1
|
van Merrienboer TAR, Warlich V, Holewijn S, Driessen W, Yeung KK, Reijnen MMPJ. The Impact of Diabetes Mellitus and Metformin Use on Outcomes After Endovascular Aneurysm Repair. J Clin Med 2025; 14:295. [PMID: 39797377 PMCID: PMC11721816 DOI: 10.3390/jcm14010295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Objective: To study the influence of diabetes mellitus (DM) and metformin treatment on aneurysm sac remodeling after endovascular aneurysm repair (EVAR). Methods: A retrospective single-center cohort analysis was conducted on consecutive patients who underwent elective EVAR for an infrarenal abdominal aortic aneurysm (AAA) between January 2011 and December 2021. Differences between study groups were analyzed and Kaplan-Meier analysis were employed to describe overall and reintervention-free survival. Cox regression analysis was performed to identify predictors of sac shrinkage. Results: A total of 529 patients were included: 74 (14.0%) had DM and metformin treatment, 26 (4.9%) had DM without metformin treatment, and 429 (81.1%) did not have DM. At one-year follow-up, diabetic patients showed significantly less sac shrinkage compared to non-diabetic patients (40.0% vs. 52.0%; p = 0.038), with a trend toward more stable sac behavior in diabetic patients (52% vs. 42%; p = 0.055). At last follow-up, sac shrinkage was significantly less in diabetic patients on metformin treatment compared to non-diabetics (48.6% vs. 59.9%; p = 0.047). No differences in sac shrinkage were observed between diabetics with and without metformin treatment. The presence of endoleak was significantly higher in groups showing stable sac behavior and growth. Through nine-year follow-up, overall survival was significantly less in diabetic patients compared to non-diabetic ones (23.5% vs. 37.5%; p < 0.001). Conclusions: This study showed a negative impact of diabetes mellitus and metformin treatment on sac shrinkage following EVAR. The presence of any type of endoleak was associated with reduced sac shrinkage at both time points. Overall survival was significantly lower in diabetic patients compared to non-diabetic patients.
Collapse
Affiliation(s)
- Tara A. R. van Merrienboer
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, 1105 AZ Amsterdam, The Netherlands
| | - Veerle Warlich
- Department of Surgery, Rijnstate, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands; (V.W.); (S.H.); (W.D.); (M.M.P.J.R.)
| | - Suzanne Holewijn
- Department of Surgery, Rijnstate, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands; (V.W.); (S.H.); (W.D.); (M.M.P.J.R.)
| | - Wouter Driessen
- Department of Surgery, Rijnstate, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands; (V.W.); (S.H.); (W.D.); (M.M.P.J.R.)
| | - Kak K. Yeung
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, 1105 AZ Amsterdam, The Netherlands
| | - Michel M. P. J. Reijnen
- Department of Surgery, Rijnstate, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands; (V.W.); (S.H.); (W.D.); (M.M.P.J.R.)
- Multi-Modality Medical Imaging Group, TechMed Center, University of Twente, Hallenweg 5, 7522 NH Enschede, The Netherlands
| |
Collapse
|
2
|
van Merrienboer TAR, Rombouts KB, Bogunovic N, Mieremet A, Meekel JP, Balm R, de Waard V, Yeung KK. Metformin Improves the Function of Abdominal Aortic Aneurysm Patient-Derived Aortic Smooth Muscle Cells. Eur J Vasc Endovasc Surg 2024:S1078-5884(24)00814-1. [PMID: 39321955 DOI: 10.1016/j.ejvs.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a cardiovascular risk factor. Paradoxically, a decreased risk of abdominal aortic aneurysm (AAA) presence and growth rate is described among patients with T2DM, associated with metformin use. This study aimed to investigate the effect of metformin on AAA patient-derived aortic smooth muscle cell (SMC) function. METHODS Aortic biopsies were obtained from patients with AAA (n = 21) and controls (n = 17) during surgery. The SMCs of non-pathological aortic controls, non-diabetic patients with AAA, and diabetic patients with AAA were cultured from explants and treated with or without metformin. The SMC contractility was measured upon ionomycin stimulation, as well as metabolic activity, proliferation, and migration. mRNA and protein expression of markers for contraction, metabolic activity, proliferation, and inflammation were measured. RESULTS mRNA expression of KLF4 and GYS1, genes involved in metabolic activity, differed between SMCs from non-diabetic and diabetic patients with AAA before metformin stimulation (p < .041). However, the effect of metformin on the various SMC functions was similar between non-diabetic and diabetic patients with AAA. Upon stimulation, metformin increased the contractility of AAA patient SMCs (p = .001). mRNA expression of smoothelin, a marker for the contractile phenotype, increased in SMCs of patients with AAA after treatment with metformin (p = .006). An increase in metabolic activity (p < .001) and a decrease in proliferation (p < .001) and migration were found in the SMCs of controls and patients with AAA with metformin. Increased mRNA expression of PPARγ, a nuclear receptor involved in mitochondrial biogenesis (p < .009), and a decrease in gene expression of Ki-67, a marker for proliferation (p < .005), were observed. Gene expression of inflammation markers MCP-1 and IL-6, and protein expression of NF-κB p65 decreased after treatment with metformin in patients with AAA. CONCLUSION This study found that metformin increases contractility and metabolic activity, and reduces proliferation, migration, and inflammation in aortic SMCs in vitro.
Collapse
Affiliation(s)
- Tara A R van Merrienboer
- Amsterdam UMC location University of Amsterdam, Surgery, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, the Netherlands.
| | - Karlijn B Rombouts
- Amsterdam UMC location University of Amsterdam, Surgery, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, the Netherlands
| | - Natalija Bogunovic
- Amsterdam UMC location University of Amsterdam, Surgery, Amsterdam, the Netherlands
| | - Arnout Mieremet
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, the Netherlands
| | - Jorn P Meekel
- Amsterdam UMC location University of Amsterdam, Surgery, Amsterdam, the Netherlands
| | - Ron Balm
- Amsterdam UMC location University of Amsterdam, Surgery, Amsterdam, the Netherlands
| | - Vivian de Waard
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, the Netherlands
| | - Kak K Yeung
- Amsterdam UMC location University of Amsterdam, Surgery, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Chen J, Hu L, Liu Z. Medical treatments for abdominal aortic aneurysm: an overview of clinical trials. Expert Opin Investig Drugs 2024; 33:979-992. [PMID: 38978286 DOI: 10.1080/13543784.2024.2377747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm is a progressive, segmental, abdominal aortic dilation associated with a high mortality rate. Abdominal aortic aneurysms with diameters larger than 55 mm are associated with a high risk of rupture, and the most effective treatment options are surgical repair. Close observation and lifestyle adjustments are recommended for smaller abdominal aortic aneurysms with lower rupture risk. The development of medical therapies that limit or prevent the progression, expansion, and eventual rupture of abdominal aortic aneurysms remains an unmet clinical need. AREAS COVERED This review provides an overview of completed and ongoing clinical trials examining the efficacies of various drug classes, including antibiotics, antihypertensive drugs, hypolipidemic drugs, hypoglycemic drugs, and other potential therapies for abdominal aortic aneurysms. A search of PubMed, Web of Science, Clinical Trials, and another six clinical trial registries was conducted in January 2024. EXPERT OPINION None of the drugs have enough evidence to indicate that they can effectively inhibit the dilation of abdominal aortic aneurysm. More clinical trial data is required to support the efficacy of propranolol. Future research should also explore different drug delivery mechanisms, such as nanoparticles, to elevate drug concentration at the aneurysm wall.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lanting Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Lin CP, Huang PH, Chen CY, Tzeng IS, Wu MY, Chen JS, Chen JW, Lin SJ. Tributyrin Intake Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm in LDLR-/- Mice. Int J Mol Sci 2023; 24:ijms24098008. [PMID: 37175712 PMCID: PMC10178859 DOI: 10.3390/ijms24098008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial cardiovascular disease with a high risk of death, and it occurs in the infrarenal aorta with vascular dilatation. High blood pressure acts on the aortic wall, resulting in rupture and causing life-threatening intra-abdominal hemorrhage. Vascular smooth muscle cell (VSMC) dysregulation and extracellular matrix (ECM) degradation, especially elastin breaks, contribute to structural changes in the aortic wall. The pathogenesis of AAA includes the occurrence of oxidative stress, inflammatory cell infiltration, elastic fiber fragmentation, VSMC apoptosis, and phenotypic transformation. Tributyrin (TB) is decomposed by intestinal lipase and has a function similar to that of butyrate. Whether TB has a protective effect against AAA remains uncertain. In the present study, we established an AAA murine model by angiotensin II (AngII) induction in low-density lipoprotein receptor knockout (LDLR-/-) mice and investigated the effects of orally administered TB on the AAA size, ratio of macrophage infiltration, levels of matrix metalloproteinase (MMP) expression, and epigenetic regulation. TB attenuates AngII-induced AAA size and decreases elastin fragmentation, macrophage infiltration, and MMP expression in the medial layer of the aorta and reduces the levels of SBP (systolic blood pressure, p < 0.001) and MMP-2 (p < 0.02) in the serum. TB reduces the AngII-stimulated expression levels of MMP2 (p < 0.05), MMP9 (p < 0.05), MMP12, and MMP14 in human aortic smooth muscle cells (HASMCs). Moreover, TB and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, suppress AngII receptor type 1 (AT1R, p < 0.05) activation and increase the expression of acetyl histone H3 by HDAC activity inhibition (p < 0.05). Our findings suggest that TB exerts its protective effect by suppressing the activation of HDAC to attenuate the AngII-induced AT1R signaling cascade.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Division of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Po-Hsun Huang
- Department of Critical Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chi-Yu Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jia-Shiong Chen
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology & Healthcare and Management Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology & Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110301, Taiwan
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
| |
Collapse
|
5
|
Xu B, Li G, Li Y, Deng H, Cabot A, Guo J, Samura M, Zheng X, Chen T, Zhao S, Fujimura N, Dalman RL. Mechanisms and efficacy of metformin-mediated suppression of established experimental abdominal aortic aneurysms. JVS Vasc Sci 2023; 4:100102. [PMID: 37168662 PMCID: PMC10165270 DOI: 10.1016/j.jvssci.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 04/03/2023] Open
Abstract
Objective Metformin treatment attenuates experimental abdominal aortic aneurysm (AAA) formation, as well as reduces clinical AAA diameter enlargement in patients with diabetes. The mechanisms of metformin-mediated aneurysm suppression, and its efficacy in suppressing established experimental aneurysms, remain uncertain. Methods Experimental AAAs were created in male C57BL/6J mice via intra-aortic infusion of porcine pancreatic elastase. Metformin alone (250 mg/kg), or metformin combined with the 5' AMP-activated protein kinase (AMPK) antagonist Compound C (10 mg/kg), were administered to respective mouse cohorts daily beginning 4 days following AAA induction. Further AAA cohorts received either the AMPK agonist AICA riboside (500 mg/kg) as positive, or vehicle (saline) as negative, controls. AAA progression in all groups was assessed via serial in vivo ultrasonography and histopathology at sacrifice. Cytokine-producing T cells and myeloid cellularity were determined by flow cytometric analyses. Results Metformin limited established experimental AAA progression at 3 (-85%) and 10 (-68%) days following treatment initiation compared with saline control. Concurrent Compound C treatment reduced this effect by approximately 50%. In metformin-treated mice, reduced AAA progression was associated with relative elastin preservation, smooth muscle cell preservation, and reduced mural leukocyte infiltration and neoangiogenesis compared with vehicle control group. Metformin also resulted in reduced interferon-γ-, but not interleukin-10 or -17, producing splenic T cells in aneurysmal mice. Additionally, metformin therapy increased circulating and splenic inflammatory monocytes (CD11b+Ly-6Chigh), but not neutrophils (CD11b+Ly-6G+), with no effect on respective bone marrow cell populations. Conclusions Metformin treatment suppresses existing experimental AAA progression in part via AMPK agonist activity, limiting interferon-γ-producing T cell differentiation while enhancing circulating and splenic inflammatory monocyte retention.
Collapse
|
6
|
Yin L, Gregg AC, Riccio AM, Hoyt N, Islam ZH, Ahn J, Le Q, Patel P, Zhang M, He X, McKinney M, Kent E, Wang B. Dietary therapy in abdominal aortic aneurysm - Insights from clinical and experimental studies. Front Cardiovasc Med 2022; 9:949262. [PMID: 36211542 PMCID: PMC9532600 DOI: 10.3389/fcvm.2022.949262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent vascular disease with high mortality rates upon rupture. Despite its prevalence in elderly populations, there remain limited treatment options; invasive surgical repair, while risky, is the only therapeutic intervention with proven clinical benefits. Dietary factors have long been suggested to be closely associated with AAA risks, and dietary therapies recently emerged as promising avenues to achieve non-invasive management of a wide spectrum of diseases. However, the role of dietary therapies in AAA remains elusive. In this article, we will summarize the recent clinical and pre-clinical efforts in understanding the therapeutic and mechanistic implications of various dietary patterns and therapeutic approaches in AAA.
Collapse
Affiliation(s)
- Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Zain Hussain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jungeun Ahn
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Quang Le
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Paranjay Patel
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Xinran He
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Matthew McKinney
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Eric Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Bowen Wang
| |
Collapse
|
7
|
Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022; 153:113340. [PMID: 35780618 PMCID: PMC9514980 DOI: 10.1016/j.biopha.2022.113340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The cardiovascular field is still searching for a treatment for abdominal aortic aneurysms (AAA). This inflammatory disease often goes undiagnosed until a late stage and associated rupture has a high mortality rate. No pharmacological treatment options are available. Three hallmark factors of AAA pathology include inflammation, extracellular matrix remodeling, and vascular smooth muscle dysfunction. Here we discuss drugs for AAA treatment that have been studied in clinical trials by examining the drug targets and data present for each drug's ability to regulate the aforementioned three hallmark pathways in AAA progression. Historically, drugs that were examined in interventional clinical trials for treatment of AAA were repurposed therapeutics. Novel treatments (biologics, small-molecule compounds etc.) have not been able to reach the clinic, stalling out in pre-clinical studies. Here we discuss the backgrounds of previous investigational drugs in hopes of better informing future development of potential therapeutics. Overall, the highlighted themes discussed here stress the importance of both centralized anti-inflammatory drug targets and rigor of translatability. Exceedingly few murine studies have examined an intervention-based drug treatment in halting further growth of an established AAA despite interventional treatment being the therapeutic approach taken to treat AAA in a clinical setting. Additionally, data suggest that a potentially successful drug target may be a central inflammatory biomarker. Specifically, one that can effectively modulate all three hallmark factors of AAA formation, not just inflammation. It is suggested that inhibiting PGE2 formation with an mPGES-1 inhibitor is a leading drug target for AAA treatment to this end.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
8
|
Lei L, Zhou Y, Wang T, Zheng Z, Chen L, Pan Y. Activation of AMP-activated protein kinase ablated the formation of aortic dissection by suppressing vascular inflammation and phenotypic switching of vascular smooth muscle cells. Int Immunopharmacol 2022; 112:109177. [PMID: 36049351 DOI: 10.1016/j.intimp.2022.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic dissection (AD) is a fatal vascular disease in absence of effective pharmaceutical therapy. Adenosine monophosphate-activated protein kinase α (AMPKα) plays a critical role in various cardiovascular diseases. Whether AMPKα is involved in the pathogenesis of aortic dissection remains unknown. We aimed to determine whether activation of AMPKα prevents the formation of AD. METHODS AND RESULTS Reduced expression of phosphorylated AMPKα (Thr172) and exacerbated phenotypic switching were observed in human aortic tissues from aortic dissection patients compared with those in tissues from controls. In vivo, the formation of aortic dissection in ApoE-/- mice was successfully induced by continuous infusion of angiotensin II (AngII) for two weeks, characterized by the activation of vascular inflammation, infiltration of macrophages and phenotypic switching of vascular smooth muscle cells (VSMCs). rAAV2-mediated overexpression of constitutively active AMPKα (CA-AMPKα) enhanced the expression of phosphorylated AMPKα (Thr172) and attenuated AngII-induced occurrence of aortic dissection by suppressing the infiltration of macrophages, activation of vascular inflammation and phenotypic switching of VSMCs. The pathogenesis above was conversely exacerbated by rAAV2-mediated overexpression of dominant negative AMPKα2 (DN-AMPKα). In vitro, we demonstrated that the administration of an AMPK agonist (AICAR) or transfection of CA-AMPKα induced the activation of AMPKα and then ameliorated AngII-induced phenotypic switching in the VSMCs and inflammation in the bone marrow-derived macrophages (BMDMs). This could be reversed by the addition of AMPK inhibitor compound C or transfection of DN-AMPKα. CONCLUSION Impaired activation of AMPKα may increase the susceptibility to aortic dissection. Our findings verified the protective effects of AMPKα on the formation of aortic dissection and may provide evidence for clinical prevention or treatment.
Collapse
Affiliation(s)
- Lei Lei
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanrong Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiemao Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Zheng
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youmin Pan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Niu W, Shao J, Yu B, Liu G, Wang R, Dong H, Che H, Li L. Association Between Metformin and Abdominal Aortic Aneurysm: A Meta-Analysis. Front Cardiovasc Med 2022; 9:908747. [PMID: 35677692 PMCID: PMC9168037 DOI: 10.3389/fcvm.2022.908747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To systematically examine the association between metformin and abdominal aortic aneurysm (AAA) and provide a basis for the treatment of AAA. Methods Pubmed, Embase, Cochrane Library, and Ovid databases were searched by computer to identify the literature related to metformin and AAA published until February 2022. The literature was screened according to the inclusion and exclusion criteria, data were extracted, and a quality assessment was conducted. The meta-analysis was performed using Stata 16.0 and RevMan 5.3 software. Results Seven articles containing a total of 10 cohort studies (85,050 patients) met the inclusion criteria and were included in the review. Meta-analysis showed that metformin can limit the expansion of AAA (MD = – 0.72, 95% CI: – 1.08 ~ −0.37, P < 0.00001), as well as reduce AAA repair or AAA rupture-related mortality (OR = 0.80, 95% CI:0.66 ~ 0.96, P = 0.02). The difference was statistically significant (P < 0.05). Conclusion Metformin can limit the expansion of AAA and reduce the incidence of AAA and postoperative mortality. However, further biological experiments and clinical trials still need to be conducted to support this.
Collapse
Affiliation(s)
- Wenqiang Niu
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Juan Shao
- Department of Dermatology, Yantai Yuhuangding Hospital, Yantai, China
| | - Benxiang Yu
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Guolong Liu
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Ran Wang
- Nursing Department, Heze Medical College, Heze, China
| | - Hengyang Dong
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Haijie Che
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
- *Correspondence: Haijie Che
| | - Lubin Li
- Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai, China
- Lubin Li
| |
Collapse
|
10
|
Magdy S, Alaaeldin E, Fathalla Z, Alaaeldin R, Elrehany M, Saber EA, Abdel-Aziz RT, Mansour HF. Metformin-loaded ethosomes with promoted anti-proliferative activity in melanoma cell line B16, and wound healing aptitude: Development, characterization and in vivo evaluation. Int J Pharm 2022; 621:121781. [PMID: 35489604 DOI: 10.1016/j.ijpharm.2022.121781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
The present work deals with the development of metformin-loaded ethosomes for localized treatment of melanoma and wound healing. Different ethosomal formulations were prepared using different concentrations of ethanol adopting injection technique. The developed formulations were investigated for entrapment efficiency, ex-vivo skin permeation, vesicle size, morphology and permeation kinetics. The optimized formulation was loaded in 5 % carbomer gel that was evaluated for skin permeation, cytotoxic effect against melanoma mice B16 cell line and for wound healing action. Ethosomes having 30 % v/v ethanol displayed superior entrapment for metformin % (55.3±0.07) ; and a highly efficient permeation via mice skin (85.8±3.7). The related carbomer ethosomal gel exhibited higher skin permeation compared to the untreated metformin gel (P < 0.001). The metformin ethosomes had a substantial antiproliferative activity against melanoma B16 cells compared to corresponding metformin solution as shown by the lower IC50 values (56.45±1.47 and 887.3±23.2, respectively, P<0.05) and tumour cell viability (P<0.05). The ethosomal system had a significant wound healing action in mice (80.5±1.9%) that was superior to that of the marketed product Mebo® ointment (56±1 %), P<0.05. This ethosomal system demonstrated outstanding induction of the mRNA levels of growth factors (IGF-1, FGF-1, PDGF-B and TGF-β) that are essential in the healing process. Those findings were supported by histopathologic examination of wound sections of different treated groups. Thus, the study proved that metformin ethosomes as a promising drug delivery system and a conceivable therapeutic approach for treatment of melanoma and wound healing.
Collapse
Affiliation(s)
- Shrouk Magdy
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Deraya University, Minia, Egypt.
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt; Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Histology and Cell Biology, Deraya University, Minia, Egypt
| | - Rasha Ta Abdel-Aziz
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
11
|
Huang Z, Su H, Zhang T, Li Y. Double-edged sword of diabetes mellitus for abdominal aortic aneurysm. Front Endocrinol (Lausanne) 2022; 13:1095608. [PMID: 36589814 PMCID: PMC9800781 DOI: 10.3389/fendo.2022.1095608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) has been proved to contribute to multiple comorbidities that are risk factors for abdominal aortic aneurysm (AAA). Remarkably, evidences from epidemiologic studies have demonstrated a negative association between the two disease states. On the other hand, hyperglycemic state was linked to post-operative morbidities following AAA repair. This review aims to provide a thorough picture on the double-edged nature of DM and major hypoglycemic medications on prevalence, growth rate and rupture of AAA, as well as DM-associated prognosis post AAA repair. METHODS We performed a comprehensive search in electronic databases to look for literatures demonstrating the association between DM and AAA. The primary focus of the literature search was on the impact of DM on the morbidity, enlargement and rupture rate, as well as post-operative complications of AAA. The role of antidiabetic medications was also explored. RESULTS Retrospective epidemiological studies and large database researches associated the presence of DM with decreased prevalence, slower expansion and limited rupture rate of AAA. Major hypoglycemic drugs exert similar protective effect as DM against AAA by targeting pathological hallmarks involved in AAA formation and progression, which were demonstrated predominantly by animal studies. Nevertheless, presence of DM or postoperative hyperglycemia was linked to poorer short-term and long-term prognosis, primarily due to greater risk of infection, longer duration of hospital stays and death. CONCLUSION While DM is a positive factor in the formation and progression of AAA, it is also associated with higher risk of negative outcomes following AAA repair. Concomitant use of antidiabetic medications may contribute to the protective mechanism of DM in AAA, but further studies are still warranted to explore their role following AAA repair.
Collapse
Affiliation(s)
- Zijia Huang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiling Su
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiejun Zhang, ; Yuwen Li,
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiejun Zhang, ; Yuwen Li,
| |
Collapse
|
12
|
Golledge J, Arnott C, Moxon J, Monaghan H, Norman R, Morris D, Li Q, Jones G, Roake J, Bown M, Neal B. Protocol for the Metformin Aneurysm Trial (MAT): a placebo-controlled randomised trial testing whether metformin reduces the risk of serious complications of abdominal aortic aneurysm. Trials 2021; 22:962. [PMID: 34961561 PMCID: PMC8710921 DOI: 10.1186/s13063-021-05915-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Multiple observational studies have associated metformin prescription with reduced progression of abdominal aortic aneurysm (AAA). The Metformin Aneurysm Trial (MAT) will test whether metformin reduces the risk of AAA rupture-related mortality or requirement for AAA surgery (AAA events) in people with asymptomatic aneurysms. Methods MAT is an international, multi-centre, prospective, parallel-group, randomised, placebo-controlled trial. Participants must have an asymptomatic AAA measuring at least 35 mm in maximum diameter, no diabetes, no contraindication to metformin and no current plans for surgical repair. The double-blind period is preceded by a 6-week, single-blind, active run-in phase in which all potential participants receive metformin. Only patients tolerating metformin by taking at least 80% of allocated medication will enter the trial and be randomised to 1500 mg of metformin XR or an identical placebo. The primary outcome is the proportion of AAA events defined as rupture-related mortality or need for surgical repair. Secondary outcomes include AAA growth, major adverse cardiovascular events and health-related quality of life. In order to test if metformin reduced the risk of AAA events by at least 25%, 616 primary outcome events will be required (power 90%, alpha 0.05). Discussion Currently, there is no drug therapy for AAA. Past trials have found no convincing evidence of the benefit of multiple blood pressure lowering, antibiotics, a mast cell inhibitor, an anti-platelet drug and a lipid-lowering medication on AAA growth. MAT is one of a number of trials now ongoing testing metformin for AAA. MAT, unlike these other trials, is designed to test the effect of metformin on AAA events. The international collaboration needed for MAT will be challenging to achieve given the current COVID-19 pandemic. If this challenge can be overcome, MAT will represent a trial unique within the AAA field in its large size and design. Trial registration Australian Clinical Trials ACTRN12618001707257. Registered on 16 October 2018
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia. .,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia. .,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia. .,George Institute Australia, Sydney, New South Wales, Australia.
| | - Clare Arnott
- George Institute Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Helen Monaghan
- George Institute Australia, Sydney, New South Wales, Australia
| | - Richard Norman
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Dylan Morris
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Qiang Li
- George Institute Australia, Sydney, New South Wales, Australia
| | - Greg Jones
- Department of Surgical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Justin Roake
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Matt Bown
- Department of Cardiovascular Services, University of Leicester, Leicester, UK
| | - Bruce Neal
- George Institute Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Busch A, Bleichert S, Ibrahim N, Wortmann M, Eckstein HH, Brostjan C, Wagenhäuser MU, Goergen CJ, Maegdefessel L. Translating mouse models of abdominal aortic aneurysm to the translational needs of vascular surgery. JVS Vasc Sci 2021; 2:219-234. [PMID: 34778850 PMCID: PMC8577080 DOI: 10.1016/j.jvssci.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Abdominal aortic aneurysm (AAA) is a condition that has considerable socioeconomic impact and an eventual rupture is associated with high mortality and morbidity. Despite decades of research, surgical repair remains the treatment of choice and no medical therapy is currently available. Animal models and, in particular, murine models, of AAA are a vital tool for experimental in vivo research. However, each of the different models has individual limitations and provide only partial mimicry of human disease. This narrative review addresses the translational potential of the available mouse models, highlighting unanswered questions from a clinical perspective. It is based on a thorough presentation of the available literature and more than a decade of personal experience, with most of the available models in experimental and translational AAA research. Results From all the models published, only the four inducible models, namely the angiotensin II model (AngII), the porcine pancreatic elastase perfusion model (PPE), the external periadventitial elastase application (ePPE), and the CaCl2 model have been widely used by different independent research groups. Although the angiotensin II model provides features of dissection and aneurysm formation, the PPE model shows reliable features of human AAA, especially beyond day 7 after induction, but remains technically challenging. The translational value of ePPE as a model and the combination with β-aminopropionitrile to induce rupture and intraluminal thrombus formation is promising, but warrants further mechanistic insights. Finally, the external CaCl2 application is known to produce inflammatory vascular wall thickening. Unmet translational research questions include the origin of AAA development, monitoring aneurysm growth, gender issues, and novel surgical therapies as well as novel nonsurgical therapies. Conclusion New imaging techniques, experimental therapeutic alternatives, and endovascular treatment options provide a plethora of research topics to strengthen the individual features of currently available mouse models, creating the possibility of shedding new light on translational research questions.
Collapse
Affiliation(s)
- Albert Busch
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| | - Sonja Bleichert
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Nahla Ibrahim
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus Wortmann
- Department of Vascular and Endovascular Surgery, Universitaetsklinik Heidelberg, Heidelberg, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Christine Brostjan
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus U Wagenhäuser
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Ind
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| |
Collapse
|
14
|
Kunath A, Unosson J, Friederich-Persson M, Bjarnegård N, Becirovic-Agic M, Björck M, Mani K, Wanhainen A, Wågsäter D. Inhibition of angiotensin-induced aortic aneurysm by metformin in apolipoprotein E-deficient mice. JVS Vasc Sci 2021; 2:33-42. [PMID: 34617056 PMCID: PMC8489247 DOI: 10.1016/j.jvssci.2020.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 10/26/2022] Open
Abstract
Objective Metformin is associated with a reduced incidence and growth of abdominal aortic aneurysms (AAAs). The aim of the present study was to investigate the inhibitory effects of metformin on AAA development and possible underlying mechanisms in experimentally induced AAAs in mice, along with the possible synergistic effects of metformin and imatinib. Methods Angiotensin II was used to induce AAAs in apolipoprotein E knockout (ApoE -/- ) mice for 28 days. The mice were treated with metformin (n = 11), metformin combined with imatinib (n = 7), or vehicle (n = 12), starting 3 days before angiotensin II infusion. Ultrasound examination was used to analyze aneurysm formation. Cholesterol and blood pressure levels were measured at the start and end of the study. Gene array and quantitative polymerase chain reaction were used to analyze the changes in gene expression in the aorta. Wire myography was used to study vascular function. Results Metformin (n = 11) suppressed the formation and progression of AAAs by 50% compared with the vehicle controls (n = 12), with no further effects from imatinib (n = 7). Metformin reduced total cholesterol and mRNA expression of SPP1 (encoding osteopontin), MMP12, and the glycoprotein genes Gpnmb and Clec7a. Furthermore, metformin inhibited blood pressure increases and reduced vascular contractions, as determined by wire myography, and restored the anticontractile function of perivascular adipose tissue. Conclusion Metformin inhibited aneurysm formation and progression and normalized vascular function in ApoE -/- mice with no additional effect of imatinib. This might be mediated by the protective effects on vascular endothelial function and perivascular adipose tissue via reduced expression of genes promoting inflammation, including SPP1, MMP12, Gpnmb, and Clec7a. Clinical relevance Retrospective studies of the effects of metformin in patients with aneurysm have so far only been performed of those with type 2 diabetes. The present study shows that metformin has effects on nondiabetic mice and revealed the mechanistic effects mediated by the drug that could also be important to study as outcomes in humans. Future clinical trials using metformin are warranted in patients without diabetes with abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Anne Kunath
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jon Unosson
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Niclas Bjarnegård
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Martin Björck
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Kevin Mani
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Wanhainen
- Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Thanigaimani S, Singh TP, Unosson J, Phie J, Moxon J, Wanhainen A, Golledge J. Editor's Choice - Association Between Metformin Prescription and Abdominal Aortic Aneurysm Growth and Clinical Events: a Systematic Review and Meta-Analysis. Eur J Vasc Endovasc Surg 2021; 62:747-756. [PMID: 34556425 DOI: 10.1016/j.ejvs.2021.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE A meta-analysis of the association between metformin prescription and abdominal aortic aneurysm (AAA) growth and events (rupture or surgical repair) was performed. METHODS Open source databases were searched for observational studies reporting the association between metformin prescription and AAA growth or events. Meta-analyses were performed using random effects models. The risk of bias of included studies was assessed using a quality assessment tool developed in a previous systematic review. Sensitivity analyses restricted to people with diabetes, leave one out analyses, and an individual patient risk factor adjusted sub-analysis were performed. Funnel plots assessed reporting bias. RESULTS Eight studies comprising 153 553 patients were included, of whom 35 240 were and 118 313 were not prescribed metformin. Pooled weighted mean (± standard deviation) AAA growth was significantly reduced in patients prescribed metformin (0.9 ± 0.4 mm/year) compared with those not receiving the medication (1.8 ± 0.4 mm/year; weighted mean difference [WMD] 0.8 mm/year, 95% confidence interval [CI] 0.5 - 1.1; p < .001; I2 = 89%). Leave one out analysis suggested that the significance of findings did not change after removal of individual studies. A sub-analysis within people with diabetes suggested that metformin reduced AAA growth (WMD 0.7 mm/year, 95% CI 0.3 - 1.0). Metformin prescription was associated with a reduced risk of AAA events (risk ratio 0.6, 95% CI 0.4 - 0.9, p = .028). Three, four, and one studies had low, moderate, and high risk of bias, respectively. Individual patient data analysis suggested that metformin prescription slowed annual AAA growth by 0.5 mm/year (95% CI 0.2 - 0.7). The GRADE summary suggested that the certainty of evidence that metformin limited AAA growth and prevented AAA events was very low. CONCLUSION Observational studies suggest that metformin prescription is associated with a clinically important significant reduction in both growth and clinically relevant events in people with AAA. These findings support the need for randomised trials to examine the benefit of metformin.
Collapse
Affiliation(s)
- Shivshankar Thanigaimani
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Tejas P Singh
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia; The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia
| | - Jon Unosson
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - James Phie
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Joseph Moxon
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia.
| |
Collapse
|
16
|
Ngetich E, Lapolla P, Chandrashekar A, Handa A, Lee R. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med 2021; 27:77-87. [PMID: 34392748 PMCID: PMC8808362 DOI: 10.1177/1358863x211034574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an important vascular disease carrying significant mortality implications due to the risk of aneurysm rupture. Current management relies exclusively on surgical repair as there is no effective medical therapy. A key element of AAA pathogenesis is the chronic inflammation mediated by inflammatory cells releasing proteases, including the enzyme dipeptidyl peptidase IV (DPP-IV). This review sought to recapitulate available evidence on the involvement of DPP-IV in AAA development. Further, we assessed the experimental use of currently available DPP-IV inhibitors for AAA management in murine models. Embase, Medline, PubMed, and Web of Science databases were utilised to access the relevant studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A narrative synthesis approach was used. Sixty-four studies were identified from the searched databases; a final 11 were included in the analysis. DPP-IV was reported to be significantly increased in both AAA tissue and plasma of patients and correlated with AAA growth. DPP-IV inhibitors (sitagliptin, vildagliptin, alogliptin, and teneligliptin) were all shown to attenuate AAA formation in murine models by reducing monocyte differentiation, the release of reactive oxygen species (ROS), and metalloproteinases (MMP-2 and MMP-9). DPP-IV seems to play a role in AAA pathogenesis by propagating the inflammatory microenvironment. This is supported by observations of decreased AAA formation and reduction in macrophage infiltration, ROS, matrix MMPs, and interleukins following the use of DPP-IV inhibitors in murine models. There is an existing translational gap from preclinical observations to clinical trials in this important and novel mechanism of AAA pathogenesis. This prior literature highlights the need for further research on molecular targets involved in AAA formation.
Collapse
Affiliation(s)
- Elisha Ngetich
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
17
|
Gao L, Chen M, Li F. MiR-222-3p downregulation prompted the migration, invasion and recruitment of endothelial progenitor cells via ADIPOR1 expression increase-induced AMKP activation. Microvasc Res 2021; 135:104134. [PMID: 33428882 DOI: 10.1016/j.mvr.2021.104134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Clinical data show that aneurysm rupture causes high mortality in aged men. MicroRNAs (miRNAs) were reported to regulate endothelial progenitor cells (EPCs) which play a vital role in repairing endothelial damage and maintaining vascular integrity. This study identified a novel miRNA regulator for the functions of EPCs in aneurysm repair. METHODS Abdominal aortic aneurysm (AAA) model was established on Sprague-Dawley rats which later underwent antagomiR-222 treatment. The histopathological changes of AAA rats were examined by hematoxylin-eosin staining. Flow cytometry was performed to quantify EPCs in peripheral blood and identify EPCs isolated from the rat femur. The potential target of miR-222-3p was predicted by TargetScan v7.2 and validated by Dual-luciferase reporter assay. The effects of miR-222-3p and ADIPOR1 on the migration, invasion and tube formation of EPCs were evaluated by wound healing, Transwell and tube formation assays. The expressions of miR-222-3p and ADIPOR1 in aortic aneurysm tissues and EPCs were assessed by qRT-PCR or Western blot. RESULTS AAA exhibited histopathological abnormality, a decreased number of EPCs in the peripheral blood and an increased miR-222-3p expression. AntagomiR-222 injection reversed all these phenomena in AAA rats. Upregulating miR-222-3p expression inhibited the migration, invasion, and tube formation of EPCs, and the expressions of ADIPOR1 and phosphorylated-AMKP, while downregulating miR-222-3p expression exerted opposite effects in EPCs. ADIPOR1 was identified as a target gene of miR-222-3p. Overexpressing ADIPOR1 abrogated the effects of miR-222-3p upregulation on EPCs. CONCLUSION Downregulated miR-222-3p prompted the migration, invasion and recruitment of EPCs by targeting ADIPOR1-induced AMKP activation.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Antagomirs/genetics
- Antagomirs/metabolism
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation
- Endothelial Progenitor Cells/enzymology
- Endothelial Progenitor Cells/pathology
- Enzyme Activation
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neovascularization, Physiologic
- Phosphorylation
- Rats, Sprague-Dawley
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Signal Transduction
- Rats
Collapse
Affiliation(s)
- Lingyun Gao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China
| | - Mingxiang Chen
- Department of Heart and Vascular Surgery, Cardiovascular Disease Center, The Third Affiliated Hospital of Chongqing Medical University, No. 1 Shuanghu Branch Road, Huixing Street, Yubei District, Chongqing 401120, China
| | - Fuping Li
- Department of Heart and Vascular Surgery, Cardiovascular Disease Center, The Third Affiliated Hospital of Chongqing Medical University, No. 1 Shuanghu Branch Road, Huixing Street, Yubei District, Chongqing 401120, China.
| |
Collapse
|
18
|
He J, Li N, Fan Y, Zhao X, Liu C, Hu X. Metformin Inhibits Abdominal Aortic Aneurysm Formation through the Activation of the AMPK/mTOR Signaling Pathway. J Vasc Res 2021; 58:148-158. [PMID: 33601368 DOI: 10.1159/000513465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Epidemiological evidence suggests that the antidiabetic drug metformin (MET) can also inhibit abdominal aortic aneurysm (AAA) formation. However, the underlying protective mechanism remains unknown. It has been reported that phosphorylated AMP-activated protein kinase (AMPK) levels are significantly lower in AAA tissues than control aortic tissues. AMPK activation can inhibit the downstream signaling molecule called mechanistic target of rapamycin (mTOR), which has also been reported be upregulated in thoracic aneurysms. Thus, blocking mTOR signaling could attenuate AAA progression. MET is a known agonist of AMPK. Therefore, in this study, we investigated if MET could inhibit formation of AAA by activating the AMPK/mTOR signaling pathway. MATERIALS AND METHODS The AAA animal model was induced by intraluminal porcine pancreatic elastase (PPE) perfusion in male Sprague Dawley rats. The rats were treated with MET or compound C (C.C), which is an AMPK inhibitor. AAA formation was monitored by serial ultrasound. Aortas were collected 4 weeks after surgery and subjected to immunohistochemistry, Western blot, and transmission electron microscopy analyses. RESULTS MET treatment dramatically inhibited the formation of AAA 4 weeks after PPE perfusion. MET reduced the aortic diameter, downregulated both macrophage infiltration and matrix metalloproteinase expression, decreased neovascularization, and preserved the contractile phenotype of the aortic vascular smooth muscle cells. Furthermore, we detected an increase in autophagy after MET treatment. All of these effects were reversed by the AMPK inhibitor C.C. CONCLUSION This study demonstrated that MET activates AMPK and suppresses AAA formation. Our study provides a novel mechanism for MET and suggests that MET could be potentially used as a therapeutic candidate for preventing AAA.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/ultrastructure
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Dilatation, Pathologic
- Disease Models, Animal
- Enzyme Activation
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Metformin/pharmacology
- Neovascularization, Pathologic
- Pancreatic Elastase
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Vascular Remodeling/drug effects
- Rats
Collapse
Affiliation(s)
- Jiaan He
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Nan Li
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yichuan Fan
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xingzhi Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chengwei Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xinhua Hu
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China,
| |
Collapse
|
19
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
20
|
Okishio S, Yamaguchi K, Ishiba H, Tochiki N, Yano K, Takahashi A, Kataoka S, Okuda K, Seko Y, Liu Y, Fujii H, Takahashi D, Ito Y, Kamon J, Umemura A, Moriguchi M, Yasui K, Okanoue T, Itoh Y. PPARα agonist and metformin co-treatment ameliorates NASH in mice induced by a choline-deficient, amino acid-defined diet with 45% fat. Sci Rep 2020; 10:19578. [PMID: 33177546 PMCID: PMC7658250 DOI: 10.1038/s41598-020-75805-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
We explored the beneficial effects of GW7647, a peroxisome proliferator activated receptor α (PPARα) agonist, and metformin, an anti-diabetic drug on an advanced nonalcoholic steatohepatitis (NASH) model in rodents and investigated the possible mechanisms involved. Mice were fed control chow or a choline-deficient l-amino acid-defined diet containing 45% fat (HF-CDAA). The mice fed HF-CDAA diets for 16 weeks were divided into four groups: the no treatment (HF-CDAA), HF-CDAA containing 1000 mg/kg metformin, HF-CDAA containing 10 mg/kg GW7647, and HF-CDAA with both metformin and GW7647 groups. Metformin alone slightly deteriorated the aspartate and alanine aminotransferase (AST/ALT) values, whereas co-treatment with GW7647 and metformin greatly suppressed liver injury and fibrosis via activation of the AMP-activated protein kinase (AMPK) pathway. Further study revealed that co-treatment decreased the expression of inflammatory-, fibrogenesis-, and endoplasmic reticulum (ER) stress-related genes and increased the oxidized nicotinamide adenine dinucleotide (NAD)/reduced nicotinamide adenine dinucleotide (NADH) ratio, suggesting the superiority of co-treatment due to restoration of mitochondrial function. The additive benefits of a PPARα agonist and metformin in a HF-CDAA diet-induced advanced NASH model was firstly demonstrated, possibly through restoration of mitochondrial function and AMPK activation, which finally resulted in suppression of hepatic inflammation, ER stress, then, fibrosis.
Collapse
Affiliation(s)
- Shinya Okishio
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan.
| | - Hiroshi Ishiba
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Nozomi Tochiki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Kota Yano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Aya Takahashi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Keiichiroh Okuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Yu Liu
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Hideki Fujii
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Daiki Takahashi
- Pharmaceutical Research Department, Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Yusuke Ito
- Pharmaceutical Research Department, Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Junji Kamon
- Pharmaceutical Research Department, Biological Research Laboratories, Nissan Chemical Corporation, Saitama, Japan
| | - Atsushi Umemura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Kohichiroh Yasui
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
21
|
Rimmer LJ, Moughal S, Bashir M. Immunological therapeutics in acute aortic syndrome. Asian Cardiovasc Thorac Ann 2020; 28:512-519. [PMID: 32674584 DOI: 10.1177/0218492320943350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute aortic syndrome is a group of interlinked conditions with common presenting symptoms, including aortic dissection, penetrating atherosclerotic ulcer, and intramural hematoma. Pharmacological management of acute aortic syndrome is a growing area, with key themes to address the underlying inflammatory pathways believed to be the cause. Research into interleukins, matrix metalloproteinases, and granulocyte macrophage colony-stimulating factor are just some of the many immunological properties being investigated and translated into medical therapies. Stem cell experiments may indicate further advances in the pathologies of acute aortic syndrome. The study of pharmacogenomics to improve treatment across different genomes is also a novel area outlined in this paper.
Collapse
Affiliation(s)
- Lara Jane Rimmer
- Vascular Surgery Department, 155510Royal Blackburn Teaching Hospital, Blackburn, UK
| | - Saad Moughal
- Vascular Surgery Department, 155510Royal Blackburn Teaching Hospital, Blackburn, UK
| | - Mohamad Bashir
- Vascular Surgery Department, 155510Royal Blackburn Teaching Hospital, Blackburn, UK
| |
Collapse
|
22
|
Wild-type p53-induced phosphatase 1 promotes vascular smooth muscle cell proliferation and neointima hyperplasia after vascular injury via p-adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin complex 1 pathway. J Hypertens 2020; 37:2256-2268. [PMID: 31136458 PMCID: PMC6784764 DOI: 10.1097/hjh.0000000000002159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vascular smooth muscle cell (VSMC) proliferation is a crucial cause of vascular neointima hyperplasia and restenosis, thus limiting the long-term efficacy of percutaneous vascular intervention. We explored the role of wild-type p53-induced phosphatase 1 (Wip1), a potent regulator of tumorigenesis and atherosclerosis, in VSMC proliferation and neointima hyperplasia. METHODS AND RESULTS Animal model of vascular restenosis was established in wild type C57BL/6J and VSMC-specific Tuberous Sclerosis 1 (TSC1)-knockdown mice by wire injury. We observed increased protein levels of Wip1, phospho (p)-S6 Ribosomal Protein (S6), p-4EBP1 but decreased p-adenosine 5'-monophosphate-activated protein kinase (AMPK)α both in carotid artery at day 28 after injury and in VSMCs after 48 h of platelet derived growth factor-BB (PDGF-BB) treatment. By using hematoxylin-eosin staining, Ki-67 immunohistochemical staining, cell counting kit-8 assay and Ki-67 immunofluorescence staining, we found Wip1 antagonist GSK2830371 (GSK) or mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin both obviously reversed the neointima formation and VSMC proliferation induced by wire injury and PDGF-BB, respectively. GSK also reversed the increase in mRNA level of Collagen I after wire injury. However, GSK had no obvious effects on VSMC migration induced by PDGF-BB. Simultaneously, TSC1 knockdown as well as AMPK inhibition by Compound C abolished the vascular protective and anti-proliferative effects of Wip1 inhibition. Additionally, suppression of AMPK also reversed the declined mTORC1 activity by GSK. CONCLUSION Wip1 promotes VSMC proliferation and neointima hyperplasia after wire injury via affecting AMPK/mTORC1 pathway.
Collapse
|
23
|
Liu S, Huang T, Liu R, Cai H, Pan B, Liao M, Yang P, Wang L, Huang J, Ge Y, Xu B, Wang W. Spermidine Suppresses Development of Experimental Abdominal Aortic Aneurysms. J Am Heart Assoc 2020; 9:e014757. [PMID: 32308093 PMCID: PMC7428527 DOI: 10.1161/jaha.119.014757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background The protective effects of polyamines on cardiovascular disease have been demonstrated in many studies. However, the roles of spermidine, a natural polyamine, in abdominal aortic aneurysm (AAA) disease have not been studied. In this study, we investigated the influence and potential mechanisms of spermidine treatment on experimental AAA disease. Methods and Results Experimental AAAs were induced in 8‐ to 10‐week‐old male C57BL/6J mice by transient intra‐aortic infusion of porcine pancreatic elastase. Spermidine was administered via drinking water at a concentration of 3 mmol/L. Spermidine treatment prevented experimental AAA formation with preservation of medial elastin and smooth muscle cells. In immunostaining, macrophages, T cells, neutrophils, and neovessels were significantly reduced in aorta of spermidine‐treated, as compared with vehicle‐treated elastase‐infused mice. Additionally, flow cytometric analysis showed that spermidine treatment reduced aortic leukocyte infiltration and circulating inflammatory cells. Furthermore, we demonstrated that spermidine treatment promoted autophagy‐related proteins in experimental AAAs using Western blot analysis, immunostaining, and transmission electron microscopic examination. Autophagic function was evaluated for human abdominal aneurysmal and nonaneurysmal adjacent aortae from AAA patients using Western blot analysis and immunohistochemistry. Dysregulated autophagic function, as evidenced by increased SQSTM1/p62 protein and phosphorylated mTOR, was found in aneurysmal, as compared with nonaneurysmal, aortic segments. Conclusions Our results suggest that spermidine supplementation limits experimental AAA formation associated with preserved aortic structural integrity, attenuated aortic inflammatory infiltration, reduced circulating inflammatory monocytes, and increased autophagy‐related proteins. These findings suggest that spermidine may be a promising treatment for AAA disease.
Collapse
Affiliation(s)
- Shuai Liu
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Tingting Huang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Rui Liu
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Huoying Cai
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Baihong Pan
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Mingmei Liao
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Pu Yang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Lei Wang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Jianhua Huang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China
| | - Yingbin Ge
- Department of Physiology Nanjing Medical University Nanjing Jiangsu China
| | - Baohui Xu
- Department of Surgery Stanford University School of Medicine Stanford CA
| | - Wei Wang
- Department of General & Vascular Surgery Xiangya Hospital Central South University Changsha Hunan China.,National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan China
| |
Collapse
|
24
|
Ribeiro-Silva M, Oliveira-Pinto J, Mansilha A. Abdominal aortic aneurysm: a review on the role of oral antidiabetic drugs. INT ANGIOL 2020; 39:330-340. [PMID: 32286765 DOI: 10.23736/s0392-9590.20.04362-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION A paradoxical negative association between diabetes mellitus and abdominal aortic aneurysm (AAA) prevalence and growth is established. However, so far is not possible to determine whether this protection comes from the disease itself or the medication for Diabetes. The aim of this manuscript is to review the association between oral antidiabetic drugs and AAA incidence and growth. EVIDENCE ACQUISITION A search was conducted on PubMed and Scopus databases until December 2019 to identify publications reporting on the association between oral antidiabetic drugs (biguanides/metformin, sulfonylureas(SU), thiazolidinediones(TZD), dipeptidyl-peptidase 4(DPP-4) inhibitors, glucagon-like peptide 1(GLP-1) agonists, sodium-glucose transporter protein-2(SGLT2) inhibitors) and the outcomes AAA incidence and growth. Only data from human studies were considered, with a minimum of 3 months follow-up. EVIDENCE SYNTHESIS Six studies enrolling 25,810 patients were included: one reporting on the AAA risk and five reporting on AAA growth. Metformin prescription was associated with a 28% reduction in AAA occurrence, while SU and TZD were associated with a 18% decrease in AAA risk. Regarding AAA enlargement, results were concordant for a slower expansion rate associated with metformin, with a decrease ranging from -0.30 mm/y to -1.30 mm/y, but not consistent for other antidiabetic drugs. CONCLUSIONS Metformin seems to be associated with a decrease in AAA risk and enlargement rate. Evidence for the other classes is lacking. Studies evaluating the association between oral antidiabetic drugs and AAA progression, independently of the diabetic status, are needed.
Collapse
Affiliation(s)
| | - José Oliveira-Pinto
- Department of Angiology and Vascular Surgery, Hospital Center of São João, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Angiology and Vascular Surgery, Hospital CUF of Porto, Porto, Portugal
| | - Armando Mansilha
- Department of Angiology and Vascular Surgery, Hospital Center of São João, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Sutton SS, Magagnoli J, Cummings TH, Hardin JW. Association between metformin and abdominal aortic aneurysm in diabetic and non-diabetic US veterans. J Investig Med 2020; 68:1015-1018. [PMID: 32273298 DOI: 10.1136/jim-2019-001177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
We sought to examine the progression from abdominal aortic aneurysm (AAA) diagnosis to surgery and death among diabetics with and without exposure to metformin as well as non-diabetics. We conducted a retrospective cohort study (January 2000 to July 2019) comparing 3 transitions (AAA surgery, death, and death after AAA surgery) among propensity score-matched metformin-exposed and unexposed diabetic veterans and non-diabetic veterans using the VA Informatics and Computing Infrastructure database. We fit an adjusted Cox proportional hazards model with transition-specific effects. There were 43,073 metformin-unexposed diabetics, 24,361 metformin-exposed diabetics and 56,006 non-diabetics. Compared with the non-diabetic cohort, both diabetic cohorts have a lower risk of surgery (no metformin (HR=0.740, 95% CI 0.706 to 0.776); with metformin (HR=0.770, 95% CI 0.730 to 0.813)). However, the non-metformin diabetic cohort has a higher risk of death (HR=1.024, 95% CI 1.004 to 1.045) and death after surgery (HR=1.086, 95% CI 1.013 to 1.165). The metformin-exposed diabetic cohort has a lower risk of death in the first 10 years after AAA diagnosis (HR=0.877, 95% CI 0.855 to 0.899), yet a higher risk of death 10 years after AAA diagnosis (HR=1.177, 95% CI 1.092 to 1.270) compared with non-diabetic cohort. Non-diabetics have the highest rate of AAA surgery compared with both diabetic cohorts. However, diabetics without metformin have the highest risk of death prior to, and after surgery. This research provides novel findings for patients diagnosed with AAA. The use of metformin after both AAA diagnosis and surgery should be further investigated.
Collapse
Affiliation(s)
- S Scott Sutton
- Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, South Carolina, USA.,Dorn Research Institute, William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina, USA
| | - Joseph Magagnoli
- Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, South Carolina, USA .,Dorn Research Institute, William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina, USA
| | - Tammy H Cummings
- Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, South Carolina, USA.,Dorn Research Institute, William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina, USA
| | - James W Hardin
- Dorn Research Institute, William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina, USA.,Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
26
|
Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice. Atherosclerosis 2020; 297:16-24. [PMID: 32059119 DOI: 10.1016/j.atherosclerosis.2020.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Inflammation, oxidative stress, matrix degradation, medial calcification and vascular smooth muscle cell (VSMC) loss are prominent features in abdominal aortic aneurysm (AAA). VSMC phenotypic switch to a proinflammatory state and VSMC apoptosis could be targetable mechanisms implicated in the pathogenesis of AAA formation. Herein, we investigated the hypothesis that a xanthine derivative (KMUP-3) might suppress AAA through inhibition of VSMC phenotypic switch and apoptosis. METHODS In vitro, VSMC calcification was induced using β-glycerophosphate. In vivo, AAA was induced using angiotensin II (1000 ng/kg per minute) infusion for 4 weeks in apolipoprotein E-deficient mice. RESULTS As determined by alizarin red S staining and calcium content measurements, KMUP-3 suppressed VSMC calcification. During VSMC calcification, KMUP-3 inhibited mTOR and β-catenin upregulation, essential for VSMC phenotypic switch, while it enhanced AMP-activated protein kinase (AMPK) activation that protects against VSMC phenotypic switch. Moreover, KMUP-3 attenuated VSMC apoptosis with an increased Bcl-2/Bax ratio and reduced activated caspase-3 expression. During AAA formation, treatment with KMUP-3 inhibited phosphorylated mTOR expression and increased phosphorylated AMPK expression in the medial layer. In addition, KMUP-3 treatment suppressed aortic dilatation together with reduction in proinflammatory cytokines and infiltrating macrophages, attenuation of medial VSMC apoptosis and mitigation of reactive oxygen species generation, matrix-degrading proteinase activities, elastin breakdown and vascular calcification. CONCLUSIONS Treatment with KMUP-3 inhibits aneurysm growth possibly through its interference with signaling pathways involved in VSMC phenotypic switch and apoptosis. These findings provide a proof-of-concept validation for VSMC dysfunction as a potential therapeutic target in AAA.
Collapse
|
27
|
Abl family tyrosine kinases govern IgG extravasation in the skin in a murine pemphigus model. Nat Commun 2019; 10:4432. [PMID: 31570755 PMCID: PMC6769004 DOI: 10.1038/s41467-019-12232-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
The pathway of homeostatic IgG extravasation is not fully understood, in spite of its importance for the maintenance of host immunity, the management of autoantibody-mediated disorders, and the use of antibody-based biologics. Here we show in a murine model of pemphigus, a prototypic cutaneous autoantibody-mediated disorder, that blood-circulating IgG extravasates into the skin in a time- and dose-dependent manner under homeostatic conditions. This IgG extravasation is unaffected by depletion of Fcγ receptors, but is largely attenuated by specific ablation of dynamin-dependent endocytic vesicle formation in blood endothelial cells (BECs). Among dynamin-dependent endocytic vesicles, IgG co-localizes well with caveolae in cultured BECs. An Abl family tyrosine kinase inhibitor imatinib, which reduces caveolae-mediated endocytosis, impairs IgG extravasation in the skin and attenuates the murine pemphigus manifestations. Our study highlights the kinetics of IgG extravasation in vivo, which might be a clue to understand the pathological mechanism of autoantibody-mediated autoimmune disorders. How antibody reaches tissues from circulation is critical for understanding antibody-mediated immunity. Here the authors show that IgG extravasation in the skin is mediated by endothelial caveolin transport independently of FcR, and is targetable by imatinib, which reduces IgG-dependent pathology in a mouse model of pemphigus.
Collapse
|
28
|
Wang Z, Guo J, Han X, Xue M, Wang W, Mi L, Sheng Y, Ma C, Wu J, Wu X. Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE -/- mice. Cell Biosci 2019; 9:68. [PMID: 31467666 PMCID: PMC6712653 DOI: 10.1186/s13578-019-0332-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background The protective effect of metformin (MET) on abdominal aortic aneurysm (AAA) has been reported. However, the related mechanism is still poor understood. In this study, we deeply investigated the role of metformin in AAA pathophysiology. Methods Angiotensin II (Ang-II) was used to construct the AAA model in ApoE−/− mice. The related mechanism was explored using Western blot and quantitative real time PCR (qRT-PCR). We also observed the morphological changes in the abdominal aorta and the influence of metformin on biological behaviors of rat abdominal aortic VSMCs. Results The PI3K/AKT/mTOR pathway was activated in aneurysmal wall tissues of AAA patients and rat model. Treatment with metformin inhibited the breakage and preserved the elastin structure of the aorta, the loss of collagen, and the apoptosis of aortic cells. In addition, metformin significantly suppressed the activation of the PI3K/AKT/mToR pathway and decreased the mRNA and protein levels of LC3B and Beclin1, which were induced by Ang-II. Moreover, PI3K inhibitors enhanced the effect of metformin while PI3K agonists largely reversed this effect. Interestingly, the cell proliferation, apoptosis, migration and autophagy of vascular smooth muscle cells (VSMCs) induced by Ang-II were also decreased following metformin treatment. PI3K inhibitors and agonists strengthened and weakened the effects of metformin in VSMCs, respectively. Conclusions Metformin represses the pathophysiology of AAA by inhibiting the activation of PI3K/AKT/mTOR/autophagy pathway. This repression may be useful as a new therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Zhu Wang
- 1Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Wei Qi Road, Jinan, 250021 Shandong China.,2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Jingjing Guo
- 3Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xinqiang Han
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Ming Xue
- 4Department of Interventional Radiology, Weihai Municipal Hospital, Weihai, 264200 Shandong China
| | - Wenming Wang
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Lei Mi
- Department of General Surgery, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Yuguo Sheng
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Chao Ma
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Jian Wu
- 2Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xuejun Wu
- 1Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Wei Qi Road, Jinan, 250021 Shandong China
| |
Collapse
|
29
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|
30
|
Qing L, Fu J, Wu P, Zhou Z, Yu F, Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am J Transl Res 2019; 11:655-668. [PMID: 30899369 PMCID: PMC6413292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Skin wound healing is a challenging problem, especially in aging or diabetic patients, which becomes more difficult to heal, and easily results in considerable public health burden. The purpose of this study was to investigate the effects of metformin on wound healing and explore its underlying mechanism. METHODS Metformin was local topical application in rat skin defect models. Alterations in the wounded skin were observed, and angiogenesis in the wound also was analyzed by immunohistochemical staining. The markers associated with differentiation macrophage were analyzed by immunofluorescence staining. The roles of AMPK singling pathway and the relative protein of NLRP3 inflammasome in wound were also analyzed by western blotting. In addition, AMPK/mTOR/NLRP3 inflammasome signaling axis was investigated to further analyze the molecular mechanism of metformin treatment on inducing M2 macrophage polarization in vitro. RESULTS Out results showed that metformin improved wound healing and angiogenesis which was paralleled by M2 macrophage polarization. We also found that the level of relative proteins of NLRP3 inflammasome was markedly decreased after metformin treatment. Furthermore, blockage of AMPK or activation of mTOR abolished the effects of metformin treatment on depressing NLRP3 inflammasome activation, M2 polarization and improving wound healing. It suggested that the treatment effects of metformin on wound healing were through regulating AMPK/mTOR/NLRP3 inflammasome signaling axis. CONCLUSION Metformin regulated AMPK/mTOR singling pathway to inhibit NLRP3 inflammasome activation, which boosted M2 macrophage polarization to accelerate the wound healing. These findings provided new insights into the molecular mechanism of metformin therapy and its therapeutic potential in wound healing.
Collapse
Affiliation(s)
- Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University Changsha 410008, China
| | - Jinfei Fu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University Changsha 410008, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University Changsha 410008, China
| | - Zhengbing Zhou
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University Changsha 410008, China
| | - Fang Yu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University Changsha 410008, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University Changsha 410008, China
| |
Collapse
|
31
|
Abstract
Current management of aortic aneurysms relies exclusively on prophylactic operative repair of larger aneurysms. Great potential exists for successful medical therapy that halts or reduces aneurysm progression and hence alleviates or postpones the need for surgical repair. Preclinical studies in the context of abdominal aortic aneurysm identified hundreds of candidate strategies for stabilization, and data from preoperative clinical intervention studies show that interventions in the pathways of the activated inflammatory and proteolytic cascades in enlarging abdominal aortic aneurysm are feasible. Similarly, the concept of pharmaceutical aorta stabilization in Marfan syndrome is supported by a wealth of promising studies in the murine models of Marfan syndrome-related aortapathy. Although some clinical studies report successful medical stabilization of growing aortic aneurysms and aortic root stabilization in Marfan syndrome, these claims are not consistently confirmed in larger and controlled studies. Consequently, no medical therapy can be recommended for the stabilization of aortic aneurysms. The discrepancy between preclinical successes and clinical trial failures implies shortcomings in the available models of aneurysm disease and perhaps incomplete understanding of the pathological processes involved in later stages of aortic aneurysm progression. Preclinical models more reflective of human pathophysiology, identification of biomarkers to predict severity of disease progression, and improved design of clinical trials may more rapidly advance the opportunities in this important field.
Collapse
Affiliation(s)
- Jan H. Lindeman
- Dept. Vascular Surgery, Leiden University Medical Center, The Netherlands
| | - Jon S. Matsumura
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
32
|
Abdelsamia EM, Khaleel SA, Balah A, Abdel Baky NA. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed Pharmacother 2018; 109:2136-2144. [PMID: 30551471 DOI: 10.1016/j.biopha.2018.11.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Metformin is one of the most commonly prescribed antidiabetic drugs. A recent clinical study has highlighted the protective role of metformin against cardiac complications in type I diabetes. Curcumin is a natural compound with well-known antioxidant and anti-inflammatory properties. The present study was designed to investigate the possible role of curcumin in potentiating metformin`s putative effects. Rats received single injection of 52.5 mg/kg streptozocin and the diabetic rats were treated with metformin (200 mg/kg/day), curcumin (100 mg/kg/day) and their combination for 6 weeks. Diabetic rats showed degenerated myocardium as well as significant increase in Creatine Kinase-MB (CK-MB), troponin I and TGF-β1 levels. In addition, cardiac levels of lipid peroxidation, IL-6, and NF-κB were significantly elevated. Although treatment with metformin restored most of the measured parameters, it showed insignificant improvement in histopathological architecture accompanied by absence of antioxidant effect. Interestingly, concomitant administration of curcumin along with metformin revealed more protection than metformin alone. Inhibition of JAK/STAT pathway and activation of Nrf2/HO-1 pathway seems to be among the mechanisms mediating the effects of curcumin and metformin. The findings of this study highlight the benefits of metformin/curcumin combination in preventing diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Eman M Abdelsamia
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Sahar A Khaleel
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Amany Balah
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
33
|
Golledge J, Morris DR, Pinchbeck J, Rowbotham S, Jenkins J, Bourke M, Bourke B, Norman PE, Jones R, Moxon JV. Editor's Choice - Metformin Prescription is Associated with a Reduction in the Combined Incidence of Surgical Repair and Rupture Related Mortality in Patients with Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 2018; 57:94-101. [PMID: 30174271 DOI: 10.1016/j.ejvs.2018.07.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Currently there is no drug therapy for abdominal aortic aneurysm (AAA) and most previous investigations have focused on imaging rather than clinical outcomes. The aim of this study was to assess whether AAA related clinical events were lower in patients prescribed metformin. METHODS This was a prospective cohort observational study performed in three cities in Australia, which was designed to study risk factors for clinical events not simply to focus on metformin. Patients with an asymptomatic unrepaired AAA of any diameter ≥30 mm were recruited from hospital outpatient clinics and surveillance programs run at four centres. The main outcome was the requirement for AAA repair or AAA related mortality (AAA events). The association between metformin prescription and AAA events was assessed using Kaplan-Meier analysis and Cox proportional hazard analysis. RESULTS Patients (1,080) with a mean (SD) initial AAA diameter of 46.1 (11.3) mm were followed for a mean (SD) of 2.5 (3.1) years until an AAA event (n = 454), death (n = 176), loss to follow up (n = 128), or completion of current follow up (n = 322). Patients with diabetes who were prescribed metformin (adjusted HR 0.63, 95% CI 0.44-0.93), but not patients with diabetes who were not prescribed metformin (adjusted HR 1.15, 95% CI 0.83-1.59), had a lower incidence of AAA events compared with those without diabetes. Findings were similar in sensitivity analyses restricted to patients with an initial AAA diameter ≤50 mm and patients with a minimum follow up of six months before an AAA event. CONCLUSIONS These findings suggest that clinically important AAA events may be reduced in patients with diabetes who are prescribed metformin, but not those with diabetes receiving other treatments. A randomised controlled trial is needed to definitively test whether metformin reduces AAA related clinical events in patients with small AAAs who do not have diabetes.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia; The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| | - Dylan R Morris
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jenna Pinchbeck
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Sophie Rowbotham
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia; School of Medicine, University of Queensland, Brisbane, Queensland, Australia; Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Jason Jenkins
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Michael Bourke
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia; Gosford Vascular Clinic, Gosford, New South Wales, Australia
| | - Bernard Bourke
- Gosford Vascular Clinic, Gosford, New South Wales, Australia
| | - Paul E Norman
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Rhonda Jones
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia; The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
| | - Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|