1
|
Peng J, Li J, Liang J, Li W, Yang Y, Yang Y, Zhang S, Huang X, Han F. A C-type lectin-like receptor CD302 in yellow drum (Nibea albiflora) functioning in antibacterial activity and innate immune signaling. Int J Biol Macromol 2023; 247:125734. [PMID: 37423436 DOI: 10.1016/j.ijbiomac.2023.125734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.
Collapse
Affiliation(s)
- Jia Peng
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Jiacheng Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Jingjie Liang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Yao Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Yukai Yang
- Shenzhen Base of South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Sen Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Xiaolin Huang
- Shenzhen Base of South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China.
| |
Collapse
|
2
|
Montesinos-Rongen M, Sanchez-Ruiz M, Siebert S, Winter C, Siebert R, Brunn A, Deckert M. AMD3100-mediated CXCR4 inhibition impairs development of primary lymphoma of the central nervous system. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00163-3. [PMID: 37196929 DOI: 10.1016/j.ajpath.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/23/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
A hallmark of primary lymphoma of the central nervous system (PCNSL, CNS) is the strong CXCR4 expression of the tumor cells, the function of which is still unknown. In vitro treatment of BAL17CNS lymphoma cells by AMD3100 which inhibits CXCR4-CXCL12 interactions resulted in the significantly differential expression of 273 genes encoding proteins involved in cell motility, cell-cell signaling and interaction, hematological system development and function, and immunological disease. Among the genes downregulated was the one encoding CD200, a regulator of CNS immunological activity. These data directly translated into the in vivo situation; BAL17CNS CD200 expression was downregulated by 89% (3% vs. 28% CD200+ lymphoma cells) in AMD3100-treated vs. untreated mice with BAL17CNS-induced PCNSL. Reduced lymphoma cell CD200 expression may contribute to the markedly increased microglial activation in AMD3100-treated mice. AMD3100 also maintained the structural integrity of blood-brain barrier tight junctions and the outer basal lamina of cerebral blood vessels. Subsequently, lymphoma cell invasion of the brain parenchyma was impaired and maximal parenchymal tumor size was significantly reduced by 82% in the induction phase. Thus, AMD3100 qualified as potentially attractive candidate to be included into the therapeutic concept of PCNSL. Beyond therapy, CXCR4-induced suppression of microglial activity is of general neuroimmunological interest and identifies CD200 expressed by the lymphoma cells as a novel mechanism of immune escape in PCNSL.
Collapse
Affiliation(s)
- Manuel Montesinos-Rongen
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Monica Sanchez-Ruiz
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susann Siebert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Claudia Winter
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; present address: Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; present address: Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
CD24 Is a Prognostic Marker for Multiple Myeloma Progression and Survival. J Clin Med 2022; 11:jcm11102913. [PMID: 35629039 PMCID: PMC9144978 DOI: 10.3390/jcm11102913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Surface antigens are commonly used in flow cytometry assays for the diagnosis of multiple myeloma (MM). Some of these are directly involved in MM pathogenesis or interactions with the microenvironment, but most are used for either diagnostic or prognostic purposes. In a previous study, we showed that in-vitro, CD24-positive plasma cells exhibit a less tumorigenic phenotype. Here, we assessed the prognostic importance of CD24 expression in patients newly diagnosed with MM as it correlates to their clinical course. Immunophenotyping by flow cytometry of 124 patients uniformly treated by a bortezomib-based protocol was performed. The expression of CD24, CD117, CD19, CD45, and CD56 in bone marrow PCs was tested for correlations to clinical parameters. None of the CD markers correlated with the response rates to first-line therapy. However, patients with elevated CD24+ expression on their PCs at diagnosis had a significantly longer PFS (p = 0.002) and OS (p = 0.044). In contrast, the expression of CD117, CD56, or CD45 was found to have no prognostic value; CD19 expression was inversely correlated with PFS alone (p < 0.001) and not with OS. Thus, elevated CD24 expression on PCs appears to be strongly correlated with survival and can be used as a single-surface antigenic prognostic factor in MM.
Collapse
|
4
|
Ma Y, Zhang X, Yang J, Jin Y, Xu Y, Qiu J. Comprehensive Molecular Analyses of a TNF Family-Based Gene Signature as a Potentially Novel Prognostic Biomarker for Cervical Cancer. Front Oncol 2022; 12:854615. [PMID: 35392242 PMCID: PMC8980547 DOI: 10.3389/fonc.2022.854615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Increasing evidence suggests that tumour necrosis factor (TNF) family genes play important roles in cervical cancer (CC). However, whether TNF family genes can be used as prognostic biomarkers of CC and the molecular mechanisms of TNF family genes remain unclear. Methods A total of 306 CC and 13 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. We identified differentially expressed TNF family genes between CC and normal samples and subjected them to univariate Cox regression analysis for selecting prognostic TNF family genes. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analyses were performed to screen genes to establish a TNF family gene signature. Gene set enrichment analysis (GSEA) was performed to investigate the biological functions of the TNF family gene signature. Finally, methylation and copy number variation data of CC were used to analyse the potential molecular mechanisms of TNF family genes. Results A total of 26 differentially expressed TNF family genes were identified between the CC and normal samples. Next, a TNF family gene signature, including CD27, EDA, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 was constructed based on univariate Cox, LASSO, and multivariate Cox regression analyses. The TNF family gene signature was related to age, pathological stages M and N, and could predict patient survival independently of clinical factors. Moreover, KEGG enrichment analysis suggested that the TNF family gene signature was mainly involved in the TGF-β signaling pathway, and the TNF family gene signature could affect the immunotherapy response. Finally, we confirmed that the mRNA expressions of CD27, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 were upregulated in CC, while that of EDA was downregulated. The mRNA expressions of CD27, EDA, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 might be influenced by gene methylation and copy number variation. Conclusion Our study is the first to demonstrate that CD27, EDA, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 might be used as prognostic biomarkers of CC and are associated with the immunotherapy response of CC.
Collapse
Affiliation(s)
- Yan Ma
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiaoyan Zhang
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jiancheng Yang
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Yanping Jin
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ying Xu
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jianping Qiu
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
5
|
Lebel E, Nachmias B, Pick M, Gross Even-Zohar N, Gatt ME. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. J Clin Med 2022; 11:jcm11071809. [PMID: 35407416 PMCID: PMC9000075 DOI: 10.3390/jcm11071809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) progression is dependent on its interaction with the bone marrow microenvironment and the immune system and is mediated by key surface antigens. Some antigens promote adhesion to the bone marrow matrix and stromal cells, while others are involved in intercellular interactions that result in differentiation of B-cells to plasma cells (PC). These interactions are also involved in malignant transformation of the normal PC to MM PC as well as disease progression. Here, we review selected surface antigens that are commonly used in the flow cytometry analysis of MM for identification of plasma cells (PC) and the discrimination between normal and malignant PC as well as prognostication. These include the markers: CD38, CD138, CD45, CD19, CD117, CD56, CD81, CD27, and CD28. Furthermore, we will discuss the novel marker CD24 and its involvement in MM. The bioactivity of each antigen is reviewed, as well as its expression on normal vs. malignant PC, prognostic implications, and therapeutic utility. Understanding the role of these specific surface antigens, as well as complex co-expressions of combinations of antigens, may allow for a more personalized prognostic monitoring and treatment of MM patients.
Collapse
|
6
|
Abstract
C-type lectin domain-containing proteins (CTLDcps) shape host responses to pathogens and infectious disease outcomes. Previously, we identified the murine CTLDcp Cd302 as restriction factor, limiting hepatitis C virus (HCV) infection of murine hepatocytes. In this study, we investigated in detail the human orthologue's ability to restrict HCV infection in human liver cells. CD302 overexpression in Huh-7.5 cells potently inhibited infection of diverse HCV chimeras representing seven genotypes. Transcriptional profiling revealed abundant CD302 mRNA expression in human hepatocytes, the natural cellular target of HCV. Knockdown of endogenously expressed CD302 modestly enhanced HCV infection of Huh-7.5 cells and primary human hepatocytes. Functional analysis of naturally occurring CD302 transcript variants and engineered CD302 mutants showed that the C-type lectin-like domain (CTLD) is essential for HCV restriction, whereas the cytoplasmic domain (CPD) is dispensable. Coding single nucleotide polymorphisms occurring in human populations and mapping to different domains of CD302 did not influence the capacity of CD302 to restrict HCV. Assessment of the anti-HCV phenotype at different life cycle stages indicated that CD302 preferentially targets the viral entry step. In contrast to the murine orthologue, overexpression of human CD302 did not modulate downstream expression of nuclear receptor-controlled genes. Ectopic CD302 expression restricted infection of liver tropic hepatitis E virus (HEV), while it did not affect infection rates of two respiratory viruses, including respiratory syncytial virus (RSV) and the alpha coronavirus HVCoV-229E. Together, these findings suggest that CD302 contributes to liver cell-intrinsic defense against HCV and might mediate broader antiviral defenses against additional hepatotropic viruses. IMPORTANCE The liver represents an immunoprivileged organ characterized by enhanced resistance to immune responses. However, the importance of liver cell-endogenous, noncytolytic innate immune responses in pathogen control is not well defined. Although the role of myeloid cell-expressed CTLDcps in host responses to viruses has been characterized in detail, we have little information about their potential functions in the liver and their relevance for immune responses in this organ. Human hepatocytes endogenously express the CTLDcp CD302. Here, we provide evidence that CD302 limits HCV infection of human liver cells, likely by inhibiting a viral cell entry step. We confirm that the dominant liver-expressed transcript variant, as well as naturally occurring coding variants of CD302, maintain the capacity to restrict HCV. We further show that the CTLD of the protein is critical for the anti-HCV activity and that overexpressed CD302 limits HEV infection. Thus, CD302 likely contributes to human liver-intrinsic antiviral defenses.
Collapse
|
7
|
Skowron MA, Becker TK, Kurz L, Jostes S, Bremmer F, Fronhoffs F, Funke K, Wakileh GA, Müller MR, Burmeister A, Lenz T, Stefanski A, Stühler K, Petzsch P, Köhrer K, Altevogt P, Albers P, Kristiansen G, Schorle H, Nettersheim D. The signal transducer CD24 suppresses the germ cell program and promotes an ectodermal rather than mesodermal cell fate in embryonal carcinomas. Mol Oncol 2022; 16:982-1008. [PMID: 34293822 PMCID: PMC8847992 DOI: 10.1002/1878-0261.13066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are stratified into seminomas and nonseminomas. Seminomas share many histological and molecular features with primordial germ cells, whereas the nonseminoma stem cell population-embryonal carcinoma (EC)-is pluripotent and thus able to differentiate into cells of all three germ layers (teratomas). Furthermore, ECs are capable of differentiating into extra-embryonic lineages (yolk sac tumors, choriocarcinomas). In this study, we deciphered the molecular and (epi)genetic mechanisms regulating expression of CD24, a highly glycosylated signaling molecule upregulated in many cancers. CD24 is overexpressed in ECs compared with other GCT entities and can be associated with an undifferentiated pluripotent cell fate. We demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, that is, histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3 ubiquitin ligases, or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, and endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9 deficiency model, we demonstrate that CD24 fulfills a bivalent role in differentiation via regulation of homeobox, and phospho- and glycoproteins; that is, it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity toward cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.
Collapse
Affiliation(s)
- Margaretha A. Skowron
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Teresa K. Becker
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Lukas Kurz
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Sina Jostes
- Department of Oncological ScienceIcahn School of Medicine at Mount SinaiHess Center for Science and MedicineNew YorkNYUSA
| | - Felix Bremmer
- Institute of PathologyUniversity Medical Center GoettingenGermany
| | | | - Kai Funke
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Gamal A. Wakileh
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
- Department of UrologyUniversity Hospital UlmGermany
| | - Melanie R. Müller
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Aaron Burmeister
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Thomas Lenz
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Anja Stefanski
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Patrick Petzsch
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Karl Köhrer
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Peter Altevogt
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center MannheimRuprecht‐Karl University HeidelbergGermany
| | - Peter Albers
- Department of UrologyMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfGermany
| | | | - Hubert Schorle
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Daniel Nettersheim
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
8
|
Clichet V, Harrivel V, Delette C, Guiheneuf E, Gautier M, Morel P, Assouan D, Merlusca L, Beaumont M, Lebon D, Caulier A, Marolleau JP, Matthes T, Vergez F, Garçon L, Boyer T. Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry. Br J Haematol 2021; 196:1175-1183. [PMID: 34730236 DOI: 10.1111/bjh.17933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Monoclonal gammopathy of unknown significance (MGUS), smouldering multiple myeloma (SMM), and multiple myeloma (MM) are very common neoplasms. However, it is often difficult to distinguish between these entities. In the present study, we aimed to classify the most powerful markers that could improve diagnosis by multiparametric flow cytometry (MFC). The present study included 348 patients based on two independent cohorts. We first assessed how representative the data were in the discovery cohort (123 MM, 97 MGUS) and then analysed their respective plasma cell (PC) phenotype in order to obtain a set of correlations with a hypersphere visualisation. Cluster of differentiation (CD)27 and CD38 were differentially expressed in MGUS and MM (P < 0·001). We found by a gradient boosting machine method that the percentage of abnormal PCs and the ratio PC/CD117 positive precursors were the most influential parameters at diagnosis to distinguish MGUS and MM. Finally, we designed a decisional algorithm allowing a predictive classification ≥95% when PC dyscrasias were suspected, without any misclassification between MGUS and SMM. We validated this algorithm in an independent cohort of PC dyscrasias (n = 87 MM, n = 41 MGUS). This artificial intelligence model is freely available online as a diagnostic tool application website for all MFC centers worldwide (https://aihematology.shinyapps.io/PCdyscrasiasToolDg/).
Collapse
Affiliation(s)
- Valentin Clichet
- Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
| | | | - Caroline Delette
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
| | - Eric Guiheneuf
- Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
| | - Murielle Gautier
- Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France
| | - Pierre Morel
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
| | - Déborah Assouan
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
| | - Lavinia Merlusca
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
| | - Marie Beaumont
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France
| | - Delphine Lebon
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France.,Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
| | - Alexis Caulier
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France.,Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
| | - Jean-Pierre Marolleau
- Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France.,Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
| | - Thomas Matthes
- Service d'Hématologie, Hôpital Universitaire de Genève, Genève, Suisse
| | - François Vergez
- Laboratoire d'Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Loïc Garçon
- Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France.,Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
| | - Thomas Boyer
- Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France.,Université Picardie Jules Verne, HEMATIM, UR 4666, F80025, Amiens, France
| |
Collapse
|
9
|
Plasma cells expression from smouldering myeloma to myeloma reveals the importance of the PRC2 complex, cell cycle progression, and the divergent evolutionary pathways within the different molecular subgroups. Leukemia 2021; 36:591-595. [PMID: 34365473 DOI: 10.1038/s41375-021-01379-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
Sequencing studies have shed some light on the pathogenesis of progression from smouldering multiple myeloma (SMM) and symptomatic multiple myeloma (MM). Given the scarcity of smouldering samples, little data are available to determine which translational programmes are dysregulated and whether the mechanisms of progression are uniform across the main molecular subgroups. In this work, we investigated 223 SMM and 1348 MM samples from the University of Arkansas for Medical Sciences (UAMS) for which we had gene expression profiling (GEP). Patients were analysed by TC-7 subgroup for gene expression changes between SMM and MM. Among the commonly dysregulated genes in each subgroup, PHF19 and EZH2 highlight the importance of the PRC2.1 complex. We show that subgroup specific differences exist even at the SMM stage of disease with different biological features driving progression within each TC molecular subgroup. These data suggest that MMSET SMM has already transformed, but that the other precursor diseases are distinct clinical entities from their symptomatic counterpart.
Collapse
|
10
|
Chen Q, Qiu B, Zeng X, Hu L, Huang D, Chen K, Qiu X. Identification of a tumor microenvironment-related gene signature to improve the prediction of cervical cancer prognosis. Cancer Cell Int 2021; 21:182. [PMID: 33766042 PMCID: PMC7992856 DOI: 10.1186/s12935-021-01867-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have found that the microenvironment of cervical cancer (CESC) affects the progression and treatment of this disease. Thus, we constructed a multigene model to assess the survival of patients with cervical cancer. Methods We scored 307 CESC samples from The Cancer Genome Atlas (TCGA) and divided them into high and low matrix and immune scores using the ESTIMATE algorithm for differential gene analysis. Cervical cancer patients were randomly divided into a training group, testing group and combined group. The multigene signature prognostic model was constructed by Cox analyses. Multivariate Cox analysis was applied to evaluate the significance of the multigene signature for cervical cancer prognosis. Prognosis was assessed by Kaplan–Meier curves comparing the different groups, and the accuracy of the prognostic model was analyzed by receiver operating characteristic-area under the curve (ROC-AUC) analysis and calibration curve. The Tumor Immune Estimation Resource (TIMER) database was used to analyze the relationship between the multigene signature and immune cell infiltration. Results We obtained 420 differentially expressed genes in the tumor microenvironment from 307 patients with cervical cancer. A three-gene signature (SLAMF1, CD27, SELL) model related to the tumor microenvironment was constructed to assess patient survival. Kaplan–Meier analysis showed that patients with high risk scores had a poor prognosis. The ROC-AUC value indicated that the model was an accurate predictor of cervical cancer prognosis. Multivariate cox analysis showed the three-gene signature to be an independent risk factor for the prognosis of cervical cancer. A nomogram combining the three-gene signature and clinical features was constructed, and calibration plots showed that the nomogram resulted in an accurate prognosis for patients. The three-gene signature was associated with T stage, M stage and degree of immune infiltration in patients with cervical cancer. Conclusions This research suggests that the developed three-gene signature may be applied as a biomarker to predict the prognosis of and personalized therapy for CESC.
Collapse
Affiliation(s)
- Qian Chen
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China.,Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bingqing Qiu
- Department of Nuclear Medicine, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lang Hu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Dongping Huang
- Department of Nutrition, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
11
|
An Y, Wang Q, Zhang L, Sun F, Zhang G, Dong H, Li Y, Peng Y, Li H, Zhu W, Ji S, Wang Y, Guo X. OSlgg: An Online Prognostic Biomarker Analysis Tool for Low-Grade Glioma. Front Oncol 2020; 10:1097. [PMID: 32775301 PMCID: PMC7381343 DOI: 10.3389/fonc.2020.01097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
Glioma is the most frequent primary brain tumor that causes high mortality and morbidity with poor prognosis. There are four grades of gliomas, I to IV, among which grade II and III are low-grade glioma (LGG). Although less aggressive, LGG almost universally progresses to high-grade glioma and eventual causes death if lacking of intervention. Current LGG treatment mainly depends on surgical resection followed by radiotherapy and chemotherapy, but the survival rates of LGG patients are low. Therefore, it is necessary to use prognostic biomarkers to classify patients into subgroups with different risks and guide clinical managements. Using gene expression profiling and long-term follow-up data, we established an Online consensus Survival analysis tool for LGG named OSlgg. OSlgg is comprised of 720 LGG cases from two independent cohorts. To evaluate the prognostic potency of genes, OSlgg employs the Kaplan-Meier plot with hazard ratio and p value to assess the prognostic significance of genes of interest. The reliability of OSlgg was verified by analyzing 86 previously published prognostic biomarkers of LGG. Using OSlgg, we discovered two novel potential prognostic biomarkers (CD302 and FABP5) of LGG, and patients with the elevated expression of either CD302 or FABP5 present the unfavorable survival outcome. These two genes may be novel risk predictors for LGG patients after further validation. OSlgg is public and free to the users at http://bioinfo.henu.edu.cn/LGG/LGGList.jsp.
Collapse
Affiliation(s)
- Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Fengjie Sun
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yingkun Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yanyu Peng
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Haojie Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA, United States
| | - Shaoping Ji
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Chu B, Bao L, Wang Y, Lu M, Shi L, Gao S, Fang L, Xiang Q, Liu X. CD27 antigen negative expression indicates poor prognosis in newly diagnosed multiple myeloma. Clin Immunol 2020; 213:108363. [PMID: 32120013 DOI: 10.1016/j.clim.2020.108363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
To investigate the role of CD27 in multiple myeloma(MM), bone marrow samples from 165 newly diagnosed MM were analysed by flow cytometry. CD27- group (n = 93) had higher level of plasma cell proportion (37.00% vs 22.50%, p < .05), β2-MG (5.42 vs 3.20 mg/L, p < .05), calcium (2.45 vs 2.28 mmol/L, p < .05),higher percentage of ISS stage III (49.46% vs 22.22%, p < .05) and patients with ≥2 high-risk cytogenetics (24.73% vs 15.28%, p < .05) than CD27+ group (n = 72). After 4 cycles of chemotherapy, the overall response rate in CD27- group were lower than CD27+ group (56.67% vs 73.02%,p < .05). After a median follow-up of 18 months, progression-free survival was significantly shorter in CD27- group than in CD27+ group (22 vs 40 months, p < .05), so was overall survival (median OS not reached, p < .05). Gene sequencing showed more adverse mutations in CD27- group than CD27+ group.
Collapse
Affiliation(s)
- Bin Chu
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| | - Li Bao
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China.
| | - Yutong Wang
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| | - Minqiu Lu
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| | - Lei Shi
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| | - Shan Gao
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| | - Lijuan Fang
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| | - Qiuqing Xiang
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| | - Xi Liu
- Department of hematology, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
13
|
Hao Y, Khaykin D, Machado L, van den Akker T, Houldsworth J, Barlogie B, Hussein S, El Jamal SM, Petersen B, Teruya-Feldstein J. Bone marrow morphologic features, MyPRS, and gene mutation correlations in plasma cell myeloma. Mod Pathol 2020; 33:188-195. [PMID: 31375765 DOI: 10.1038/s41379-019-0333-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022]
Abstract
Genetics has played an important role in risk stratification for plasma cell myeloma patients, providing therapeutic guidance. In this study, we investigated the correlation of bone marrow morphologic features and genetic aberrations, including gene expression profiles, translocations, and gene mutations. For the first time we show that high plasma cell volume, diffuse sheet growth pattern, immature cell morphology, high mitotic index, and increased reticulin fibrosis, significantly correlates with high risk disease determined by MyPRS gene expression profiles. Furthermore, we show the association between MyPRS risk stratification and chromosomal alterations and specific gene mutations. We also demonstrate the combinational effect of TP53 mutation and 17p loss on the histological changes in bone marrow.
Collapse
Affiliation(s)
- Yansheng Hao
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Daniel Khaykin
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Levi Machado
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Tayler van den Akker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Jane Houldsworth
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Bart Barlogie
- Department of Medicine Hematology/Oncology, Tisch Cancer Center, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Siraj M El Jamal
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Bruce Petersen
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Gilad N, Zukerman H, Pick M, Gatt ME. The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression. Oncotarget 2019; 10:5480-5491. [PMID: 31534632 PMCID: PMC6739209 DOI: 10.18632/oncotarget.27190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is an incurable neoplasm characterized by infiltration of malignant plasma cells (PCs). Recently, the tumor microenvironment has become of great interest in MM as it known to be involved in progression and metastasis of the disease. CD24, is an adhesion molecule expressed during B cell maturation, is down regulated through the cells differentiation into PCs. Though the role of CD24 in solid cancers is well defined, its role in MM remains unknown. We aimed to understand the involvement of CD24 in MM by up-regulating its expression on MM cell lines by co-culturing the cells with bone marrow stromal cell (BMSCs). We then studied the differences between CD24+ and CD24− MM cells and found that CD24+ MM cells presented a less tumorigenic phenotype by impaired capability to migrate and to create colonies as compared with CD24− MM cells. Furthermore, there were significantly more apoptotic cells in the CD24+ fraction. Additionally, the CD24+ cells also upregulated CXCR4 expression. The decrease tumorigenicity correlated with a “more normal” PC immunophenotype in patients with MM and correlated with CD45 expression and a stronger expression of CXCR4. In summary, we found the expression of CD24 on PCs to correlate with attenuated tumorigenicity.
Collapse
Affiliation(s)
- Nechama Gilad
- Department of Hematology, Sharett Institute, Hadassah Medical Organization, Kiryat Hadassah, Jerusalem, Israel.,Department of Chemistry and Biology, Hebrew University, Jerusalem, Israel
| | - Hila Zukerman
- Department of Hematology, Sharett Institute, Hadassah Medical Organization, Kiryat Hadassah, Jerusalem, Israel.,Department of Biomedical Engineering, Technion Institute of Technology, Haifa, Israel
| | - Marjorie Pick
- Department of Hematology, Sharett Institute, Hadassah Medical Organization, Kiryat Hadassah, Jerusalem, Israel
| | - Moshe E Gatt
- Department of Hematology, Sharett Institute, Hadassah Medical Organization, Kiryat Hadassah, Jerusalem, Israel
| |
Collapse
|
15
|
Ma FC, He RQ, Lin P, Zhong JC, Ma J, Yang H, Hu XH, Chen G. Profiling of prognostic alternative splicing in melanoma. Oncol Lett 2019; 18:1081-1088. [PMID: 31423168 PMCID: PMC6607279 DOI: 10.3892/ol.2019.10453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing can lead to the coding of proteins that act as promoters of cancer, which is associated with the progression of cancer. However, to the best of our knowledge, no systematic survival analysis of alternative splicing in melanoma has previously been reported. The present study conducted an in-depth analysis of integrated alternative splicing events detected in 96 patients with melanoma using data obtained from The Cancer Genome Atlas. Prognostic models and an alternative splicing correlation network were built for patients with melanoma. A total of 41,446 mRNA splicing events were detected in 9,780 genes and 2,348 alternative splicing events were identified to be significantly associated with overall survival of patients with melanoma. Of all the events used in the prognostic model, the model with alternate terminator alternative splicing events exhibited the highest efficiency for evaluating the outcome of patients with melanoma, with an area under the curve of 0.902. The present study identified prognostic predictors for melanoma and revealed alternative splicing networks in melanoma that could indicate underlying mechanisms.
Collapse
Affiliation(s)
- Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
16
|
Devin J, Kassambara A, Bruyer A, Moreaux J, Bret C. Phenotypic Characterization of Diffuse Large B-Cell Lymphoma Cells and Prognostic Impact. J Clin Med 2019; 8:E1074. [PMID: 31336593 PMCID: PMC6678649 DOI: 10.3390/jcm8071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Multiparameter flow cytometry (MFC) is a fast and cost-effective technique to evaluate the expression of many lymphoid markers in mature B-cell neoplasms, including diffuse large B cell lymphoma (DLBCL), which is the most frequent non-Hodgkin lymphoma. In this study, we first characterized by MFC the expression of 27 lymphoid markers in 16 DLBCL-derived cell lines to establish a robust algorithm for their authentication. Then, using the expression profile in DLBCL samples of the genes encoding B lymphoid markers that are routinely investigated by MFC, we built a gene expression-based risk score, based on the expression level of BCL2, BCL6, CD11c, and LAIR1, to predict the outcome of patients with DLBCL. This risk score allowed splitting patients in four risk groups, and was an independent predictor factor of overall survival when compared with the previously published prognostic factors. Lastly, to investigate the potential correlation between BCL2, BCL6, CD11c, and LAIR1 protein level and resistance to treatment, we investigated the response of the 16 DLBCL cell lines to cyclophosphamide, etoposide, doxorubicin, and gemcitabine. We found a correlation between BCL6 overexpression and resistance to etoposide. These results show the interest of MFC for the routine characterization of DLBCL cells and tumors samples for research and diagnostic/prognostic purposes.
Collapse
Affiliation(s)
- Julie Devin
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
| | - Alboukadel Kassambara
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
- Department of Biological Hematology, St Eloi Hospital, 34295 Montpellier, France
| | - Angélique Bruyer
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
| | - Jérôme Moreaux
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
- Department of Biological Hematology, St Eloi Hospital, 34295 Montpellier, France
- University of Montpellier, Faculty of Medicine, 34090 Montpellier, France
| | - Caroline Bret
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France.
- Department of Biological Hematology, St Eloi Hospital, 34295 Montpellier, France.
- University of Montpellier, Faculty of Medicine, 34090 Montpellier, France.
| |
Collapse
|
17
|
High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. J Clin Med 2019; 8:jcm8070997. [PMID: 31323969 PMCID: PMC6678140 DOI: 10.3390/jcm8070997] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease that includes a subgroup of 10–15% of patients facing dismal survival despite the most intensive treatment. Despite improvements in biological knowledge, MM is still an incurable neoplasia, and therapeutic options able to overcome the relapsing/refractory behavior represent an unmet clinical need. The aim of this review is to provide an integrated clinical and biological overview of high-risk MM, discussing novel therapeutic perspectives, targeting the neoplastic clone and its microenvironment. The dissection of the molecular determinants of the aggressive phenotypes and drug-resistance can foster a better tailored clinical management of the high-risk profile and therapy-refractoriness. Among the current clinical difficulties in MM, patients’ management by manipulating the tumor niche represents a major challenge. The angiogenesis and the stromal infiltrate constitute pivotal mechanisms of a mutual collaboration between MM and the non-tumoral counterpart. Immuno-modulatory and anti-angiogenic therapy hold great efficacy, but variable and unpredictable responses in high-risk MM. The comprehensive understanding of the genetic heterogeneity and MM high-risk ecosystem enforce a systematic bench-to-bedside approach. Here, we provide a broad outlook of novel druggable targets. We also summarize the existing multi-omics-based risk profiling tools, in order to better select candidates for dual immune/vasculogenesis targeting.
Collapse
|
18
|
Deciphering the Elevated Lipid via CD36 in Mantle Cell Lymphoma with Bortezomib Resistance Using Synchrotron-Based Fourier Transform Infrared Spectroscopy of Single Cells. Cancers (Basel) 2019; 11:cancers11040576. [PMID: 31022903 PMCID: PMC6521097 DOI: 10.3390/cancers11040576] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Despite overall progress in improving cancer treatments, the complete response of mantle cell lymphoma (MCL) is still limited due to the inevitable development of drug resistance. More than half of patients did not attain response to bortezomib (BTZ), the approved treatment for relapsed or refractory MCL. Understanding how MCL cells acquire BTZ resistance at the molecular level may be a key to the long-term management of MCL patients and new therapeutic strategies. We established a series of de novo BTZ-resistant human MCL-derived cells with approximately 15- to 60-fold less sensitivity than those of parental cells. Using gene expression profiling, we discovered that putative cancer-related genes involved in drug resistance and cell survival tested were mostly downregulated, likely due to global DNA hypermethylation. Significant information on dysregulated lipid metabolism was obtained from synchrotron-based Fourier transform infrared (FTIR) spectroscopy of single cells. We demonstrated for the first time an upregulation of CD36 in highly BTZ-resistant cells in accordance with an increase in their lipid accumulation. Ectopic expression of CD36 causes an increase in lipid droplets and renders BTZ resistance to various human MCL cells. By contrast, inhibition of CD36 by neutralizing antibody strongly enhances BTZ sensitivity, particularly in CD36-overexpressing cells and de novo BTZ-resistant cells. Together, our findings highlight the potential application of CD36 inhibition for BTZ sensitization and suggest the use of FTIR spectroscopy as a promising technique in cancer research.
Collapse
|