1
|
Elmasry K, Habib S, Helwa I, Khaled ML, Ibrahim AS, Tawfik A, Al-Shabrawey M. Possible Role of Endothelial-Derived Cellular and Exosomal-miRNAs in Lipid-Mediated Diabetic Retinopathy: Microarray Studies. Cells 2024; 13:1886. [PMID: 39594634 PMCID: PMC11592818 DOI: 10.3390/cells13221886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a salient cause of blindness worldwide. There is still an immense need to understand the pathophysiology of DR to discover better diagnostic and therapeutic modalities. Human retinal endothelial cells (HRECs) were treated with 15-HETE or D-glucose, then miRNAs were isolated, and a microarray was performed. MirWALK 2 and Ingenuity Pathway Analysis (IPA) were used to analyze the microarray results. Exosomal miRNAs from 15-HETE-treated HRECs were isolated, microarrayed, and then imported into IPA for further analysis. The microarray results showed that 15-HETE downregulated 343 miRNAs and upregulated 297 miRNAs in HRECs. High glucose treatment induced a differential expression of HREC-miRNAs where 185 miRNAs were downregulated and 244 were upregulated. Comparing the impact of 15-HETE versus DG or diabetic mouse retina elaborated commonly changing miRNAs. Pathway and target analysis for miRNAs changed in 15-HETE-treated HRECs revealed multiple targets and pathways that may be involved in 15-HETE-induced retinal endothelial dysfunction. The HREC-exosomal miRNAs were differentially expressed after 15-HETE treatment, with 34 miRNAs downregulated and 45 miRNAs upregulated, impacting different cellular pathways. Here, we show that 15-HETE induces various changes in the cellular and exosomal miRNA profile of HRECs, highlighting the importance of targeting the 12/15 lipoxygenase pathway in DR.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- DCG Center for Excellence in Research, Scholarship, and Innovation (CERSI), Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samar Habib
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- DCG Center for Excellence in Research, Scholarship, and Innovation (CERSI), Augusta University, Augusta, GA 30912, USA
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Inas Helwa
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Histopathology, Faculty of Oral and Dental Medicine, Misr International University, Cairo 19648, Egypt
| | - Mariam Lotfy Khaled
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Amany Tawfik
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Rochester, MI 48073, USA
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Mohamed Al-Shabrawey
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Rochester, MI 48073, USA
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
2
|
Mondal AK, Gaur M, Advani J, Swaroop A. Epigenome-metabolism nexus in the retina: implications for aging and disease. Trends Genet 2024; 40:718-729. [PMID: 38782642 PMCID: PMC11303112 DOI: 10.1016/j.tig.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Gad MS, Elsherbiny NM, El-Bassouny DR, Omar NM, Mahmoud SM, Al-Shabrawey M, Tawfik A. Exploring the role of Müller cells-derived exosomes in diabetic retinopathy. Microvasc Res 2024; 154:104695. [PMID: 38723843 PMCID: PMC11180575 DOI: 10.1016/j.mvr.2024.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 06/17/2024]
Abstract
Exosomes are nanosized vesicles that have been reported as cargo-delivering vehicles between cells. Müller cells play a crucial role in the pathogenesis of diabetic retinopathy (DR). Activated Müller cells in the diabetic retina mediate disruption of barrier integrity and neovascularization. Endothelial cells constitute the inner blood-retinal barrier (BRB). Herein, we aim to evaluate the effect of Müller cell-derived exosomes on endothelial cell viability and barrier function under normal and hyperglycemic conditions. Müller cell-derived exosomes were isolated and characterized using Western blotting, nanoparticle tracking, and electron microscopy. The uptake of Müller cells-derived exosomes by the human retinal endothelial cells (HRECs) was monitored by labeling exosomes with PKH67. Endothelial cell vitality after treatment by exosomes under normo- and hypoglycemic conditions was checked by MTT assay and Western blot for apoptotic proteins. The barrier function of HRECs was evaluated by analysis of ZO-1 and transcellular electrical resistance (TER) using ECIS. Additionally, intracellular Ca+2 in HRECs was assessed by spectrofluorimetry. Analysis of the isolated exosomes showed a non-significant change in the number of exosomes isolated from both normal and hyperglycemic condition media, however, the average size of exosomes isolated from the hyperglycemic group showed a significant rise when compared to that of the normoglycemic group. Müller cells derived exosomes from hyperglycemic condition media markedly reduced HRECs cell count, increased caspase-3 and Annexin V, decreased ZO-1 levels and TER, and increased intracellular Ca+ when compared to other groups. However, treatment of HRECs under hyperglycemia with normo-glycemic Müller cells-derived exosomes significantly decreased cell death, preserved cellular integrity and barrier function, and reduced intracellular Ca+2. Collectively, Müller cell-derived exosomes play a remarkable role in the pathological changes associated with hyperglycemia-induced inner barrier dysfunction in DR. Further in vivo research will help in understanding the role of exosomes as therapeutic targets and/or delivery systems for DR.
Collapse
Affiliation(s)
- Mohamed S Gad
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA; Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Dalia R El-Bassouny
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Nesreen M Omar
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Safinaz M Mahmoud
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Mohamed Al-Shabrawey
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA.
| | - Amany Tawfik
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA.
| |
Collapse
|
4
|
Ortiz C, Tahiri H, Yang C, Gilbert C, Fortin C, Hardy P. The microRNA Let-7f Induces Senescence and Exacerbates Oxidative Stress in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:646. [PMID: 38929085 PMCID: PMC11200580 DOI: 10.3390/antiox13060646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to investigate the role of microRNA let-7f in the dysfunction and degeneration of retinal pigment epithelium (RPE) cells through the induction of senescence and oxidative stress. Furthermore, we explore whether let-7f inhibition can protect these cells against sodium iodate (SI)-induced oxidative stress. Oxidative stress and let-7f expression are reciprocally regulated in retinal pigment epithelial cells. Overexpression of let-7f in ARPE-19 cells induced oxidative stress as demonstrated by increased reactive oxygen species (ROS) production as well as senescence. Inhibition of let-7f successfully protected RPE cells from the detrimental effects induced by SI. In addition, let-7f overexpression induced RPE cellular dysfunction by diminishing their migratory capabilities and reducing the phagocytosis of porcine photoreceptor outer segments (POS). Results were further confirmed in vivo by intravitreal injections of SI and let-7f antagomir in C57BL/6 mice. Our results provide strong evidence that let-7f is implicated in the dysfunction of RPE cells through the induction of senescence and oxidative injury. These findings may help to uncover novel and relevant processes in the pathogenesis of dry AMD.
Collapse
Affiliation(s)
- Christina Ortiz
- Departments of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Houda Tahiri
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Claudia Gilbert
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Carl Fortin
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
| | - Pierre Hardy
- Departments of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada; (H.T.); (C.Y.); (C.G.); (C.F.)
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
5
|
Jiang J, Wang S, Li Y, Wang Y, Liao R. Has-miR-199a-3p/RELA/SCD inhibits immune checkpoints in AMD and promotes macrophage-mediated inflammation and pathological angiogenesis through lipid metabolism pathway: A computational analysis. PLoS One 2024; 19:e0297849. [PMID: 38625951 PMCID: PMC11020405 DOI: 10.1371/journal.pone.0297849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 04/18/2024] Open
Abstract
More and more evidence shows that abnormal lipid metabolism leads to immune system dysfunction in AMD and promotes the occurrence of AMD by changing the homeostasis of ocular inflammation. However, the molecular mechanism underlying the effect of lipid metabolism on the phenotype and function of macrophages is still unclear, and the mechanism of association between AMD and cancer and COVID-19 has not been reported. The purpose of this study is to explore the interaction between lipid metabolism related genes, ferroptosis related genes and immunity in AMD, find out the key genes that affect the ferroptosis of AMD through lipid metabolism pathway and the molecular mechanism that mediates the action of macrophages, and find out the possible mechanism of lipid metabolism and potential co-therapeutic targets between AMD and cancer and COVID-19, so as to improve treatment decision-making and clinical results. For the first time, we have comprehensively analyzed the fatty acid molecule related genes, ferroptosis related genes and immune microenvironment of AMD patients, and determined that mast cells and M1 macrophages are the main causes of AMD inflammation, and found that SCD is the core gene in AMD that inhibits ferroptosis through lipid metabolism pathway, and verified the difference in the expression of SCD in AMD in a separate external data set. Based on the analysis of the mechanism of action of the SCD gene, we found for the first time that Has-miR-199a-3p/RELA/SCD is the core axis of action of lipid metabolism pathway to inhibit the ferroptosis of AMD. By inhibiting the immune checkpoint, we can enhance the immune cell activity of AMD and lead to the transformation of macrophages from M2 to M1, thereby promoting the inflammation and pathological angiogenesis of AMD. At the same time, we found that ACOX2 and PECR, as genes for fatty acid metabolism, may regulate the expression of SCD during the occurrence and development of COVID-19, thus affecting the occurrence and development of AMD. We found that FASD1 may be a key gene for the joint action of AMD and COVID-19, and SCD regulates the immune infiltration of macrophages in glioma and germ line tumors. In conclusion, our results can provide theoretical basis for the pathogenesis of AMD, help guide the treatment of AMD patients and their potentially related diseases and help to design effective drug targets.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Department of Ophthalmology, The Third Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Shu Wang
- Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yun Li
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Rongfeng Liao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
6
|
Moustafa M, Khalil A, Darwish NHE, Zhang DQ, Tawfik A, Al-Shabrawey M. 12-HETE activates Müller glial cells: The potential role of GPR31 and miR-29. Prostaglandins Other Lipid Mediat 2024; 171:106805. [PMID: 38141777 PMCID: PMC10939904 DOI: 10.1016/j.prostaglandins.2023.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Diabetic retinopathy (DR) is a neurovascular complication of diabetes, driven by an intricate network of cellular and molecular mechanisms. This study sought to explore the mechanisms by investigating the role of 12-hydroxyeicosatetraenoic acid (12-HETE), its receptor GPR31, and microRNA (miR-29) in the context of DR, specifically focusing on their impact on Müller glial cells. We found that 12-HETE activates Müller cells (MCs), elevates glutamate production, and induces inflammatory and oxidative responses, all of which are instrumental in DR progression. The expression of GPR31, the receptor for 12-HETE, was prominently found in the retina, especially in MCs and retinal ganglion cells, and was upregulated in diabetes. Interestingly, miR29 showed potential as a protective agent, mitigating the harmful effects of 12-HETE by attenuating inflammation and oxidative stress, and restoring the expression of pigment epithelium-derived factor (PEDF). Our results underline the central role of 12-HETE in DR progression through activation of a neurovascular toxic pathway in MCs and illuminate the protective capabilities of miR-29, highlighting both as promising therapeutic targets for the management of DR.
Collapse
Affiliation(s)
- Mohamed Moustafa
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Abraham Khalil
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Noureldien H E Darwish
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Clinical Pathology, Mansoura College of Medicine, Mansoura University-Egypt
| | - Dao-Qi Zhang
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Amany Tawfik
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Mohamed Al-Shabrawey
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA.
| |
Collapse
|
7
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
8
|
Gu J, Lei C, Zhang M. Folate and retinal vascular diseases. BMC Ophthalmol 2023; 23:413. [PMID: 37833663 PMCID: PMC10571445 DOI: 10.1186/s12886-023-03149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Folate, a pteroylglutamic acid derivative, participates in fundamental cellular metabolism. Homocysteine, an amino acid, serves as an intermediate of the methionine cycle and can be converted back to methionine. Hyperhomocysteinemia is a recognized risk factor for atherosclerotic and cardiovascular diseases. In recent decades, elevated plasma homocysteine levels and low folate status have been observed in many patients with retinal vascular diseases, such as retinal vascular occlusions, diabetic retinopathy, and age-related degeneration. Homocysteine-induced toxicity toward vascular endothelial cells might participate in the formation of retinal vascular diseases. Folate is an important dietary determinant of homocysteine. Folate deficiency is the most common cause of hyperhomocysteinemia. Folate supplementation can eliminate excess homocysteine in plasma. In in vitro experiments, folic acid had a protective effect on vascular endothelial cells against high glucose. Many studies have explored the relationship between folate and various retinal vascular diseases. This review summarizes the most important findings that lead to the conclusion that folic acid supplementation might be a protective treatment in patients with retinal vascular diseases with high homocysteine or glucose status. More research is still needed to validate the effect of folate and its supplementation in retinal vascular diseases.
Collapse
Affiliation(s)
- Jinyue Gu
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
9
|
Dähmcke M, Busch M, Pfeil JM, Brauckmann T, Schulz D, Omran W, Morawiec-Kisiel E, Wähler F, Paul S, Tayar A, Bründer MC, Grundel B, Stahl A. Circulating MicroRNAs as Biomarker for Vessel-Associated Retinal Diseases. Ophthalmologica 2023; 246:227-237. [PMID: 37721532 DOI: 10.1159/000533481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Vessel-associated retinal diseases are a major cause of blindness and severe visual impairment. The identification of appropriate biomarkers is of great importance to better anticipate disease progression and establish more targeted treatment options. MicroRNAs (miRNAs) are short, single-stranded, noncoding ribonucleic acids that are involved in the posttranscriptional regulation of gene expression through hybridization with messenger RNA. The expression of certain miRNAs can be different in patients with pathological processes and can be used for the detection and differentiation of various diseases. In this study, we investigate to what extent previously in vitro identified miRNAs are present as cell-free circulating miRNAs in the serum and vitreous of human patients with and without vessel-associated retinal diseases. METHODS Relative quantification by quantitative real-time polymerase chain reaction was used to analyze miRNA expression in patients with vessel-associated retinal diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinal vein occlusion compared with control patients. RESULTS In serum samples, miR-29a-3p and miR-192-5p showed increased expression in patients with neovascular AMD relative to control patients. Similarly, miR-335-5p, miR-192-5p, and miR-194-5p showed increased expression in serum from patients with proliferative DR. In vitreous samples, miR-100-5p was decreased in patients with proliferative DR. Differentially expressed miRNAs showed good diagnostic accuracy in receiver operating characteristic (ROC) and area under the ROC curve analysis. CONCLUSION The miRNAs investigated in this study may have the potential to serve as biomarkers for vessel-associated retinal diseases. Combining multiple miRNAs may enhance the predictive power of the analysis.
Collapse
Affiliation(s)
- Merlin Dähmcke
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Busch
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Johanna M Pfeil
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Tara Brauckmann
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Daniel Schulz
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Wael Omran
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Ewa Morawiec-Kisiel
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Fabienne Wähler
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Sebastian Paul
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Allam Tayar
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | | | - Bastian Grundel
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Stahl
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Wu C, Duan X, Wang X, Wang L. Advances in the role of epigenetics in homocysteine-related diseases. Epigenomics 2023; 15:769-795. [PMID: 37718931 DOI: 10.2217/epi-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Homocysteine has a wide range of biological effects. However, the specific molecular mechanism of its pathogenicity is still unclear. The diseases induced by hyperhomocysteinemia (HHcy) are called homocysteine-related diseases. Clinical treatment of HHcy is mainly through folic acid and B-complex vitamins, which are not effective in reducing the associated end point events. Epigenetics is the alteration of heritable genes caused by DNA methylation, histone modification, noncoding RNAs and chromatin remodeling without altering the DNA sequence. In recent years the role of epigenetics in homocysteine-associated diseases has been gradually discovered. This article summarizes the latest evidence on the role of epigenetics in HHcy, providing new directions for its prevention and treatment.
Collapse
Affiliation(s)
- Chengyan Wu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xulei Duan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuehui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Libo Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
11
|
Lenin RR, Koh YH, Zhang Z, Yeo YZ, Parikh BH, Seah I, Wong W, Su X. Dysfunctional Autophagy, Proteostasis, and Mitochondria as a Prelude to Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:ijms24108763. [PMID: 37240109 DOI: 10.3390/ijms24108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Retinal pigment epithelial (RPE) cell dysfunction is a key driving force of AMD. RPE cells form a metabolic interface between photoreceptors and choriocapillaris, performing essential functions for retinal homeostasis. Through their multiple functions, RPE cells are constantly exposed to oxidative stress, which leads to the accumulation of damaged proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. As miniature chemical engines of the cell, self-replicating mitochondria are heavily implicated in the aging process through a variety of mechanisms. In the eye, mitochondrial dysfunction is strongly associated with several diseases, including age-related macular degeneration (AMD), which is a leading cause of irreversible vision loss in millions of people globally. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation, and increased numbers of mitochondrial DNA mutations. Mitochondrial bioenergetics and autophagy decline during aging because of insufficient free radical scavenger systems, the impairment of DNA repair mechanisms, and reductions in mitochondrial turnover. Recent research has uncovered a much more complex role of mitochondrial function and cytosolic protein translation and proteostasis in AMD pathogenesis. The coupling of autophagy and mitochondrial apoptosis modulates the proteostasis and aging processes. This review aims to summarise and provide a perspective on (i) the current evidence of autophagy, proteostasis, and mitochondrial dysfunction in dry AMD; (ii) current in vitro and in vivo disease models relevant to assessing mitochondrial dysfunction in AMD, and their utility in drug screening; and (iii) ongoing clinical trials targeting mitochondrial dysfunction for AMD therapeutics.
Collapse
Affiliation(s)
- Raji Rajesh Lenin
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Department of Medical Research, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Yi Hui Koh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Zheting Zhang
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 11 Mandalay Road, Experimental Medicine Building, Singapore 308232, Singapore
| | - Yan Zhuang Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ivan Seah
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Wendy Wong
- Department of Ophthalmology, National University Hospital (NUH), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Ophthalmology, National University Hospital (NUH), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| |
Collapse
|
12
|
Sapehia D, Mahajan A, Singh P, Kaur J. High dietary folate and low vitamin B12 in the parental diet disturbed the epigenetics of imprinted genes MEST and PHLDA2 in mice placenta. J Nutr Biochem 2023; 118:109354. [PMID: 37098363 DOI: 10.1016/j.jnutbio.2023.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
To elucidate the dietary effects of vitamin B12 and folic acid on fetal and placental epigenetics, different dietary combinations of folic acid and low vitamin B12 (four groups) were fed to the animals (C57BL/6 mice), and mating was carried out within each group in the F0 generation. After weaning for 3 weeks in the F1 generation one group of mice was continued on the same diet (sustained group) while the other was shifted to a normal diet (transient group) for 6-8 weeks (F1). Mating was carried out again within each group, and on day 20 of gestation, the maternal placenta (F1) and fetal tissues (F2) were isolated. Expression of imprinted genes and various epigenetic mechanisms, including global and gene-specific DNA methylation and post-translational histone modifications, were studied. Evaluation of mRNA levels of MEST and PHLDA2 in placental tissue revealed that their expression is maximally influenced by vitamin B12 deficiency and high folate conditions. The gene expression of MEST and PHLDA2 was found significantly decreased in the F0 generation, with the over-expression of the genes in BDFO dietary groups. These dietary combinations also resulted in DNA methylation changes in both generations, which may not play a role in gene expression regulation. However, altered histone modifications were found to be the major regulatory factor in controlling the expression of genes in the F1 generation. The imbalance of low vitamin B12 and high folate leads to increased levels of activating histone marks, contributing to increased gene expression.
Collapse
Affiliation(s)
- Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Parampal Singh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
13
|
Samra YA, Zaidi Y, Rajpurohit P, Raghavan R, Cai L, Kaddour-Djebbar I, Tawfik A. Warburg Effect as a Novel Mechanism for Homocysteine-Induced Features of Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:ijms24021071. [PMID: 36674587 PMCID: PMC9865636 DOI: 10.3390/ijms24021071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness. Recent studies have reported impaired glycolysis in AMD patients with a high lactate/pyruvate ratio. Elevated homocysteine (Hcy) (Hyperhomocysteinemia, HHcy) was observed in several clinical studies, reporting an association between HHcy and AMD. We established the effect of HHcy on barrier function, retinal pigment epithelium (RPE) structure, and induced choroidal neovascularization (CNV) in mice. We hypothesize that HHcy contributes to AMD by inducing a metabolic switch in the mitochondria, in which cells predominantly produce energy by the high rate of glycolysis, or "Warburg", effect. Increased glycolysis results in an increased production of lactate, cellular acidity, activation of angiogenesis, RPE barrier dysfunction, and CNV. Evaluation of cellular energy production under HHcy was assessed by seahorse analysis, immunofluorescence, and western blot experiments. The seahorse analysis evaluated the extracellular acidification rate (ECAR) as indicative of glycolysis. HHcy showed a significant increase in ECAR both in vivo using (Cystathionine β-synthase) cbs+/- and cbs-/- mice retinas and in vitro (Hcy-treated ARPE-19) compared to wild-type mice and RPE cells. Moreover, HHcy up-regulated glycolytic enzyme (Glucose transporter-1 (GlUT-1), lactate dehydrogenase (LDH), and hexokinase 1 (HK1)) in Hcy-treated ARPE-19 and primary RPE cells isolated from cbs+/+, cbs+/-, and cbs-/- mice retinas. Inhibition of GLUT-1 or blocking of N-methyl-D-aspartate receptors (NMDAR) reduced glycolysis in Hcy-treated RPE and improved albumin leakage and CNV induction in Hcy-injected mice eyes. The current study suggests that HHcy causes a metabolic switch in the RPE cells from mitochondrial respiration to glycolysis during AMD and confirms the involvement of NMDAR in this process. Therefore, targeting Glycolysis or NMDAR could be a novel therapeutic target for AMD.
Collapse
Affiliation(s)
- Yara A. Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raju Raghavan
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lun Cai
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ismail Kaddour-Djebbar
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA
- Correspondence: ; Tel.: +1-248-370-2398; Fax: +1-248-370-4211
| |
Collapse
|
14
|
Cai C, Meng C, He S, Gu C, Lhamo T, Draga D, Luo D, Qiu Q. DNA methylation in diabetic retinopathy: pathogenetic role and potential therapeutic targets. Cell Biosci 2022; 12:186. [DOI: 10.1186/s13578-022-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Diabetic retinopathy (DR), a specific neuron-vascular complication of diabetes, is a major cause of vision loss among middle-aged people worldwide, and the number of DR patients will increase with the increasing incidence of diabetes. At present, it is limited in difficult detection in the early stages, limited treatment and unsatisfactory treatment effects in the advanced stages.
Main body
The pathogenesis of DR is complicated and involves epigenetic modifications, oxidative stress, inflammation and neovascularization. These factors influence each other and jointly promote the development of DR. DNA methylation is the most studied epigenetic modification, which has been a key role in the regulation of gene expression and the occurrence and development of DR. Thus, this review investigates the relationship between DNA methylation and other complex pathological processes in the development of DR. From the perspective of DNA methylation, this review provides basic insights into potential biomarkers for diagnosis, preventable risk factors, and novel targets for treatment.
Conclusion
DNA methylation plays an indispensable role in DR and may serve as a prospective biomarker of this blinding disease in its relatively early stages. In combination with inhibitors of DNA methyltransferases can be a potential approach to delay or even prevent patients from getting advanced stages of DR.
Collapse
|
15
|
Al-Shabrawey M, Elmarakby A, Samra Y, Moustafa M, Looney SW, Maddipati KR, Tawfik A. Hyperhomocysteinemia dysregulates plasma levels of polyunsaturated fatty acids-derived eicosanoids. LIFE RESEARCH 2022; 5:14. [PMID: 36341141 PMCID: PMC9632953 DOI: 10.53388/2022-0106-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyperhomocysteinemia (HHcy) contributes to the incidence of many cardiovascular diseases (CVD). Our group have previously established crucial roles of eicosanoids and homocysteine in the incidence of vascular injury in diabetic retinopathy and renal injury. Using cystathionine-β-synthase heterozygous mice (cβs+/-) as a model of HHcy, the current study was designed to determine the impact of homocysteine on circulating levels of lipid mediators derived from polyunsaturated fatty acids (PUFA). Plasma samples were isolated from wild-type (WT) and cβs+/- mice for the assessment of eicosanoids levels using LC/MS. Plasma 12/15-lipoxygenase (12/15-LOX) activity significantly decreased in cβs+/- vs. WT control mice. LOX-derived metabolites from both omega-3 and omega-6 PUFA were also reduced in cβs+/- mice compared to WT control (P < 0.05). Contrary to LOX metabolites, cytochrome P450 (CYP) metabolites from omega-3 and omega-6 PUFA were significantly elevated in cβs+/- mice compared to WT control. Epoxyeicosatrienoic acids (EETs) are epoxides derived from arachidonic acid (AA) metabolism by CYP with anti-inflammatory properties and are known to limit vascular injury, however their physiological role is limited by their rapid degradation by soluble epoxide hydrolase (sEH) to their corresponding diols (DiHETrEs). In cβs+/- mice, a significant decrease in the plasma EETs bioavailability was obvious as evident by the decrease in EETs/ DiHETrEs ratio relative to WT control mice. Cyclooxygenase (COX) metabolites were also significantly decreased in cβs+/- vs. WT control mice. These data suggest that HHcy impacts eicosanoids metabolism through decreasing LOX and COX metabolic activities while increasing CYP metabolic activity. The increase in AA metabolism by CYP was also associated with increase in sEH activity and decrease in EETs bioavailability. Dysregulation of eicosanoids metabolism could be a contributing factor to the incidence and progression of HHcy-induced CVD.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Ahmed Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Departments of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yara Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mohamed Moustafa
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Stephen W. Looney
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishna Rao Maddipati
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, Michigan, USA
| | - Amany Tawfik
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
16
|
Pathak E, Mishra R. Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas. J Endocrinol Invest 2022; 45:537-550. [PMID: 34669152 PMCID: PMC8527307 DOI: 10.1007/s40618-021-01693-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs) may target the native gene transcripts as well as the viral genomic and subgenomic RNAs. Here, we investigated the role of miRNAs in linking Diabetes to SARS-CoV-2 infection in the human pancreas. METHODS Differential gene expression and disease enrichment analyses were performed on an RNA-Seq dataset of human embryonic stem cell-derived (hESC) mock-infected and SARS-CoV-2-infected pancreatic organoids to obtain the dysregulated Diabetes-associated genes. The miRNA target prediction for the Diabetes-associated gene transcripts and the SARS-CoV-2 RNAs has been made to determine the common miRNAs targeting them. Minimum Free Energy (MFE) analysis was done to identify the miRNAs, preferably targeting SARS-CoV-2 RNAs over the Diabetes-associated gene transcripts. RESULTS The gene expression and disease enrichment analyses of the RNA-Seq data have revealed five biomarker genes, i.e., CP, SOCS3, AGT, PSMB8 and CFB that are associated with Diabetes and get significantly upregulated in the pancreas following SARS-CoV-2-infection. Four miRNAs, i.e., hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p and hsa-miR-5196-5p, showed preferential targeting of the SARS-CoV-2 genome over the cell's Diabetes-associated messenger RNAs (mRNAs) in the human pancreas. CONCLUSION Our study proposes that the differential targeting of the Diabetes-associated host genes by the miRNAs may lead to diabetic complications or new-onset Diabetes that can worsen the condition of COVID-19 patients.
Collapse
Affiliation(s)
| | - R Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
17
|
Elsherbiny NM, Said E. Editorial: Insights in renal endocrinology: 2021. Front Endocrinol (Lausanne) 2022; 13:1003683. [PMID: 36204106 PMCID: PMC9530823 DOI: 10.3389/fendo.2022.1003683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- *Correspondence: Nehal M. Elsherbiny,
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Faculty of Pharmacy, New Mansoura University, New Mansoura, Egypt
| |
Collapse
|
18
|
Paeoniflorin Effect of Schwann Cell-Derived Exosomes Ameliorates Dorsal Root Ganglion Neurons Apoptosis through IRE1 α Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6079305. [PMID: 34616478 PMCID: PMC8490051 DOI: 10.1155/2021/6079305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
Background Diabetic peripheral neuropathy (DPN) is a common complication of diabetes but its pathogenesis is not fully clarified. Endoplasmic reticulum (ER) stress has been confirmed to be involved in the development of DPN. Dorsal root ganglion neuron (DRGn) is the target cell of DPN injure in the peripheral neurons system. Schwann cell (SCs)-derived exosomes (SC-EXOs) can carry IRE1α signal transduction factors in ER stress to DRGn. The aim of this study is to investigate the effect of SC-EXOs treated with paeoniflorin (PF) on DRGn stimulated by high glucose. Methods SCs were divided into Control group (Control), 150 mM glucose group (HG), high osmotic pressure group (HOP), and low, middle, and high dose PF group (PF1, PF10, and PF100). Exosomes were obtained from SCs by ultracentrifugation and identified according to marker proteins, including CD63, Alix, Hsp70, and TSG101. ER stress initiating factor GRP78, the IRE1α pathway information transmission factor IRE1α, and the phosphorylation level of IRE1α were detected by Western blot, DRGn is divided into Control group (Control), 50 mM glucose group + Control exosomes group (HG + EXOs Control), 50 mM glucose group (HG), and 50 mM glucose group + administration exosomes group (HG + EXOs PF1, HG + EXOs PF10, and HG + EXOs PF100); ER morphology of primary DRGn was observed by using the transmission electron microscope, the level of DRGn apoptosis was analyzed by TUNEL, and the downstream proteins of ER stress including CHOP, XBP1S, JNK, and p-JNK in DRG and the expression of apoptosis-related proteins Bcl-2, Bax, Caspase-3, and Caspase-12 were measured by Western blot. Results Compared with the exosomes in the HG group, the exosomes after the intervention of PF can significantly reduce the expression of GRP78, IRE1α, and the phosphorylation level of IRE1α(P < 0.05); compared with the DRGn in the HG group, the SC-EXOs treated with PF could regulate the expression of proteins downstream of IRE1α pathway in ER stress (P < 0.05 or P < 0.01), improve the morphological integrity of ER, and reduce apoptosis in DRGn (P < 0.05 or P < 0.01). Conclusion PF regulates the information of ER stress carried by SC-EXOs and further affects downstream of IRE1α pathway in DRGn, thus reducing ER stress-induced apoptosis. PF can interfere with DPN through affecting information communication carried by EXOs between SCs and DRGn.
Collapse
|
19
|
Implication of N-Methyl-d-Aspartate Receptor in Homocysteine-Induced Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms22179356. [PMID: 34502266 PMCID: PMC8431693 DOI: 10.3390/ijms22179356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-β-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR−/−) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient’s serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.
Collapse
|
20
|
Cilenšek I, Lapuh V, Globočnik Petrovič M, Petrovič D. HDAC9 rs11984041 polymorphism is associated with diabetic retinopathy in Slovenian patients with type 2 diabetes mellitus. Gene 2021; 796-797:145802. [PMID: 34175397 DOI: 10.1016/j.gene.2021.145802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/12/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
AIM Histone deacetylase 9 (HDAC9) is an important regulator of transcription that has also been investigated as a candidate gene in some pathologies. Our aim was to investigate the association between rs2107595 and rs11984041 HDAC9 gene polymorphisms and diabetic retinopathy (DR) in Slovenian patients with type 2 diabetes mellitus (T2DM). We also investigated HDAC9 expression in the fibrovascular membranes (FVMs) of patients with proliferative DR (PDR). METHODS Our study involved 1290 unrelated Slovenian patients with T2DM: 542 of them with DR as the study group, and 748 without DR as the control group. The investigated polymorphisms were genotyped using KASPar genotyping assay. The expression of HDAC9 was examined by immunohistochemistry in human FVM from 25 patients with PDR. RESULTS The T allele and TT genotype frequencies of the rs11984041 polymorphism were significantly higher in the study group compared to the controls. The logistic regression analysis showed that the carriers of the TT genotype of this polymorphism have a 3.76-fold increase (95% CI 1.04-11.67) in the risk of developing DR. The T allele of rs11984041 was associated with increased HDAC9 expression in FVMs, obtained from T2DM patients with PDR. Patients with the T allele of rs11984041 compared to the homozygotes for the wild type C allele exhibited higher density of HDAC9-positive cells (35 ± 10/mm2 vs. 12 ± 6/mm2, respectively). CONCLUSIONS We observed a notable association between the TT genotype of rs11984041 and DR, indicating its possible role as a genetic risk factor for the development of this diabetic complication.
Collapse
|
21
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
22
|
Abstract
Microglia, the main immune cell of the central nervous system (CNS), categorized into M1-like phenotype and M2-like phenotype, play important roles in phagocytosis, cell migration, antigen presentation, and cytokine production. As a part of CNS, retinal microglial cells (RMC) play an important role in retinal diseases. Diabetic retinopathy (DR) is one of the most common complications of diabetes. Recent studies have demonstrated that DR is not only a microvascular disease but also retinal neurodegeneration. RMC was regarded as a central role in neurodegeneration and neuroinflammation. Therefore, in this review, we will discuss RMC polarization and its possible regulatory factors in early DR, which will provide new targets and insights for early intervention of DR.
Collapse
|
23
|
Hamid MA, Moustafa MT, Nashine S, Costa RD, Schneider K, Atilano SR, Kuppermann BD, Kenney MC. Anti-VEGF Drugs Influence Epigenetic Regulation and AMD-Specific Molecular Markers in ARPE-19 Cells. Cells 2021; 10:cells10040878. [PMID: 33921543 PMCID: PMC8069662 DOI: 10.3390/cells10040878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Our study assesses the effects of anti-VEGF (Vascular Endothelial Growth Factor) drugs and Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC) activity, on cultured ARPE-19 (Adult Retinal Pigment Epithelial-19) cells that are immortalized human retinal pigment epithelial cells. ARPE-19 cells were treated with the following anti-VEGF drugs: aflibercept, ranibizumab, or bevacizumab at 1× and 2× concentrations of the clinical intravitreal dose (12.5 μL/mL and 25 μL/mL, respectively) and analyzed for transcription profiles of genes associated with the pathogenesis age-related macular degeneration (AMD). HDAC activity was measured using the Fluorometric Histone Deacetylase assay. TSA downregulated HIF-1α and IL-1β genes, and upregulated BCL2L13, CASPASE-9, and IL-18 genes. TSA alone or bevacizumab plus TSA showed a significant reduction of HDAC activity compared to untreated ARPE-19 cells. Bevacizumab alone did not significantly alter HDAC activity, but increased gene expression of SOD2, BCL2L13, CASPASE-3, and IL-18 and caused downregulation of HIF-1α and IL-18. Combination of bevacizumab plus TSA increased gene expression of SOD2, HIF-1α, GPX3A, BCL2L13, and CASPASE-3, and reduced CASPASE-9 and IL-β. In conclusion, we demonstrated that anti-VEGF drugs can: (1) alter expression of genes involved in oxidative stress (GPX3A and SOD2), inflammation (IL-18 and IL-1β) and apoptosis (BCL2L13, CASPASE-3, and CASPASE-9), and (2) TSA-induced deacetylation altered transcription for angiogenesis (HIF-1α), apoptosis, and inflammation genes.
Collapse
Affiliation(s)
- Mohamed A. Hamid
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - M. Tarek Moustafa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia 61111, Egypt
| | - Sonali Nashine
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Rodrigo Donato Costa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Instituto Donato Oftalmologia, Poςos de Caldas, MG 37701-528, Brazil
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Shari R. Atilano
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (M.A.H.); (M.T.M.); (S.N.); (R.D.C.); (K.S.); (S.R.A.); (B.D.K.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-7603
| |
Collapse
|
24
|
Hu L, Lv X, Li D, Zhang W, Ran G, Li Q, Hu J. The anti-angiogenesis role of FBXW7 in diabetic retinopathy by facilitating the ubiquitination degradation of c-Myc to orchestrate the HDAC2. J Cell Mol Med 2021; 25:2190-2202. [PMID: 33369138 PMCID: PMC7882985 DOI: 10.1111/jcmm.16204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023] Open
Abstract
Diabetic retinopathy (DR) is the most prevalently occurring microvascular complication in diabetic patients that triggers severe visual impairments. The anti-angiogenesis role of FBXW7 has been identified in breast cancer. Therefore, this study intends to decipher the mechanism of FBXW7 in angiogenesis of DR. DR model was induced on mice using high-glucose (HG) and high-fat diet, and retinal microvascular endothelial cells (RMECs) isolated from normal mice were induced with HG, followed by evaluation of FBXW7, Ki67, HIF-1α and VEGF expression by immunofluorescence, immunohistochemistry or Western blot analysis. After gain- and loss-of-function assays in normal and DR mice, angiogenesis was assessed by CD31 fluorescence staining and Western blot analysis. After ectopic expression and silencing experiments in HG-induced RMECs, RMEC proliferation, migration and angiogenesis were, respectively, determined by EdU, Transwell and in vitro angiogenesis assays. The impact of FBXW7 on the ubiquitination of c-Myc was studied by cycloheximide chase assay and proteasome inhibition, and the binding of c-Myc to HDAC2 promoter by dual-luciferase reporter gene experiment. DR mice and HG-induced RMECs possessed down-regulated FBXW7 and up-regulated Ki67, HIF-1α and VEGF. Silencing FBXW7 enhanced angiogenesis in normal mouse retinal tissue, but overexpressing FBXW7 or silencing c-Myc diminished angiogenesis in DR mouse retinal tissue. Overexpressing FBXW7 or silencing c-Myc depressed proliferation, migration and angiogenesis in HG-induced RMECs. FBXW7 induced c-Myc ubiquitination degradation, and c-Myc augmented HDAC2 expression by binding to HDAC2 promoter. Conclusively, our data provided a novel sight of anti-angiogenesis role of FBXW7 in DR by modulating the c-Myc/HDAC2 axis.
Collapse
Affiliation(s)
- Lihua Hu
- Aier Eye Hospital of Wuhan UniversityWuhanChina
| | - Xiangyun Lv
- Aier Eye Hospital of Wuhan UniversityWuhanChina
| | - Dai Li
- School of OptometryHubei University of Science and TechnologyXianningChina
| | | | | | - Qingchun Li
- School of OptometryHubei University of Science and TechnologyXianningChina
| | - Jun Hu
- Aier Eye Hospital of Wuhan UniversityWuhanChina
- School of OptometryHubei University of Science and TechnologyXianningChina
| |
Collapse
|
25
|
Tawfik A, Mohamed R, Kira D, Alhusban S, Al-Shabrawey M. N-Methyl-D-aspartate receptor activation, novel mechanism of homocysteine-induced blood-retinal barrier dysfunction. J Mol Med (Berl) 2021; 99:119-130. [PMID: 33159240 PMCID: PMC7785674 DOI: 10.1007/s00109-020-02000-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Elevated levels of amino acid homocysteine (Hcy) recognized as hyperhomocysteinemia (HHcy) was reported in several human visual disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Breakdown of blood-retinal barrier (BRB) is concomitant with vision loss in DR and AMD. We previously reported that HHcy alters BRB. Here, we tested the hypothesis that HHcy alters BRB via activation of N-methyl-D-aspartate receptor (NMDAR). Human retinal endothelial cells subjected to high level of Hcy and mouse model of HHcy were used. We injected Hcy intravitreal and used a mouse model of HHcy that lacks cystathionine-β-synthase (CBS). RT-PCR, western blot, and immunofluorescence showed that retinal endothelial cells (RECs) express NMDAR at the gene and protein levels both in vitro and in vivo and this was increased by HHcy. We assessed BRB function and retinal morphology using fluorescein angiogram and optical coherence tomography (OCT) under HHcy with and without pharmacological inhibition of NMDAR by (MK801) or in mice lacking endothelial NMDAR (NMDARE-/- mouse). Additionally, retinal albumin leakage and tight junction proteins ZO-1 and occludin were assessed by western blotting analysis. Inhibition or elimination of NMDAR was able to improve the altered retinal hyperpermeability and morphology under HHcy as indicated by significant decrease in retinal albumin leakage and restoration of tight junction proteins ZO-1 and occludin. Our findings underscore a potential role for endothelial NMDAR in mediating Hcy-induced breakdown of BRB and subsequently as a potential therapeutic target in retinal diseases associated with HHcy such as DR and AMD. KEY MESSAGES: • Elevated levels of homocysteine (Hcy) are defined as hyperhomocysteinemia (HHcy). • HHcy is implicated in diabetic retinopathy and age-related macular degeneration. • HHcy alters BRB via activation of N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA.
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
- Department of Ophthalmology, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA.
| | - Riyaz Mohamed
- Department of Physiology Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Dina Kira
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Suhib Alhusban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
- Department of Ophthalmology, Medical College of Georgia (MCG), Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
26
|
Microarray Analysis of Small Extracellular Vesicle-Derived miRNAs Involved in Oxidative Stress of RPE Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7658921. [PMID: 33194007 PMCID: PMC7641673 DOI: 10.1155/2020/7658921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to investigate the miRNA profiles of nanosized small extracellular vesicles (sEVs) from human retinal pigment epithelial (RPE) cells under oxidative damage. ARPE-19 cells were cultured with ox-LDL (100 mg/L) or serum-free medium for 48 hours, sEVs were then extracted, and miRNA sequencing was conducted to identify the differentially expressed genes (DEGs) between the 2 groups. RNA sequence results were validated using quantitative real-time PCR. The Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and ingenuity pathway analyses (IPA) were performed for the DEGs. Results revealed that oxidative stress inhibited RPE cell viability and promoted sEV secretion. A total of 877 DEGs from sEVs were identified, of which 272 were downregulated and 605 were upregulated. In total, 66 enriched GO terms showed that the 3 most significant enrichment terms were cellular processes (biological processes), cell (cellular component), and catalytic activity (molecular function). IPA were used to explore DEGs associated with oxidation damage and further construct a miRNA-target regulatory network. This study identified several DEGs from oxidation-stimulated RPE cells, which may act as potential RNA targets for prognosis and diagnosis of RPE degeneration.
Collapse
|
27
|
Diabetic Retinopathy: Mitochondria Caught in a Muddle of Homocysteine. J Clin Med 2020; 9:jcm9093019. [PMID: 32961662 PMCID: PMC7564979 DOI: 10.3390/jcm9093019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy is one of the most feared complications of diabetes. In addition to the severity of hyperglycemia, systemic factors also play an important role in its development. Another risk factor in the development of diabetic retinopathy is elevated levels of homocysteine, a non-protein amino acid, and hyperglycemia and homocysteine are shown to produce synergistic detrimental effects on the vasculature. Hyperhomocysteinemia is associated with increased oxidative stress, and in the pathogenesis of diabetic retinopathy, oxidative stress-mitochondrial dysfunction precedes the development of histopathology characteristic of diabetic retinopathy. Furthermore, homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), and SAM is a co-substrate of DNA methylation. In diabetes, DNA methylation machinery is activated, and mitochondrial DNA (mtDNA) and several genes associated with mitochondrial homeostasis undergo epigenetic modifications. Consequently, high homocysteine, by further affecting methylation of mtDNA and that of genes associated with mtDNA damage and biogenesis, does not give any break to the already damaged mitochondria, and the vicious cycle of free radicals continues. Thus, supplementation of sensible glycemic control with therapies targeting hyperhomocysteinemia could be valuable for diabetic patients to prevent/slow down the development of this sight-threatening disease.
Collapse
|
28
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
29
|
Mohammad G, Kowluru RA. Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation. Int J Mol Sci 2020; 21:E1771. [PMID: 32150828 PMCID: PMC7084335 DOI: 10.3390/ijms21051771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
High homocysteine is routinely observed in diabetic patients, and this non-protein amino acid is considered as an independent risk factor for diabetic retinopathy. Homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), which is a major methyl donor critical in DNA methylation. Hyperhomocysteinemia is implicated in increased oxidative stress and activation of MMP-9, and in diabetic retinopathy, the activation of MMP-9 facilitates capillary cell apoptosis. Our aim was to investigate the mechanism by which homocysteine activates MMP-9 in diabetic retinopathy. Human retinal endothelial cells, incubated with/without 100 μM homocysteine, were analyzed for MMP-9 and its tissue inhibitor Timp1 expressions and interactions, and ROS levels. Timp1 and MMP-9 promoters were analyzed for methylated and hydroxymethylated cytosine levels (5mC and 5hmC respectively) by the DNA capture method, and DNA- methylating (Dnmt1) and hydroxymethylating enzymes (Tet2) binding by chromatin immunoprecipitation. The results were confirmed in retinal microvessels from diabetic rats receiving homocysteine. Homocysteine supplementation exacerbated hyperglycaemia-induced MMP-9 and ROS levels and decreased Timp1 and its interactions with MMP-9. Homocysteine also aggravated Dnmts and Tets activation, increased 5mC at Timp1 promoter and 5hmC at MMP-9 promoter, and suppressed Timp1 transcription and activated MMP-9 transcription. Similar results were obtained from retinal microvessels from diabetic rats receiving homocysteine. Thus, hyperhomocysteinemia in diabetes activates MMP-9 functionally by reducing Timp1-MMP-9 interactions and transcriptionally by altering DNA methylation-hydroxymethylation of its promoter. The regulation of homocysteine could prevent/slow down the development of retinopathy and prevent their vision loss in diabetic patients.
Collapse
Affiliation(s)
| | - Renu A. Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
30
|
Elsherbiny NM, Sharma I, Kira D, Alhusban S, Samra YA, Jadeja R, Martin P, Al-Shabrawey M, Tawfik A. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules 2020; 10:biom10030393. [PMID: 32138265 PMCID: PMC7175372 DOI: 10.3390/biom10030393] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/03/2023] Open
Abstract
Homocysteine (Hcy) is an amino acid that requires vitamins B12 and folic acid for its metabolism. Vitamins B12 and folic acid deficiencies lead to hyperhomocysteinemia (HHcy, elevated Hcy), which is linked to the development of diabetic retinopathy (DR), age-related macular degeneration (AMD), and Alzheimer’s disease (AD). The goal of the current study was to explore inflammation as an underlying mechanism of HHcy-induced pathology in age related diseases such as AMD, DR, and AD. Mice with HHcy due to a lack of the enzyme cystathionine-β-synthase (CBS) and wild-type mice were evaluated for microglia activation and inflammatory markers using immuno-fluorescence (IF). Tissue lysates isolated from the brain hippocampal area from mice with HHcy were evaluated for inflammatory cytokines using the multiplex assay. Human retinal endothelial cells, retinal pigment epithelial cells, and monocyte cell lines treated with/without Hcy were evaluated for inflammatory cytokines and NFκB activation using the multiplex assay, western blot analysis, and IF. HHcy induced inflammatory responses in mouse brain, retina, cultured retinal, and microglial cells. NFκB was activated and cytokine array analysis showed marked increase in pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Therefore, elimination of excess Hcy or reduction of inflammation is a promising intervention for mitigating damage associated with HHcy in aging diseases such as DR, AMD, and AD.
Collapse
Affiliation(s)
- Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Isha Sharma
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Dina Kira
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Suhib Alhusban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
| | - Yara A. Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ravirajsinh Jadeja
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
| | - Pamela Martin
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Biochemistry, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (I.S.); (D.K.); (S.A.); (Y.A.S.); (M.A.-S.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA; (R.J.); (P.M.)
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
31
|
Mohana Devi S, Mahalaxmi I, Kaavya J, Chinnkulandhai V, Balachandar V. Does epigenetics have a role in age related macular degeneration and diabetic retinopathy? Genes Dis 2020; 8:279-286. [PMID: 33997175 PMCID: PMC8093576 DOI: 10.1016/j.gendis.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms play an important part in the regulation of gene expression and these alterations may induce long-term changes in gene function and metabolism. They have received extensive attention in bridging the gap between environmental exposures and disease development via their influence on gene expression. DNA methylation is the earliest discovered epigenetic alteration. In this review, we try to examine the role of DNA methylation and histone modification in Age related macular degeneration (AMD) and Diabetic Retinopathy (DR), its vascular complications and recent progress. Given the complex nature of AMD and DR, it is crucial to improve therapeutics which will greatly enhance the quality of life and reduce the burden for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- S Mohana Devi
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, 41/18, College Road, Chennai, 600006, India
| | - I Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - J Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - V Chinnkulandhai
- Department of Biochemistry, Dr.N.G.P Arts and Science College, Coimbatore, Tamil Nadu, 641046, India
| | - V Balachandar
- Human Molecular Genetics and Stem Cells Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
32
|
Kowluru RA, Mohammad G, Sahajpal N. Faulty homocysteine recycling in diabetic retinopathy. EYE AND VISION 2020; 7:4. [PMID: 31938715 PMCID: PMC6953140 DOI: 10.1186/s40662-019-0167-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
Background Although hyperglycemia is the main instigator in the development of diabetic retinopathy, elevated circulating levels of a non-protein amino acid, homocysteine, are also associated with an increased risk of retinopathy. Homocysteine is recycled back to methionine by methylenetetrahydrofolate reductase (MTHFR) and/or transsulfurated by cystathionine β-synthase (CBS) to form cysteine. CBS and other transsulfuration enzyme cystathionine-γ-lyase (CSE), through desulfuration, generates H2S. Methionine cycle also regulates DNA methylation, an epigenetic modification associated with the gene suppression. The aim of this study was to investigate homocysteine and its metabolism in diabetic retinopathy. Methods Homocysteine and H2S levels were analyzed in the retina, and CBS, CSE and MTHFR in the retinal microvasculature from human donors with established diabetic retinopathy. Mitochondrial damage was evaluated in retinal microvessels by quantifying enzymes responsible for maintaining mitochondrial dynamics (fission-fusion-mitophagy). DNA methylation status of CBS and MTHFR promoters was examined using methylated DNA immunoprecipitation technique. The direct effect of homocysteine on mitochondrial damage was confirmed in human retinal endothelial cells (HRECs) incubated with 100 μM L-homocysteine. Results Compared to age-matched nondiabetic control human donors, retina from donors with established diabetic retinopathy had ~ 3-fold higher homocysteine levels and ~ 50% lower H2S levels. The enzymes important for both transsulfuration and remethylation of homocysteine including CBS, CSE and MTHFR, were 40–60% lower in the retinal microvasculature from diabetic retinopathy donors. While the mitochondrial fission protein, dynamin related protein 1, and mitophagy markers optineurin and microtubule-associated protein 1A/1B-light chain 3 (LC3), were upregulated, the fusion protein mitofusin 2 was downregulated. In the same retinal microvessel preparations from donors with diabetic retinopathy, DNA at the promoters of CBS and MTHFR were hypermethylated. Incubation of HRECs with homocysteine increased reactive oxygen species and decreased transcripts of mtDNA-encoded CYTB. Conclusions Compromised transsulfuration and remethylation processes play an important role in the poor removal of retinal homocysteine in diabetic patients. Thus, regulation of their homocysteine levels should ameliorate retinal mitochondrial damage, and by regulating DNA methylation status of the enzymes responsible for homocysteine transsulfuration and remethylation, should prevent excess accumulation of homocysteine.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Visual Sciences and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201 USA
| | - Ghulam Mohammad
- Department of Ophthalmology, Visual Sciences and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201 USA
| | - Nikhil Sahajpal
- Department of Ophthalmology, Visual Sciences and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201 USA
| |
Collapse
|
33
|
Huang X, Li D, Zhao Q, Zhang C, Ren B, Yue L, Du B, Godfrey O, Wang X, Zhang W. Association between BHMT and CBS gene promoter methylation with the efficacy of folic acid therapy in patients with hyperhomocysteinemia. J Hum Genet 2019; 64:1227-1235. [PMID: 31558761 DOI: 10.1038/s10038-019-0672-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Abstract
Both betaine homocysteine methyltransferase (BHMT) and cystathionine β-synthase (CBS) are major enzymes in the metabolism of plasma homocysteine (Hcy). Abnormal methylation levels of BHMT and CBS are positively associated with Hcy levels. The present study is performed to explore the association between the methylation levels in the promoter regions of the BHMT and CBS genes and the efficacy of folic acid therapy in patient with hyperhomocysteinemia (HHcy). A prospective cohort study recruiting HHcy (Hcy ≥ 15 μmol/L) patients was performed. The subjects were treated with oral folic acid (5 mg/d) for 90 days, and the patients were divided into the success group (Hcy < 15 μmol/L) and the failure group (Hcy ≥ 15 μmol/L) according to their Hcy levels after treatment. In the logistic regression model with adjusted covariates, the patients with lower total methylation levels in the BHMT and CBS promoter regions exhibited 1.627-fold and 1.671-fold increased risk of treatment failure compared with higher methylation individuals, respectively. Similarly, subjects who had lower methylation levels (<methylation mean) in BHMT CpG1 had 1.792 times higher risks. Stratified analysis by sex found that lower CBS methylation levels were associated with a 2.128-fold increased risk for treatment failure in males with HHcy. Lower levels of BHMT or CBS promoter total methylation might be associated with increased the risk of treatment failure. These studies suggest that lower levels of BHMT and CBS methylation are all predictors of failure in folic acid therapy for HHcy. However, due to some limitations of this study, such as the small number of the loci tested, further large-scale studies are necessary to verify our observations.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dankang Li
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qinglin Zhao
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chengda Zhang
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bingnan Ren
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Limin Yue
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Binghui Du
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Opolot Godfrey
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiliang Wang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Weidong Zhang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
34
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
35
|
Dong N, Wang Y. MiR-30a Regulates S100A12-induced Retinal Microglial Activation and Inflammation by Targeting NLRP3. Curr Eye Res 2019; 44:1236-1243. [PMID: 31199706 DOI: 10.1080/02713683.2019.1632350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ning Dong
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Li Z, Dong Y, He C, Pan X, Liu D, Yang J, Sun L, Chen P, Wang Q. RNA-Seq Revealed Novel Non-proliferative Retinopathy Specific Circulating MiRNAs in T2DM Patients. Front Genet 2019; 10:531. [PMID: 31275351 PMCID: PMC6593299 DOI: 10.3389/fgene.2019.00531] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is a common diabetes complication and was considered as the major cause of blindness among young adults. MiRNAs are a group of small non-coding RNAs regulating the expression of target genes and have been reported to be associated with the development of DR in a variety of molecular mechanisms. In this study, we aimed to identify miRNAs that are differentially expressed (DE) in the serum of DR patients. Methods: We recruited 21 type 2 diabetes mellitus (T2DM) inpatients of Chinese Han ancestry, consisting of 10 non-proliferative DR patients (DR group) and 11 non-DR T2DM patients (NDR group). MiRNA was extracted from fasting peripheral serum and quantified by RNA-seq. The expression levels of miRNA were evaluated and compared between the two groups, with adjustments made for age differences. The validated target genes of miRNAs were subjected to a pathway analysis. We also constructed a weighted polygenic risk score using the DE miRNA and evaluated its predictive power. Results: Five miRNAs were DE between DR and NDR groups (p-Value ≤ 0.01, LFC ≥ 2 or LFC ≤-2). These included miR-4448, miR-338-3p, miR-190a-5p, miR-485-5p, and miR-9-5p. In total, these miRNAs were validated to regulate 55 target genes. Four target genes were found to overlap with the NAD metabolism, sirtuin, and aging pathway, which was thought to control the vascular growth and morphogenesis. The predictive power of our polygenic risk score was apparently high (AUC = 0.909). However, it needs to be interpreted with caution. Conclusion: In this study, we discovered novel DR-specific miRNAs in human serum samples. These circulating miRNAs may represent the pathological changes in the retina in response to diabetes and may serve as non-invasive biomarkers for early DR risk prediction.
Collapse
Affiliation(s)
- Zimeng Li
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ying Dong
- Department of Radiotherapy, The Tumor Hospital of Jilin Province, Changchun, China
| | - Chang He
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xingchen Pan
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dianyuan Liu
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
37
|
Homocysteine: A Potential Biomarker for Diabetic Retinopathy. J Clin Med 2019; 8:jcm8010121. [PMID: 30669482 PMCID: PMC6352029 DOI: 10.3390/jcm8010121] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness in people under the age of 65. Unfortunately, the current screening process for DR restricts the population that can be evaluated and the disease goes undetected until irreversible damage occurs. Herein, we aimed to evaluate homocysteine (Hcy) as a biomarker for DR screening. Hcy levels were measured by enzyme-linked immuno sorbent assay (ELISA) and immunolocalization methods in the serum, vitreous and retina of diabetic patients as well as in serum and retina of different animal models of DM representing type 1 diabetes (streptozotocin (STZ) mice, Akita mice and STZ rats) and db/db mice which exhibit features of human type 2 diabetes. Our results revealed increased Hcy levels in the serum, vitreous and retina of diabetic patients and experimental animal models of diabetes. Moreover, optical coherence tomography (OCT) and fluorescein angiography (FA) were used to evaluate the retinal changes in mice eyes after Hcy-intravitreal injection into normal wild-type (WT) and diabetic (STZ) mice. Hcy induced changes in mice retina which were aggravated under diabetic conditions. In conclusion, our data reported Hcy as a strong candidate for use as a biomarker in DR screening. Targeting the clearance of Hcy could also be a future therapeutic target for DR.
Collapse
|
38
|
Soda K. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism. Int J Mol Sci 2018; 19:E3106. [PMID: 30309036 PMCID: PMC6213949 DOI: 10.3390/ijms19103106] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-city, Saitama Prefecture 330-8503, Japan.
| |
Collapse
|