Xing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Da-Wei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu-Jun Lu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Quäschling T, Friedrich D, Deepe GS, Rupp J. Crosstalk Between Autophagy and Hypoxia-Inducible Factor-1α in Antifungal Immunity. Cells 2020; 9:cells9102150. [PMID: 32977563 PMCID: PMC7598272 DOI: 10.3390/cells9102150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023] Open
Abstract
Modern medicine is challenged by several potentially severe fungal pathogens such as Aspergillus fumigatus, Candida albicans, or Histoplasma capsulatum. Though not all fungal pathogens have evolved as primary pathogens, opportunistic pathogens can still cause fatal infections in immuno-compromised patients. After infection with these fungi, the ingestion and clearance by innate immune cells is an important part of the host immune response. Innate immune cells utilize two different autophagic pathways, the canonical pathway and the non-canonical pathway, also called microtubule-associated protein 1A/1B-light chain 3 (LC3) -associated pathway (LAP), to clear fungal pathogens from the intracellular environment. The outcome of autophagy-related host immune responses depends on the pathogen and cell type. Therefore, the understanding of underlying molecular mechanisms of autophagy is crucial for the development and improvement of antifungal therapies. One of those molecular mechanisms is the interaction of the transcription-factor hypoxia-inducible factor 1α (HIF-1α) with the autophagic immune response. During this review, we will focus on a comprehensive overview of the role of autophagy and HIF-1α on the outcome of fungal infections.
Collapse
Affiliation(s)
- Tim Quäschling
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23562 Lübeck, Germany; (T.Q.); (D.F.)
| | - Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23562 Lübeck, Germany; (T.Q.); (D.F.)
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA;
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23562 Lübeck, Germany; (T.Q.); (D.F.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-45300
| |
Collapse
|
21
|
Savyuk M, Krivonosov M, Mishchenko T, Gazaryan I, Ivanchenko M, Khristichenko A, Poloznikov A, Hushpulian D, Nikulin S, Tonevitsky E, Abuzarova G, Mitroshina E, Vedunova M. Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model. Antioxidants (Basel) 2020; 9:E662. [PMID: 32722310 PMCID: PMC7463909 DOI: 10.3390/antiox9080662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2 target genes and shows no toxicity up to 20 μM, which is more than an order of magnitude higher than its biologically active concentration. Cell viability, functional activity, and network connectivity between the elements of neuronal networks have been studied using a pairwise correlation analysis of the intracellular calcium fluctuations in the individual cells. An immediate treatment with 1 μМ and 15 μМ neuradapt right at the onset of hypoxia not only protects from the death, but also maintains the spontaneous calcium activity in nervous cells at the level of the intact cultures. A similar neuroprotective effect in the post-treatment scenario is observed for 15 μМ, but not for 1 μМ neuradapt. Network connectivity is better preserved with immediate treatment using 1 μМ neuradapt than with 15 μМ, which is still beneficial. Post-treatment with neuradapt did not restore the network connectivity despite the observation that neuradapt significantly increased cell viability at 1 μМ and functional activity at 15 μМ. The preservation of cell viability and functional activity makes neuradapt promising for further studies in a post-treatment scenario, since it can be combined with other drugs and treatments restoring the network connectivity of functionally competent cells.
Collapse
Affiliation(s)
- Maria Savyuk
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Mikhail Krivonosov
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Tatiana Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Irina Gazaryan
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Chemical Enzymology Department, Chemistry Faculty, M. V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Anna Khristichenko
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Dmitry Hushpulian
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Evgeny Tonevitsky
- Development Fund of the Innovation Science and Technology Center “Mendeleev Valley”, Moscow 125480, Russia;
| | - Guzal Abuzarova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| |
Collapse
|
22
|
Li L, Huang J. Rapamycin Pretreatment Alleviates Cerebral Ischemia/Reperfusion Injury in Dose-Response Manner Through Inhibition of the Autophagy and NFκB Pathways in Rats. Dose Response 2020; 18:1559325820946194. [PMID: 32874166 PMCID: PMC7436792 DOI: 10.1177/1559325820946194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/21/2020] [Indexed: 01/02/2023] Open
Abstract
Although rapamycin can attenuate cerebral ischemia/reperfusion (I/R) injury, the potential roles of rapamycin on cerebral I/R injury remain largely controversial. The present work aims to evaluate underlying molecular mechanisms of rapamycin pretreatment on I/R injury. In total, 34 Sprague-Dawley rats were randomly grouped to 3 groups: sham group (n = 2), vehicle group (n = 16), and rapamycin-pretreatment group (n = 16). Before the focal cerebral ischemia was induced, those rats in the pretreatment group were intraperitoneally injected rapamycin (1 mg/kg body) for 20 hours, while rats in the vehicle group received same-volume saline. Then, rats in these 2 groups received focal cerebral ischemia for 3 and 6 hours, respectively (n = 8 in each group), which was followed by the application of reperfusion for 4, 24, 72 hours, and 1 week (n = 2 in each group). The results showed that the rapamycin pretreatment improved the memory functions of rats after I/R injury, which was evaluated using a Y-maze test. Rapamycin pretreatment significantly reduced the size of triphenyltetrazolium chloride infarction and decreased the expression of I/R injury markers. Moreover, the expression of LC-3 and NFκB was also significantly reduced after rapamycin pretreatment. Taken together, rapamycin pretreatment may alleviate cerebral I/R injury partly through inhibiting autophagic activities and NFκB pathways in rats.
Collapse
Affiliation(s)
- Liru Li
- Department of emergency medicine, Fengxian District Central Hospital, Shanghai, China
| | - Jie Huang
- Department of Chinese and Western Medicine, Shanghai Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
23
|
Montero ML, Liu JW, Orozco J, Casiano CA, De Leon M. Docosahexaenoic acid protection against palmitic acid-induced lipotoxicity in NGF-differentiated PC12 cells involves enhancement of autophagy and inhibition of apoptosis and necroptosis. J Neurochem 2020; 155:559-576. [PMID: 32379343 PMCID: PMC7754135 DOI: 10.1111/jnc.15038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
Lipotoxicity (LTx) leads to cellular dysfunction and cell death and has been proposed to be an underlying process during traumatic and hypoxic injuries and neurodegenerative conditions in the nervous system. This study examines cellular mechanisms responsible for docosahexaenoic acid (DHA 22:6 n‐3) protection in nerve growth factor‐differentiated pheochromocytoma (NGFDPC12) cells from palmitic acid (PAM)‐mediated lipotoxicity (PAM‐LTx). NGFDPC12 cells exposed to PAM show a significant lipotoxicity demonstrated by a robust loss of cell viability, apoptosis, and increased HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 gene expression. Treatment of NGFDPC12 cells undergoing PAM‐LTx with the pan‐caspase inhibitor ZVAD did not protect, but shifted the process from apoptosis to necroptosis. This shift in cell death mechanism was evident by the appearance of the signature necroptotic Topo I protein cleavage fragments, phosphorylation of mixed lineage kinase domain‐like, and inhibition with necrostatin‐1. Cultures exposed to PAM and co‐treated with necrostatin‐1 (necroptosis inhibitor) and rapamycin (autophagy promoter), showed a significant protection against PAM‐LTx compared to necrostatin‐1 alone. In addition, co‐treatment with DHA, as well as 20:5 n‐3, 20:4 n‐6, and 22:5 n‐3, in the presence of PAM protected NGFDPC12 cells against LTx. DHA‐induced neuroprotection includes restoring normal levels of HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 transcripts and caspase 8 and caspase 3 activity, phosphorylation of beclin‐1, de‐phosphorylation of mixed lineage kinase domain‐like, increase in LC3‐II, and up‐regulation of Atg7 and Atg12 genes, suggesting activation of autophagy and inhibition of necroptosis. Furthermore, DHA‐induced protection was suppressed by the lysosomotropic agent chloroquine, an inhibitor of autophagy. We conclude that DHA elicits neuroprotection by regulating multiple cell death pathways including enhancement of autophagy and inhibiting apoptosis and necroptosis. ![]()
Collapse
Affiliation(s)
- Manuel L Montero
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - José Orozco
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
24
|
Liu Y, Jiang Y, Li W, Han C, Qi Z. MicroRNA and mRNA analysis of angiotensin II-induced renal artery endothelial cell dysfunction. Exp Ther Med 2020; 19:3723-3737. [PMID: 32346437 PMCID: PMC7185074 DOI: 10.3892/etm.2020.8613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Continuous activation of angiotensin II (Ang II) induces renal vascular endothelial dysfunction, inflammation and oxidative stress, all of which may contribute to renal damage. MicroRNAs (miRs/miRNAs) play a crucial regulatory role in the pathogenesis of hypertensive nephropathy (HN). The present study aimed to assess the differential expression profiles of potential candidate genes involved in Ang II-induced rat renal artery endothelial cell (RRAEC) dysfunction and explore their possible functions. In the present study, the changes in energy metabolism and autophagy function in RRAECs were evaluated using the Seahorse XF Glycolysis Stress Test and dansylcadaverine/transmission electron microscopy following exposure to Ang II. Subsequently, mRNA-miRNA sequencing experiments were performed to determine the differential expression profiles of mRNAs and miRNAs. Integrated bioinformatics analysis was applied to further explore the molecular mechanisms of Ang II on endothelial injury induced by Ang II. The present data supported the notion that Ang II upregulated glycolysis levels and promoted autophagy activation in RRAECs. The sequencing data demonstrated that 443 mRNAs and 58 miRNAs were differentially expressed (DE) in response to Ang II exposure, where 66 mRNAs and 55 miRNAs were upregulated, while 377 mRNAs and 3 miRNAs were downregulated (fold change >1.5 or <0.67; P<0.05). Functional analysis indicated that DE mRNA and DE miRNA target genes were mainly associated with cell metabolism (metabolic pathways), differentiation (Th1 and Th2 cell differentiation), autophagy (autophagy-animal and autophagy-other) and repair (RNA-repair). To the best of the authors' knowledge, this is the first report on mRNA-miRNA integrated profiles of Ang II-induced RRAECs. The present results provided evidence suggesting that the miRNA-mediated effect on the ‘mTOR signaling pathway’ might play a role in Ang II-induced RRAEC injury by driving glycolysis and autophagy activation. Targeting miRNAs and their associated pathways may provide valuable insight into the clinical management of HN and may improve patient outcome.
Collapse
Affiliation(s)
- Yao Liu
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuehua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Cong Han
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Zhenqiang Qi
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
25
|
Qiu Y, Huang X, He W. The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histol Histopathol 2019; 35:321-330. [PMID: 31691948 DOI: 10.14670/hh-18-182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high sensitivity to changes in oxygen tension makes kidney vulnerable to hypoxia. Both acute kidney injury and chronic kidney disease are almost always accompanied by hypoxia. Tubular epithelial cells (TECs), the dominant intrinsic cells in kidney tissue, are believed to be not only a victim in the pathological process of various kidney diseases, but also a major contributor to kidney damage. Hypoxia inducible factor-1 (HIF-1) is the main regulator of adaptive response of cells to hypoxia. Under various clinical and experimental kidney disease conditions, HIF-1 plays a pivotal role in modulating multiple cellular processes in TECs, including apoptosis, autophagy, inflammation, metabolic pattern alteration, and cell cycle arrest. A comprehensive understanding of the mechanisms by which HIF-1 regulates these cellular processes in TECs may help identify potential therapeutic targets to improve the outcome of acute kidney injury and delay the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Yamada D, Kawabe K, Tosa I, Tsukamoto S, Nakazato R, Kou M, Fujikawa K, Nakamura S, Ono M, Oohashi T, Kaneko M, Go S, Hinoi E, Yoneda Y, Takarada T. Inhibition of the glutamine transporter SNAT1 confers neuroprotection in mice by modulating the mTOR-autophagy system. Commun Biol 2019; 2:346. [PMID: 31552299 PMCID: PMC6751179 DOI: 10.1038/s42003-019-0582-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 08/19/2019] [Indexed: 01/31/2023] Open
Abstract
The pathophysiological role of mammalian target of rapamycin complex 1 (mTORC1) in neurodegenerative diseases is established, but possible therapeutic targets responsible for its activation in neurons must be explored. Here we identified solute carrier family 38a member 1 (SNAT1, Slc38a1) as a positive regulator of mTORC1 in neurons. Slc38a1flox/flox and Synapsin I-Cre mice were crossed to generate mutant mice in which Slc38a1 was selectively deleted in neurons. Measurement of 2,3,5-triphenyltetrazolium chloride (TTC) or the MAP2-negative area in a mouse model of middle cerebral artery occlusion (MCAO) revealed that Slc38a1 deficiency decreased infarct size. We found a transient increase in the phosphorylation of p70S6k1 (pp70S6k1) and a suppressive effect of rapamycin on infarct size in MCAO mice. Autophagy inhibitors completely mitigated the suppressive effect of SNAT1 deficiency on neuronal cell death under in vitro stroke culture conditions. These results demonstrate that SNAT1 promoted ischemic brain damage via mTOR-autophagy system.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| | - Kenji Kawabe
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| | - Ikue Tosa
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| | - Shunpei Tsukamoto
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| | - Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192 Japan
| | - Miki Kou
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192 Japan
| | - Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192 Japan
| | - Saki Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192 Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| | - Mari Kaneko
- Laboratory for Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami, Chuou-ku, Kobe, Hyogo 650-0047 Japan
| | - Shioi Go
- Laboratory for Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami, Chuou-ku, Kobe, Hyogo 650-0047 Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192 Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192 Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| |
Collapse
|
27
|
Li J, Liu W, Yao W. Immortalized Human Bone Marrow Derived Stromal Cells in Treatment of Transient Cerebral Ischemia in Rats. J Alzheimers Dis 2019; 69:871-880. [PMID: 31156178 DOI: 10.3233/jad-190279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jianyuan Li
- Neurosurgical Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Neurosurgical Department, Rizhao City Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Weidong Liu
- Neurosurgical Department, Liaocheng People’s Hospital, Liaocheng, China
| | - Weicheng Yao
- Neurosurgical Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Davis CK, Jain SA, Bae ON, Majid A, Rajanikant GK. Hypoxia Mimetic Agents for Ischemic Stroke. Front Cell Dev Biol 2019; 6:175. [PMID: 30671433 PMCID: PMC6331394 DOI: 10.3389/fcell.2018.00175] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Every year stroke claims more than 6 million lives worldwide. The majority of them are ischemic stroke. Small molecule-based therapeutics for ischemic stroke has attracted a lot of attention, but none has been shown to be clinically useful so far. Hypoxia-inducible factor-1 (HIF-1) plays a crucial role in the transcriptional adaptation of cells to hypoxia. Small molecule-based hypoxia-mimetic agents either stabilize HIF-1α via HIF-prolyl hydroxylases (PHDs) inhibition or through other mechanisms. In both the cases, these agents have been shown to confer ischemic neuroprotection in vitro and in vivo. The agents which act via PHD inhibition are mainly classified into iron chelators, iron competitors, and 2 oxoglutarate (2OG) analogs. This review discusses HIF structure and key players in the HIF-1 degradation pathway as well as the genes, proteins and chemical molecules that are connected to HIF-1 and how they affect cell survival following ischemic injury. Furthermore, this review gives a summary of studies that used PHD inhibitors and other HIF-1α stabilizers as hypoxia-mimetic agents for the treatment of ischemic injury.
Collapse
Affiliation(s)
- Charles K Davis
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Saurabh A Jain
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
29
|
Huang YG, Tao W, Yang SB, Wang JF, Mei ZG, Feng ZT. Autophagy: novel insights into therapeutic target of electroacupuncture against cerebral ischemia/ reperfusion injury. Neural Regen Res 2019; 14:954-961. [PMID: 30761999 PMCID: PMC6404501 DOI: 10.4103/1673-5374.250569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway. This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Ya-Guang Huang
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Wei Tao
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Jin-Feng Wang
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Gang Mei
- Medical College of China Three Gorges University; Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Tao Feng
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
30
|
Chen R, Lai UH, Zhu L, Singh A, Ahmed M, Forsyth NR. Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Front Cell Dev Biol 2018; 6:132. [PMID: 30364203 PMCID: PMC6192379 DOI: 10.3389/fcell.2018.00132] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Hypoxia inducible factor (HIF) is the master oxygen sensor within cells and is central to the regulation of cell responses to varying oxygen levels. HIF activation during hypoxia ensures optimum ATP production and cell integrity, and is associated both directly and indirectly with reactive oxygen species (ROS) formation. HIF activation can either reduce ROS formation by suppressing the function of mitochondrial tricarboxylic acid cycle (TCA cycle), or increase ROS formation via NADPH oxidase (NOX), a target gene of HIF pathway. ROS is an unavoidable consequence of aerobic metabolism. In normal conditions (i.e., physioxia), ROS is produced at minimal levels and acts as a signaling molecule subject to the dedicated balance between ROS production and scavenging. Changes in oxygen concentrations affect ROS formation. When ROS levels exceed defense mechanisms, ROS causes oxidative stress. Increased ROS levels can also be a contributing factor to HIF stabilization during hypoxia and reoxygenation. In this review, we systemically review HIF activation and ROS formation in the brain during hypoxia and hypoxia/reoxygenation. We will then explore the literature describing how changes in HIF levels might provide pharmacological targets for effective ischaemic stroke treatment. HIF accumulation in the brain via HIF prolyl hydroxylase (PHD) inhibition is proposed as an effective therapy for ischaemia stroke due to its antioxidation and anti-inflammatory properties in addition to HIF pro-survival signaling. PHD is a key regulator of HIF levels in cells. Pharmacological inhibition of PHD increases HIF levels in normoxia (i.e., at 20.9% O2 level). Preconditioning with HIF PHD inhibitors show a neuroprotective effect in both in vitro and in vivo ischaemia stroke models, but post-stroke treatment with PHD inhibitors remains debatable. HIF PHD inhibition during reperfusion can reduce ROS formation and activate a number of cellular survival pathways. Given agents targeting individual molecules in the ischaemic cascade (e.g., antioxidants) fail to be translated in the clinic setting, thus far, HIF pathway targeting and thereby impacting entire physiological networks is a promising drug target for reducing the adverse effects of ischaemic stroke.
Collapse
Affiliation(s)
- Ruoli Chen
- School of Pharmacy, Keele University, Staffordshire, United Kingdom.,Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - U Hin Lai
- School of Pharmacy, Keele University, Staffordshire, United Kingdom
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, China
| | - Ayesha Singh
- School of Pharmacy, Keele University, Staffordshire, United Kingdom.,Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Muhammad Ahmed
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom.,College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Nicholas R Forsyth
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
31
|
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018; 16:263-275. [PMID: 29549824 PMCID: PMC5854930 DOI: 10.1016/j.redox.2018.03.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke is the leading cause of adult disability and mortality in most developing and developed countries. The current best practices for patients with acute ischemic stroke include intravenous tissue plasminogen activator and endovascular thrombectomy for large-vessel occlusion to improve clinical outcomes. However, only a limited portion of patients receive thrombolytic therapy or endovascular treatment because the therapeutic time window after ischemic stroke is narrow. To address the current shortage of stroke management approaches, it is critical to identify new potential therapeutic targets. The mitochondrion is an often overlooked target for the clinical treatment of stroke. Early studies of mitochondria focused on their bioenergetic role; however, these organelles are now known to be important in a wide range of cellular functions and signaling events. This review aims to summarize the current knowledge on the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation and scavenging, electron transport chain dysfunction, apoptosis, mitochondrial dynamics and biogenesis, and inflammation. A better understanding of the roles of mitochondria in ischemia-related neuronal death and protection may provide a rationale for the development of innovative therapeutic regimens for ischemic stroke and other stroke syndromes. Review of current treatment of ischemic stroke indicates deficiency in the contemporary methods. Discuss the mitochondrial ROS-related signaling that affect neuronal fate after ischemic stroke. Mechanisms of mitochondrial dynamics and mitophagy could be pivotal for ischemic stroke. Inhibiting mitochondrion-induced inflammatory response is a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC
| | - Sujira Mukda
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Shang-Der Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung 83301, Taiwan, ROC; College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan, ROC.
| |
Collapse
|