1
|
Pawłowski W, Caban M, Lewandowska U. Cancer Prevention and Treatment with Polyphenols: Type IV Collagenase-Mediated Mechanisms. Cancers (Basel) 2024; 16:3193. [PMID: 39335164 PMCID: PMC11430265 DOI: 10.3390/cancers16183193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Polyphenols are natural compounds found in many plants and their products. Their high structural diversity bestows upon them a range of anti-inflammatory, anti-oxidant, proapoptotic, anti-angiogenic, and anti-metastatic properties, and a growing body of research indicates that a polyphenol-rich diet can inhibit cancer development in humans. Polyphenolic compounds may modulate the expression, secretion, or activity of compounds that play a significant role in carcinogenesis, including type IV collagenases, such as matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), by suppressing cellular signaling pathways such as nuclear factor-kappa B. These enzymes are responsible for the degradation of the extracellular matrix, thus promoting the progression of cancer. This review discusses the current state of knowledge concerning the anti-cancer activity of polyphenols, particularly curcumin, resveratrol, epigallocatechin-3-gallate, genistein, and quercetin, with a specific focus on their anti-invasive and anti-metastatic potential, based on the most recent in vitro and in vivo studies. It appears that polyphenols may be valuable options for the chemoprevention and treatment of cancer via the inhibition of MMP-2 and MMP-9 and the suppression of signaling pathways regulating their expression and activity.
Collapse
Affiliation(s)
| | | | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.P.); (M.C.)
| |
Collapse
|
2
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 PMCID: PMC10969184 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy;
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| |
Collapse
|
3
|
An F, Chang W, Song J, Zhang J, Li Z, Gao P, Wang Y, Xiao Z, Yan C. Reprogramming of glucose metabolism: Metabolic alterations in the progression of osteosarcoma. J Bone Oncol 2024; 44:100521. [PMID: 38288377 PMCID: PMC10823108 DOI: 10.1016/j.jbo.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an adaptive response of tumour cells under hypoxia and low nutrition conditions. There is increasing evidence that glucose metabolism reprogramming can regulate the growth and metastasis of osteosarcoma (OS). Reprogramming in the progress of OS can bring opportunities for early diagnosis and treatment of OS. Previous research mainly focused on the glycolytic pathway of glucose metabolism, often neglecting the tricarboxylic acid cycle and pentose phosphate pathway. However, the tricarboxylic acid cycle and pentose phosphate pathway of glucose metabolism are also involved in the progression of OS and are closely related to this disease. The research on glucose metabolism in OS has not yet been summarized. In this review, we discuss the abnormal expression of key molecules related to glucose metabolism in OS and summarize the glucose metabolism related signaling pathways involved in the occurrence and development of OS. In addition, we discuss some of the targeted drugs that regulate glucose metabolism pathways, which can lead to effective strategies for targeted treatment of OS.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhonghong Li
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yujie Wang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhipan Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| |
Collapse
|
4
|
Arif M, Pandey P, Khan F. Review Deciphering the Anticancer Efficacy of Resveratrol and their Associated Mechanisms in Human Carcinoma. Endocr Metab Immune Disord Drug Targets 2024; 24:1015-1026. [PMID: 37929735 DOI: 10.2174/0118715303251351231018145903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
The scientific world has recently shown wider attention to elucidating the anticancerous potential of numerous plant-based bioactive compounds. Many research studies have suggested that consuming foods high in polyphenols, which are present in large amounts in grains, legumes, vegetables, and fruits, may delay the onset of various illnesses, including cancer. Normal cells with genetic abnormalities begin the meticulously organized path leading to cancer, which causes the cells to constantly multiply, colonize, and metastasize to other organs like the liver, lungs, colon, and brain. Resveratrol is a naturally occurring stilbene and non-flavonoid polyphenol, a phytoestrogen with antioxidant, anti-inflammatory, cardioprotective, and anticancer properties. Resveratrol makes cancer cells more susceptible to common chemotherapeutic treatments by reversing multidrug resistance in cancer cells. This is especially true when combined with clinically used medications. Several new resveratrol analogs with enhanced anticancer effectiveness, absorption, and pharmacokinetic profile have been discovered. The present emphasis of this review is the modulation of intracellular molecular targets by resveratrol in vivo and in vitro in various malignancies. This review would help future researchers develop a potent lead candidate for efficiently managing human cancers.
Collapse
Affiliation(s)
- Mohd Arif
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, U.P., India
| |
Collapse
|
5
|
Wang W, Shi J, Zheng L. METTL3 promotes choriocarcinoma progression by activating the miR-935/GJA1 pathway in an m6A-dependent manner. Am J Reprod Immunol 2023; 90:e13791. [PMID: 37881126 DOI: 10.1111/aji.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
The emerging role of microRNA-935 (miR-935) in modulating cancer progression has been recognized. However, its role in regulating choriocarcinoma (CCA) development and progression remains unknown. The present work aims to reveal the effect of miR-935 on CCA cell tumor properties and the related mechanism. The RNA expression of methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3), miR-935, and gap junction protein alpha 1 (GJA1) was detected by quantitative real-time polymerase chain reaction. Protein expression of GJA1, Ki67, and METTL3 was measured by western blotting and immunohistochemistry assays. CCK-8 and colony formation were used to analyze cell proliferation. Transwell assays were performed to assess cell migration and invasion. Angiogenesis was investigated by tube formation assay. Xenograft mouse model assay was used to determine miR-935-mediated effect on tumor formation in vivo. The luciferase reporter assay and RNA pull-down assay were used to verify the relationship between miR-935 and GJA1. MeRIP assay was used to analyze the m6A methylation of pri-miR-935. MiR-935 expression was significantly upregulated in CCA tissues and cells when compared with control groups. MiR-935 overexpression promoted CCA cell proliferation, migration, invasion, and tube formation and tumor tumorigenesis in vitro and in vivo, but miR-935 knockdown showed the opposite effects. In addition, miR-935 targeted GJA1 and mediated CCA cell tumor properties by negatively regulating GJA1 expression. METTL3 promoted miR-935 maturation by inducing m6A methylation of pri-miR-935, and its overexpression contributed to CCA cell tumor properties through the regulation of miR-935. METTL3 promoted choriocarcinoma progression by m6A-dependently activating the miR-935/GJA1 pathway.
Collapse
Affiliation(s)
- Wenzhi Wang
- Department of Gynaecology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jianyong Shi
- Department of Gynaecology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lei Zheng
- College of Pharmacy, Xi'an Medical University, Xi'an, China
| |
Collapse
|
6
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
7
|
Chai H, Huang Q, Jiao Z, Wang S, Sun C, Geng D, Xu W. Osteocytes Exposed to Titanium Particles Inhibit Osteoblastic Cell Differentiation via Connexin 43. Int J Mol Sci 2023; 24:10864. [PMID: 37446062 DOI: 10.3390/ijms241310864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is the most severe complication of total joint replacement; however, the mechanism behind PPO remains elusive. Previous studies have shown that osteocytes play important roles in wear-particle-induced osteolysis. In this study, we investigated the effects of connexin 43 (Cx43) on the regulation of osteocyte-to-osteoblast differentiation. We established an in vivo murine model of calvarial osteolysis induced by titanium (Ti) particles. The osteolysis characteristic and osteogenesis markers in the osteocyte-selective Cx43 (CKO)-deficient and wild-type (WT) mice were observed. The calvarial osteolysis induced by Ti particles was partially attenuated in CKO mice. The expression of β-catenin and osteogenesis markers increased significantly in CKO mice. In vitro, the osteocytic cell line MLO-Y4 was treated with Ti particles. The co-culturing of MLO-Y4 cells with MC3T3-E1 osteoblastic cells was used to observe the effects of Ti-treated osteocytes on osteoblast differentiation. When Cx43 of MLO-Y4 cells was silenced or overexpressed, β-catenin was detected. Additionally, co-immunoprecipitation detection of Cx43 and β-catenin binding in MLO-Y4 cells and MC3T3-E1 cells was performed. Finally, β-catenin expression in MC3T3-E1 cells and osteoblast differentiation were evaluated after 18α-glycyrrhetinic acid (18α-GA) was used to block the intercellular communication of Cx43 between MLO-Y4 and MC3T3-E1 cells. Ti particles increased Cx43 expression and decreased β-catenin expression in MLO-Y4 cells. The silencing of Cx43 increased the β-catenin expression, and the over-expression of Cx43 decreased the β-catenin expression. In the co-culture model, Ti treatment of MLO-Y4 cells inhibited the osteoblastic differentiation of MC3T3-E1 cells and Cx43 silencing in MLO-Y4 cells attenuated the inhibitory effects on osteoblastic differentiation. With Cx43 silencing in the MLO-Y4 cells, the MC3T3-E1 cells, co-cultured alongside MLO-Y4, displayed decreased Cx43 expression, increased β-catenin expression, activation of Runx2, and promotion of osteoblastic differentiation in vitro co-culture. Finally, Cx43 expression was found to be negatively correlated to the activity of the Wnt signaling pathway, mostly through the Cx43 binding of β-catenin from its translocation to the nucleus. The results of our study suggest that Ti particles increased Cx43 expression in osteocytes and that osteocytes may participate in the regulation of osteoblast function via the Cx43 during PPO.
Collapse
Affiliation(s)
- Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zixue Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
8
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|
9
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
10
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
11
|
Resveratrol Inhibition of the WNT/β-Catenin Pathway following Discogenic Low Back Pain. Int J Mol Sci 2022; 23:ijms23084092. [PMID: 35456908 PMCID: PMC9024678 DOI: 10.3390/ijms23084092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Low back pain (LBP) management is an important clinical issue. Inadequate LBP control has consequences on the mental and physical health of patients. Thus, acquiring new information on LBP mechanism would increase the available therapeutic tools. Resveratrol is a natural compound with many beneficial effects. In this study, we investigated the role of resveratrol on behavioral changes, inflammation and oxidative stress induced by LBP. Ten microliters of Complete Freund’s adjuvant (CFA) was injected in the lumbar intervertebral disk of Sprague Dawley rats to induce degeneration, and resveratrol was administered daily. Behavioral analyses were performed on day zero, three, five and seven, and the animals were sacrificed to evaluate the molecular pathways involved. Resveratrol administration alleviated hyperalgesia, motor disfunction and allodynia. Resveratrol administration significantly reduced the loss of notochordal cells and degenerative changes in the intervertebral disk. From the molecular point of view, resveratrol reduced the 5th/6th lumbar (L5–6) spinal activation of the WNT pathway, reducing the expression of WNT3a and cysteine-rich domain frizzled (FZ)8 and the accumulation of cytosolic and nuclear β-catenin. Moreover, resveratrol reduced the levels of TNF-α and IL-18 that are target genes strictly downstream of the WNT/β-catenin pathway. It also showed important anti-inflammatory activities by reducing the activation of the NFkB pathway, the expression of iNOS and COX-2, and the levels of PGE2 in the lumbar spinal cord. Moreover, resveratrol reduced the oxidative stress associated with inflammation and pain, as shown by the observed reduced lipid peroxidation and increased GSH, SOD, and CAT activities. Therefore, resveratrol administration controlled the WNT/β-catenin pathway and the related inflammatory and oxidative alterations, thus alleviating the behavioral changes induced by LBP.
Collapse
|
12
|
De Luca A, Bellavia D, Raimondi L, Carina V, Costa V, Fini M, Giavaresi G. Multiple Effects of Resveratrol on Osteosarcoma Cell Lines. Pharmaceuticals (Basel) 2022; 15:342. [PMID: 35337142 PMCID: PMC8956103 DOI: 10.3390/ph15030342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone sarcoma affecting the life of pediatric patients. The clinical treatment faces numerous difficulties, including the adverse effects of chemotherapies, chemoresistance, and recurrences. In this study, the effects of resveratrol (RSV), a natural polyphenol, on OS cell lines were investigated to evaluate its action as an adjuvant therapy to the current chemotherapy regimens. RSV exhibited multiple tumor-suppressing activities on OS cell lines, inducing a series of critical events. We found (1) a cell growth inhibition due to an increase in cell distress, which was, in part, due to the involvement of the AKT and caspase-3 pathways, (2) an increase in cellular differentiation due to major gene expression levels of the osteoblastic differentiation genes, (3) an inhibition of IL-6 secretion due to an epigenetic effect on the IL-6 promoter, and (4) an inhibition of OS cells migration related to the decrease in IL-8 secretion levels due to an epigenetic effect on its promoter. Finally, the cotreatment of RSV with doxorubicin and cisplatin increased their cytotoxic effect on OS cells. Although further investigations are mandatory, it seems RSV might be a promising therapeutic adjuvant agent for OS cell treatment, exerting an antitumor effect when combined with chemotherapy.
Collapse
Affiliation(s)
- Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies—SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (D.B.); (L.R.); (V.C.); (V.C.); (M.F.); (G.G.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Rabelo ACS, Borghesi J, Noratto GD. The role of dietary polyphenols in osteosarcoma: A possible clue about the molecular mechanisms involved in a process that is just in its infancy. J Food Biochem 2021; 46:e14026. [PMID: 34873724 DOI: 10.1111/jfbc.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor mainly affecting children, teenagers and young adults, being associated with early metastasis and poor prognosis. The beneficial effects of polyphenols have been investigated in different areas, including their potential to fight OS. Polyphenols are believed to reduce morbidity and/or slow down the development of cancer. This review aimed to assess the effect of polyphenols in OS and investigate their molecular mechanisms. It was observed that the broad spectrum of health-promoting properties of plant polyphenols in OS occurs mainly due to modulation of reactive oxygen species, anti-inflammatory activity, anti-angiogenesis, apoptosis inducer, inhibition of invasion and metastasis. However, it is worth mentioning that although the promising effects of polyphenols in the fight against OS, most of the studies have been performed using in vitro and in vivo animal models. Therefore, studies in humans are needed to validate the effectiveness of polyphenols in OS treatment. PRACTICAL APPLICATIONS: Polyphenols are widely used for various diseases, however, until now, their real role in the treatment of osteosarcoma remains unknown. This review provides a broad spectrum of research conducted with polyphenols and their potential as adjuvant therapy in the treatment of osteosarcoma. However, prior to their clinical application for osteosarcoma treatment, there is a need to isolate and identify specific polyphenolic compounds with high antitumor activity, increase their oral bioavailability, and to investigate their interactions with chemotherapeutic drugs being used in clinical practice.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Department of Food and Experimental Nutrition, Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Jéssica Borghesi
- Department of Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Giuliana D Noratto
- Departament of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Tobeiha M, Rajabi A, Raisi A, Mohajeri M, Yazdi SM, Davoodvandi A, Aslanbeigi F, Vaziri M, Hamblin MR, Mirzaei H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed Pharmacother 2021; 144:112257. [PMID: 34688081 DOI: 10.1016/j.biopha.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahshad Mohajeri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - MohamadSadegh Vaziri
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Hosseini F, Alemi F, Malakoti F, Mahmoodpoor A, Younesi S, Yousefi B, Asemi Z. Targeting Wnt/β-catenin signaling by microRNAs as a therapeutic approach in chemoresistant osteosarcoma. Biochem Pharmacol 2021; 193:114758. [PMID: 34481813 DOI: 10.1016/j.bcp.2021.114758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is an adolescent and young adult malignancy that mostly occurs in long bones. The treatment of OS is still a big challenge for clinicians due to increasing chemoresistance, and many efforts are being made today to find more beneficial treatments. In this regard, the use of microRNAs has shown a high capacity to develop promising therapies. By targeting cancer-involved signaling pathways, microRNAs reduce the cellular level of these protein pathways; thereby reducing the growth and invasion of tumors, and even leading cancer cells to apoptosis. One of these oncogenic pathways that play an important role in OS development and can be targeted by microRNAs is the Wnt/β-catenin signaling pathway. Hence, the first goal of this review article is to explain the cross-talk of microRNAs and the Wnt/β-catenin signaling in OS and then discussing recent findings of the use of microRNAs as a therapeutic approach in OS.
Collapse
Affiliation(s)
- Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Bryukhovetskiy I, Kosianova A, Zaitsev S, Pak O, Sharma A, Sharma HS. Glioblastoma: What can we do for these patients today and what will we be able to do in the future? PROGRESS IN BRAIN RESEARCH 2021; 265:99-118. [PMID: 34560928 DOI: 10.1016/bs.pbr.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive primary human brain tumor. The median survival of GBM patients is 15 months in case of completing the modern complex treatment protocol. Chemotherapy can help to extend the life expectancy of patients. GBM treatment resistance is associated with cancer stem cells (CSCs). The present paper analyses the main reasons for ineffectiveness of the existing GBM treatment methods and suggests treating CSCs as a complex phenomenon, resulting from the coordinated interaction of normal stem cells and cancer cells (CCs) in immunosuppressive microsurroundings. The GBM treatment strategy is suggested not for only suppressing strategically important signaling pathways in CCs, but also for regulating interaction between normal stem cells and cancer cells. The paper considers the issue of controlling penetrability of the blood-brain barrier that is one of the main challenges in neuro-oncology. Also, the paper suggests the ways of extending life expectancy of GBM patients today and prospects for the near future.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia.
| | - Aleksandra Kosianova
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Sergeis Zaitsev
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Oleg Pak
- School of Life Science & Biomedicine, Medical Center, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J Nutr Biochem 2021; 93:108634. [PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abdi Wira Septama
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia; Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor
| |
Collapse
|
18
|
Yan BF, Chen X, Liu J, Liu SJ, Zhang JZ, Zeng QQ, Duan JA. Asiatic Acid Induces Mitochondrial Apoptosis via Inhibition of JAK2/STAT3 Signalling Pathway in Human Osteosarcoma. Folia Biol (Praha) 2021; 67:108-117. [PMID: 35151244 DOI: 10.14712/fb2021067030108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Osteosarcoma (OS), a severe malignant bone tumour, usually occurs in adolescents and children and has a poor prognosis. Asiatic acid (AA), an active component isolated from Centella asiatica (L.) Urb., exhibits appreciable anti-oxidant and anti-tumour activities. So far, the effects and underlying mechanisms of AA against OS have not been clarified. Here, we explored the anti-tumour effects of AA against human OS and the involved mechanism mediating its actions. To evaluate effects of AA on the cell proliferation of human OS cells, cell viability and colony formation assays were performed. Flow cytometry was used to evaluate apoptosis in OS cells exposed to AA and mitochondrial membrane potential. Western blotting and RT-PCR were applied to determine expression of the relevant proteins and their mRNA levels. Our explorations showed that AA inhibits proliferation of human OS cells in a concentration- and time-dependent manner, and induces apoptosis of OS cells by the intrinsic (mitochondrial) pathway. Importantly, we found that inhibition of the AA-induced phosphorylation of JAK2/STAT3 signalling molecules and the decrease in MCL-1 contributed to the anti-tumour efficacy of AA. Collectively, our results suggest that AA could evoke mitochondrial- induced apoptosis in human OS cells by suppression of the JAK2/STAT3 pathway and MCL-1 expression. These results strongly demonstrate that AA could be a potential anti-tumour agent for OS treatment.
Collapse
Affiliation(s)
- B F Yan
- Jiangsu Health Vocational College; Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine; Nanjing, China
| | - X Chen
- Jiangsu College of Nursing; Huaian, China
| | - J Liu
- Jiangsu Health Vocational College; Nanjing, China
| | - S J Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine; Nanjing, China
| | - J Z Zhang
- Jiangsu Health Vocational College; Nanjing, China
| | - Q Q Zeng
- Jiangsu Health Vocational College; Nanjing, China
| | - J A Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine; Nanjing, China
| |
Collapse
|
19
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
20
|
Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors. Biomolecules 2020; 10:biom10091240. [PMID: 32859065 PMCID: PMC7565206 DOI: 10.3390/biom10091240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite research and clinical advances during recent decades, bone cancers remain a leading cause of death worldwide. There is a low survival rate for patients with primary bone tumors such as osteosarcoma and Ewing’s sarcoma or secondary bone tumors such as bone metastases from prostate carcinoma. Gap junctions are specialized plasma membrane structures consisting of transmembrane channels that directly link the cytoplasm of adjacent cells, thereby enabling the direct exchange of small signaling molecules between cells. Discoveries of human genetic disorders due to genetic mutations in gap junction proteins (connexins) and experimental data using connexin knockout mice have provided significant evidence that gap-junctional intercellular communication (Gj) is crucial for tissue function. Thus, the dysfunction of Gj may be responsible for the development of some diseases. Gj is thus a main mechanism for tumor cells to communicate with other tumor cells and their surrounding microenvironment to survive and proliferate. If it is well accepted that a low level of connexin expression favors cancer cell proliferation and therefore primary tumor development, more evidence is suggesting that a high level of connexin expression stimulates various cellular process such as intravasation, extravasation, or migration of metastatic cells. If so, connexin expression would facilitate secondary tumor dissemination. This paper discusses evidence that suggests that connexin 43 plays an antagonistic role in the development of primary bone tumors as a tumor suppressor and secondary bone tumors as a tumor promoter.
Collapse
|
21
|
Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020; 9:cells9030589. [PMID: 32131438 PMCID: PMC7140537 DOI: 10.3390/cells9030589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.
Collapse
Affiliation(s)
- Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Correspondence: (A.B.); (V.L.K.)
| | - Antonina Klimenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Vladimir L. Katanaev
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (A.B.); (V.L.K.)
| |
Collapse
|
22
|
Rafe T, Shawon PA, Salem L, Chowdhury NI, Kabir F, Bin Zahur SM, Akhter R, Noor HB, Mohib MM, Sagor MAT. Preventive Role of Resveratrol Against Inflammatory Cytokines and Related Diseases. Curr Pharm Des 2020; 25:1345-1371. [PMID: 30968773 DOI: 10.2174/1381612825666190410153307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer's, hypertension, stroke, cysts and cancers. METHODS This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information. RESULTS Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases. CONCLUSION This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.
Collapse
Affiliation(s)
- Tanzir Rafe
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Parvez Ahmed Shawon
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Nafij Imtiyaj Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Farjana Kabir
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | | | - Rowshon Akhter
- Department of Pharmacy, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Humaira Binte Noor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Md Mohabbulla Mohib
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh.,Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| |
Collapse
|
23
|
Karamian A, Nazarian H, Ziai SA, Zarnani AH, Salehpour S, Paktinat S, Novin MG. Pyrvinium pamoate inhibits proliferation and invasion of human endometriotic stromal cells. Hum Exp Toxicol 2019; 39:662-672. [DOI: 10.1177/0960327119896612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endometriosis is characterized by the presence of functional endometrial tissue in other pelvic organs. This gynecologic problem occurs in 35–50% of women with pain and infertility. Endometriotic cells share some characteristics such as proliferation, migration, and invasion with tumor cells. Pyrvinium pamoate, an anthelmintic drug approved by the Food and Drug Administration, could inhibit the Wnt/β-catenin signaling pathway and its anticancer effects were examined by several researchers. In this study, 12 ectopic and eutopic endometrial biopsies from females with ovarian endometrioma and 12 endometrial biopsies from nonendometriotic females were obtained. Ectopic (EESCs), eutopic (EuESCs), and control (CESCs) endometrial stromal cells were isolated. Then, the effect of pyrvinium pamoate on the proliferation and invasiveness of in vitro cultured cells was evaluated. The proliferation of CESCs, EuESCs, and EESCs was significantly decreased after treatment with pyrvinium pamoate. In addition, treatment with pyrvinium pamoate significantly inhibited the invasiveness of CESCs, EuESCs, and EESCs compared to nontreated groups. The results of the present research showed that pyrvinium pamoate inhibits the proliferation and invasion of human endometriotic stromal cells in vitro, further investigations on the therapeutic potential of this compound in endometriosis are required.
Collapse
Affiliation(s)
- A Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SA Ziai
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A-H Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - S Salehpour
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Paktinat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - MG Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. J Cell Physiol 2019; 235:4135-4145. [PMID: 31637721 DOI: 10.1002/jcp.29327] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Wingless-type MMTV integration site (Wnt) signaling pathway is considered as an important pathway regulating a variety of biological processes such as tissue formation and homeostasis, cell proliferation, cell migration, cell differentiation, and embryogenesis. Impairment in the Wnt signaling pathway is associated with pathological conditions, particularly cancer. So, modulation of this pathway can be considered as a promising strategy and several drugs have been developed in line with this strategy. Resveratrol (Res) is a naturally occurring nutraceutical compound exclusively found in different fruits and nuts such as grape, peanut, and pistachio. This compound has favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, cardioprotective, and antidiabetic. At the present review, we demonstrate how Res modulates Wnt signaling pathway to exert its pharmacological effects.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
25
|
Lei Z, Mengying Z, Yifei G, Xiangtao W, Meihua H. Alendronate-modified polydopamine-coated paclitaxel nanoparticles for osteosarcoma-targeted therapy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Kodarahmian M, Amidi F, Moini A, Kashani L, Shabani Nashtaei M, Pazhohan A, Bahramrezai M, Berenjian S, Sobhani A. The modulating effects of Resveratrol on the expression of MMP-2 and MMP-9 in endometriosis women: a randomized exploratory trial. Gynecol Endocrinol 2019; 35:719-726. [PMID: 30777471 DOI: 10.1080/09513590.2019.1576612] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endometriosis is an inflammatory disease; the hallmark of inflammation is over-activation of matrix metalloproteinases (MMPs). The regulatory effects of Resveratrol on MMPs were formerly depicted in other cell lines. This study aimed at investigating the effects of Resveratrol on expression of MMP-2 and -9 in endometriosis patients. This trial was carried out on endometriosis patients (n = 34) who were randomly divided into treatment (i = 17) and control (n = 17) groups. Alongside the routine protocol, the control and treatment groups took placebo and Resveratrol (400 mg), respectively, for 12-14 weeks. Endometrial tissue and fluid as well as blood sampling from both groups were done before and after the intervention. The level of mRNA and protein of both MMP-2 and -9 reduced in the endometrium of treatment group following intervention. Also, the serum and the endometrial fluid concentration of them lowered within the treatment group. Moreover, the serum and endometrial fluid levels of MMP-2 as well as MMP-9 were also diminished following the surgical removal of endometritic lesions. We showed that Resveratrol can modify the inflammation process in the endometrium of women with endometriosis at least in the level of MMP-2 and -9 expressions. The therapeutic potency of Resveratrol in endometriosis needs more clinical studies.
Collapse
Affiliation(s)
- Mahshad Kodarahmian
- a Department of Anatomy, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Fardin Amidi
- a Department of Anatomy, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
- b Department of Infertility , Shariati Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Ashraf Moini
- c Department of Gynecology and Obstetrics , Arash Women's Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Ladan Kashani
- c Department of Gynecology and Obstetrics , Arash Women's Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Shabani Nashtaei
- a Department of Anatomy, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
- b Department of Infertility , Shariati Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Azar Pazhohan
- d Infertility Center, Academic Center for Education, Culture and Research , Tabriz , East Azarbaijan , Iran
- e Department of Midwifery , Urmia Branch, Islamic Azad University , Urmia , Iran
| | - Mojdeh Bahramrezai
- a Department of Anatomy, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Samaneh Berenjian
- a Department of Anatomy, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Aligholi Sobhani
- a Department of Anatomy, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
27
|
Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling. Toxicol Appl Pharmacol 2019; 371:55-62. [DOI: 10.1016/j.taap.2019.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 02/01/2023]
|
28
|
Connexin 43 Loss Triggers Cell Cycle Entry and Invasion in Non-Neoplastic Breast Epithelium: A Role for Noncanonical Wnt Signaling. Cancers (Basel) 2019; 11:cancers11030339. [PMID: 30857262 PMCID: PMC6468895 DOI: 10.3390/cancers11030339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
(1) Background: The expression of connexin 43 (Cx43) is disrupted in breast cancer, and re-expression of this protein in human breast cancer cell lines leads to decreased proliferation and invasiveness, suggesting a tumor suppressive role. This study aims to investigate the role of Cx43 in proliferation and invasion starting from non-neoplastic breast epithelium. (2) Methods: Nontumorigenic human mammary epithelial HMT-3522 S1 cells and Cx43 shRNA-transfected counterparts were cultured under 2-dimensional (2-D) and 3-D conditions. (3) Results: Silencing Cx43 induced mislocalization of β-catenin and Scrib from apicolateral membrane domains in glandular structures or acini formed in 3-D culture, suggesting the loss of apical polarity. Cell cycle entry and proliferation were enhanced, concomitantly with c-Myc and cyclin D1 upregulation, while no detectable activation of Wnt/β-catenin signaling was observed. Motility and invasion were also triggered and were associated with altered acinar morphology and activation of ERK1/2 and Rho GTPase signaling, which acts downstream of the noncanonical Wnt pathway. The invasion of Cx43-shRNA S1 cells was observed only under permissive stiffness of the extracellular matrix (ECM). (4) Conclusion: Our results suggest that Cx43 controls proliferation and invasion in the normal mammary epithelium in part by regulating noncanonical Wnt signaling.
Collapse
|
29
|
miR-125 regulates PI3K/Akt/mTOR signaling pathway in rheumatoid arthritis rats via PARP2. Biosci Rep 2019; 39:BSR20180890. [PMID: 30541899 PMCID: PMC6328865 DOI: 10.1042/bsr20180890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to explore miR-125 effects on rheumatoid arthritis (RA) development to provide a potential target for RA. Briefly, rat RA model was established (Model group) by injection of Freund’s Complete Adjuvant into the left hind toe. Normal rats injected with saline in the same location were set as Normal group. All rats’ secondary foot swelling degree, polyarthritis index score, spleen and thymus index were measured. Synovial tissues were subjected to Hematoxylin–Eosin (HE) staining and immunohistochemistry. Synovial cells of each group were isolated and named as Normal-C group and Model-C group, respectively. Synovial cells of Model-C group further underwent cotransfection with miR-125 mimics and PARP2-siRNA (mimics+siPARP2 group) or with miR-125 negative control (NC) and PARP2-siRNA NC (NC group). Quantitative reverse transcriptase PCR (qRT-PCR), Western blot, luciferase reporter assay, ELISA, and MTT assay were performed. As a result, compared with Normal group, rats of Model group showed significantly higher secondary foot swelling degree, polyarthritis index score, spleen and thymus index (P<0.01). Down-regulated miR-125 and up-regulated PARP2 was found in synovial tissues of Model group when compared with Normal group (P<0.01). Synovial tissues of Model-C group exhibited severe hyperplasia and inflammatory cell infiltration. Luciferase reporter assay indicated that PARP2 was directly inhibited by miR-125. Compared with NC group, cells of mimics+siPARP2 group had significantly lower IL-1β, MMP-1 and TIMP-1 levels, absorbance value, and p-PI3K, p-Akt and p-mTOR relative expression (P<0.01 or P<0.05). Thus, miR-125 might attenuate RA development by regulating PI3K/Akt/mTOR signaling pathway via directly inhibiting PARP2 expression.
Collapse
|
30
|
Yu YP, He JG, Li P, Qiu NH, Wang LJ, Feng H. TUFT1 Promotes Osteosarcoma Cell Proliferation and Predicts Poor Prognosis in Osteosarcoma Patients. Open Life Sci 2018; 13:396-403. [PMID: 33817108 PMCID: PMC7874716 DOI: 10.1515/biol-2018-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Objective This study is aimed at exploring the role of TUFT1 in osteosarcomas. Methods We investigated the expression of TUFT1 in osteosarcoma cell lines and explored the correlation between TUFT1 expression and prognosis in osteosarcoma patients based on the expression data downloaded from Gene Expression Omnibus (GEO) website. The effects of TUFT1 on osteosarcoma cell proliferation, migration and invasion were investigated by silencing TUFT1 in osteosarcoma MG63 cell line. Finally, western blot was performed to determine the expression changes of MAPK signaling pathway related proteins after silencing TUFT1. Results We found that the expression of TUFT1 was significantly up-regulated in osteosarcoma cell lines compared with the normal control. Using Kaplan-Meier analysis, we identified that high TUFT1 expression was positively correlated with poor prognosis in osteosarcoma patients. Furthermore, knockdown of TUFT1 remarkably inhibited MG63 cell proliferation, migration and invasion. Using western blot analysis, we found that the phosphorylation levels of MEK and ERK were reduced obviously in MG63 cells after silencing TUFT1 (p<0.01). Conclusions Our results demonstrated that TUFT1 plays a promoting role in MG63 cell proliferation and metastasis and has the potential to be a predictor as well as a therapeutic target for osteosarcoma patients.
Collapse
Affiliation(s)
- Yao-Ping Yu
- Department of Pain, Ningbo Rehabilitation hospital, 502 sangtian Road, Ning Bo, Zhe Jiang, 315040, China
| | - Jian-Guo He
- Department of Pain, Ningbo Rehabilitation hospital, 502 sangtian Road, Ning Bo, Zhe Jiang, 315040, China
| | - Ping Li
- Department of Pain, Ningbo Rehabilitation hospital, 502 sangtian Road, Ning Bo, Zhe Jiang, 315040, China
| | - Ning-Hui Qiu
- Department of Pain, Ningbo Rehabilitation hospital, 502 sangtian Road, Ning Bo, Zhe Jiang, 315040, China
| | - Li-Jun Wang
- Department of Pain, Ningbo Rehabilitation hospital, 502 sangtian Road, Ning Bo, Zhe Jiang, 315040, China
| | - Hui Feng
- Department of Pain, Ningbo Rehabilitation hospital, 502 sangtian Road, Ning Bo, Zhe Jiang, 315040, China
| |
Collapse
|
31
|
Aggelidakis J, Berdiaki A, Nikitovic D, Papoutsidakis A, Papachristou DJ, Tsatsakis AM, Tzanakakis GN. Biglycan Regulates MG63 Osteosarcoma Cell Growth Through a LPR6/β-Catenin/IGFR-IR Signaling Axis. Front Oncol 2018; 8:470. [PMID: 30406034 PMCID: PMC6206209 DOI: 10.3389/fonc.2018.00470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Biglycan, a small leucine rich proteoglycan (SLRP), is an important participant in bone homeostasis and development as well as in bone pathology. In the present study biglycan was identified as a positive regulator of MG63 osteosarcoma cell growth (p ≤ 0.001). IGF-I was shown to increase biglycan expression (p ≤ 0.01), whereas biglycan-deficiency attenuated significantly both basal and IGF-I induced cell proliferation of MG63 cells (p ≤ 0.001; p ≤ 0.01, respectively). These effects were executed through the IGF-IR receptor whose activation was strongly attenuated (p ≤ 0.01) in biglycan-deficient MG63 cells. Biglycan, previously shown to regulate Wnt/β-catenin pathway, was demonstrated to induce a significant increase in β-catenin protein expression evident at cytoplasmic (p ≤ 0.01), membrane (p ≤ 0.01), and nucleus fractions in MG63 cells (p ≤ 0.05). As demonstrated by immunofluorescence, increase in β-catenin expression is attributed to co-localization of biglycan with the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) resulting in attenuated β-catenin degradation. Furthermore, applying anti-β-catenin and anti-pIGF-IR antibodies to MG-63 cells demonstrated a cytoplasmic and to the membrane interaction between these molecules that increased upon exogenous biglycan treatment. In parallel, the downregulation of biglycan significantly inhibited both basal and IGF-I-dependent ERK1/2 activation, (p ≤ 0.001). In summary, we report a novel mechanism where biglycan through a LRP6/β-catenin/IGF-IR signaling axis enhances osteosarcoma cell growth.
Collapse
Affiliation(s)
- John Aggelidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dionysios J Papachristou
- Unit of Bone and Soft Tissue Studies, Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
32
|
Cytoprotective Effects of Natural Compounds against Oxidative Stress. Antioxidants (Basel) 2018; 7:antiox7100147. [PMID: 30347819 PMCID: PMC6210295 DOI: 10.3390/antiox7100147] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been witnessed in pathophysiological states of many disorders. Compounds identified from natural sources have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. Here, we summarize the cytoprotective effects and mechanisms of natural or naturally derived synthetic compounds against oxidative stress. These compounds include: caffeic acid phenethyl ester (CAPE) found in honey bee propolis, curcumin from turmeric roots, resveratrol abundant in grape, and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im), a synthetic triterpenoid based on naturally occurring oleanolic acid. Cytoprotective effects of these compounds in diseases conditions like cardiovascular diseases and obesity to decrease oxidative stress are discussed.
Collapse
|
33
|
Park B, Lim JW, Kim H. Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cells. Nutr Res 2018; 70:70-81. [PMID: 30098838 DOI: 10.1016/j.nutres.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/05/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori (H pylori) colonizes the human stomach and increases the risk of gastric diseases including gastric cancer. H pylori increases reactive oxygen species (ROS), which activate Janus-activator kinase 1 (Jak1)/signal transducers and activators of transcription 3 (Stat3) in gastric epithelial cells. ROS mediate hyperproliferation, a hallmark of carcinogenesis, by activating Wnt/β-catenin signaling in various cells. Lycopene is a potent antioxidant exhibiting anticancer effects. We hypothesized that lycopene may inhibit H pylori-induced hyperproliferation by suppressing ROS-mediated activation of Jak1/Stat3 and Wnt/β-catenin signaling, and β-catenin target gene expression in gastric epithelial cells. We determined cell viability, ROS levels, and the protein levels of phospho- and total Jak1/Stat3, Wnt/β-catenin signaling molecules, Wnt-1, lipoprotein-related protein 5, and β-catenin target oncogenes (c-Myc and cyclin E) in H pylori-infected gastric epithelial AGS cells. The Jak1/Stat3 inhibitor AG490 served as the control treatment. The significance of the differences among groups was calculated using the 1-way analysis of variance followed by Newman-Keuls post hoc tests. The results show that lycopene reduced ROS levels and inhibited Jak1/Stat3 activation, alteration of Wnt/β-catenin multiprotein complex molecules, expression of c-Myc and cyclin E, and cell proliferation in H pylori-infected AGS cells. AG490 similarly inhibited H pylori-induced cell proliferation, alteration of Wnt/β-catenin multiprotein complex molecules, and oncogene expression. H pylori increased the levels of Wnt-1 and its receptor lipoprotein-related protein 5; this increase was inhibited by either lycopene or AG490 in AGS cells. In conclusion, lycopene inhibits ROS-mediated activation of Jak1/Stat3 and Wnt/β-catenin signaling and, thus, oncogene expression in relation to hyperproliferation in H pylori-infected gastric epithelial cells. Lycopene might be a potential and promising nutrient for preventing H pylori-associated gastric diseases including gastric cancer.
Collapse
Affiliation(s)
- Bohye Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|