1
|
Sun H, Ma D, Cheng Y, Li J, Zhang W, Jiang T, Li Z, Li X, Meng H. The JAK-STAT Signaling Pathway in Epilepsy. Curr Neuropharmacol 2023; 21:2049-2069. [PMID: 36518035 PMCID: PMC10556373 DOI: 10.2174/1570159x21666221214170234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway's potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ting Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaoran Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
3
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
4
|
Massimino M, Vigneri P, Stella S, Tirrò E, Pennisi MS, Parrinello LN, Vetro C, Manzella L, Stagno F, Di Raimondo F. Combined Inhibition of Bcl2 and Bcr-Abl1 Exercises Anti-Leukemia Activity but Does Not Eradicate the Primitive Leukemic Cells. J Clin Med 2021; 10:jcm10235606. [PMID: 34884309 PMCID: PMC8658323 DOI: 10.3390/jcm10235606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The management of Philadelphia Chromosome-positive (Ph+) hematological malignancies is strictly correlated to the use of BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, these drugs do not induce leukemic stem cells death and their persistence may generate a disease relapse. Published reports indicated that Venetoclax, a selective BCL2 inhibitor, could be effective in Ph+ diseases, as BCL2 anti-apoptotic activity is modulated by BCR-ABL1 kinase. We, therefore, investigated if BCL2 inhibition, alone or combined with Nilotinib, a BCR-ABL1 inhibitor, affects the primitive and committed Ph+ cells survival. Methods: We used Ph+ cells isolated from leukemic patients at diagnosis. To estimate the therapeutic efficacy of BCL2 and BCR-ABL1 inhibition we employed long-term culture, proliferation and apoptosis assay. Immunoblot was used to evaluate the ability of treatment to interfere with the down-stream targets of BCR-ABL1. Results: Blocking BCL2, we observed reduced proliferation and clonogenic potential of CML CD34-positive cells and this cytotoxicity was improved by combination with BCR-ABL1 inhibitor. However, BCL2 inhibition, alone or in combination regiment with BCR-ABL1 inhibitor, did not reduce the self-renewal of primitive leukemic cells, while strongly induced cell death on primary Ph+ Acute Lymphoblastic Leukemia (ALL). Conclusion: Our results suggest that primitive CML leukemic cells are not dependent on BCL2 for their persistence and support that committed CML and Ph + ALL cells are dependent by BCL2 and BCR-ABL1 cooperation for their survival. The antileukemic activity of BCL2 and BCR-ABL1 dual targeting may be a useful therapeutic strategy for Ph+ ALL patients.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-3781952; Fax: +39-095-3781949
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Laura Nunziatina Parrinello
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Calogero Vetro
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (P.V.); (S.S.); (E.T.); (M.S.P.); (L.M.)
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Fabio Stagno
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| | - Francesco Di Raimondo
- Division of Hematology, A.O.U. Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy; (L.N.P.); (C.V.); (F.S.); (F.D.R.)
| |
Collapse
|
5
|
Bedwell GJ, Jang S, Li W, Singh PK, Engelman AN. rigrag: high-resolution mapping of genic targeting preferences during HIV-1 integration in vitro and in vivo. Nucleic Acids Res 2021; 49:7330-7346. [PMID: 34165568 PMCID: PMC8287940 DOI: 10.1093/nar/gkab514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 integration favors recurrent integration gene (RIG) targets and genic proviruses can confer cell survival in vivo. However, the relationship between initial RIG integrants and how these evolve in patients over time are unknown. To address these shortcomings, we built phenomenological models of random integration in silico, which were used to identify 3718 RIGs as well as 2150 recurrent avoided genes from 1.7 million integration sites across 10 in vitro datasets. Despite RIGs comprising only 13% of human genes, they harbored 70% of genic HIV-1 integrations across in vitro and patient-derived datasets. Although previously reported to associate with super-enhancers, RIGs tracked more strongly with speckle-associated domains. While depletion of the integrase cofactor LEDGF/p75 significantly reduced recurrent HIV-1 integration in vitro, LEDGF/p75 primarily occupied non-speckle-associated regions of chromatin, suggesting a previously unappreciated dynamic aspect of LEDGF/p75 functionality in HIV-1 integration targeting. Finally, we identified only six genes from patient samples-BACH2, STAT5B, MKL1, MKL2, IL2RB and MDC1-that displayed enriched integration targeting frequencies and harbored proviruses that likely contributed to cell survival. Thus, despite the known preference of HIV-1 to target cancer-related genes for integration, we conclude that genic proviruses play a limited role to directly affect cell proliferation in vivo.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Kim EK, Jang M, Yang WI, Yoon SO. Primary Gastrointestinal T/NK Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13112679. [PMID: 34072328 PMCID: PMC8199162 DOI: 10.3390/cancers13112679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Primary gastrointestinal T/NK cell lymphoma (GI-TNKL) is an uncommon and heterogeneous group of lymphoid malignancies. We aimed to investigate their subtype distribution, clinicopathologic characteristics, and clinical outcomes. A total of 38 GI-TNKL cases and their clinical and pathological characteristics were analyzed. GI-TNKL occurred in adults with a median patient age in the sixth decade of life and showed a slight male predominance. The most common histologic type was extranodal NK/T-cell lymphoma, nasal type (ENKTL; 34.2%), followed by monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL; 31.6%), intestinal T-cell lymphoma, NOS (ITCL, NOS, 18.4%), anaplastic large cell lymphoma, ALK-negative (ALCL, ALK-; 13.2%). The small intestine was the primary affected region. More than 90% of patients complained of various GI symptoms and cases with advanced Lugano stage, high IPI score, or bowel perforation that required emergent operation were not uncommon. GI-TNKL also showed aggressive behavior with short progression-free survival and overall survival. This thorough clinical and pathological descriptive analysis will be helpful for accurate understanding, diagnosis, and treatment.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea; (E.K.K.); (M.J.)
| | - Mi Jang
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea; (E.K.K.); (M.J.)
| | - Woo Ick Yang
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-1763
| |
Collapse
|
7
|
Whole-genome sequencing reveals potent therapeutic strategy for monomorphic epitheliotropic intestinal T-cell lymphoma. Blood Adv 2021; 4:4769-4774. [PMID: 33017466 DOI: 10.1182/bloodadvances.2020001782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Key Points
Whole genomic and transcriptomic analyses of MEITL revealed multiple potential therapeutic targets. Synergistic effects of pimozide and romidepsin are shown in a well-characterized MEITL PDX model.
Collapse
|
8
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
9
|
Scotto L, Kinahan C, Casadei B, Mangone M, Douglass E, Murty VV, Marchi E, Ma H, George C, Montanari F, Califano A, O'Connor OA. Generation of pralatrexate resistant T-cell lymphoma lines reveals two patterns of acquired drug resistance that is overcome with epigenetic modifiers. Genes Chromosomes Cancer 2020; 59:639-651. [PMID: 32614991 PMCID: PMC7540375 DOI: 10.1002/gcc.22884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
While pralatrexate (PDX) has been successfully developed for the treatment of T-cell lymphoma, the mechanistic basis for its T-cell selectivity and acquired resistance remains elusive. In an effort to potentially identify synergistic combinations that might circumnavigate or delay acquired PDX resistance, we generated resistant cells lines over a broad concentration range. PDX-resistant cell lines H9-12 and H9-200 were developed, each exhibiting an IC50 of 35 and over 1000 nM, respectively. These lines were established in vitro from parental H9 cells. Expression analysis of the proteins known to be important determinants of antifolate pharmacology revealed increase expression of dihydrofolate reductase (DHFR) due to gene amplification, and reduced folate carrier1 downregulation, as the putative mechanisms of resistance in H9-12 and H9-200 cells. Cross resistance was only seen with methotrexate but not with romidepsin, azacitidine (AZA), decitabine, gemcitabine, doxorubicin, or bortezomib. Resistance to PDX was reversed by pretreatment with hypomethylating agents in a concentration-dependent fashion. Comparison of gene expression profiles of parental and resistant cell lines confirmed markedly different patterns of gene expression, and identified the dual specificity phosphatase four (DUSP4) as one of the molecular target of PDX activity. Reduced STAT5 phosphorylation following exposure to PDX was observed in the H9 but not in the H9-12 and H9-200 cells. These data suggest that combination with hypomethylating agents could be potent, and that DUSP4 and STAT5 could represent putative biomarkers of PDX activity.
Collapse
Affiliation(s)
- Luigi Scotto
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Cristina Kinahan
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Beatrice Casadei
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Michael Mangone
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Eugene Douglass
- Department of Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - Vundavalli V Murty
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Enrica Marchi
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Helen Ma
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Changchun George
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Francesca Montanari
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Dees S, Pontiggia L, Jasmin JF, Mercier I. Phosphorylated STAT3 (Tyr705) as a biomarker of response to pimozide treatment in triple-negative breast cancer. Cancer Biol Ther 2020; 21:506-521. [PMID: 32164483 PMCID: PMC7515519 DOI: 10.1080/15384047.2020.1726718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) displays an aggressive clinical course, heightened metastatic potential, and is linked to poor survival rates. Through its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), this subtype remains unresponsive to traditional targeted therapies. Undesirable and sometimes life-threatening side effects associated with current chemotherapeutic agents warrant the development of more targeted treatment options. Targeting signal transducer and activator of transcription 3 (STAT3), a transcription factor implicated in breast cancer (BCa) progression, has proven to be an efficient approach to halt cancer growth in vitro and in vivo. Currently, there are no FDA-approved STAT3 inhibitors for TNBC. Although pimozide, a FDA-approved antipsychotic drug, has been attributed a role as a STAT3 inhibitor in several cancers, its role on this pathway remains unexplored in TNBC. As a "one size fits all" approach cannot be applied to TNBC therapies due to the heterogeneous nature of this aggressive cancer, we hypothesized that STAT3 could be a novel biomarker of response to guide pimozide therapy. Using human cell lines representative of four TNBC subtypes (basal-like 1, basal-like 2, mesenchymal-like, mesenchymal stem-like), our current report demonstrates that pimozide significantly reduced their invasion and migration, an effect that was predicted by STAT3 phosphorylation on tyrosine residue 705 (Tyr705). Mechanistically, phosphorylated STAT3 (Tyr705) inhibition resulting from pimozide treatment caused a downregulation of downstream transcriptional targets such as matrix metalloproteinase-9 (MMP-9) and vimentin, both implicated in invasion and migration. The identification of biomarkers of response to TNBC treatments is an active area of research in the field of precision medicine and our results propose phosphorylated STAT3 (Tyr705) as a novel biomarker to guide pimozide treatment as an inhibitor of invasion and migration.
Collapse
Affiliation(s)
- Sundee Dees
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, Misher College of Arts and Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Isabelle Mercier
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA.,Program in Personalized Medicine and Targeted Therapeutics, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
11
|
|
12
|
Shaw V, Srivastava S, Srivastava SK. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin Cancer Biol 2019; 68:75-83. [PMID: 31618686 DOI: 10.1016/j.semcancer.2019.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
The recent development of high throughput compound screening has allowed drug repurposing to emerge as an effective avenue for discovering novel treatments for cancer. FDA-approved antipsychotic drugs fluspirilene, penfluridol, and pimozide are clinically used for the treatment of psychotic disorders, primarily schizophrenia. These compounds, belong to diphenylbutylpiperidine class of antipsychotic drugs, are the potent inhibitors of dopamine D2 receptor and calcium channel. A correlation has been found that patients treated for schizophrenia have lower incidences of certain types of cancer, such as respiratory, prostate, and bladder cancers. These compounds have also been shown to inhibit cancer proliferation in a variety of cancer cells, including melanoma, lung carcinoma, breast cancer, pancreatic cancer, glioma, and prostate cancer, among others. Antipsychotic drugs induce apoptosis and suppress metastasis in in vitro and in vivo models through mechanisms involving p53, STAT3, STAT5, protein phosphatase 2A, cholesterol homeostasis, integrins, autophagy, USP1, wnt/β-catenin signaling, and DNA repair. Additionally, pre-clinical evidence suggests that penfluridol and pimozide act synergistically with existing chemotherapeutic agents, such as dasatinib, temozolomide, and cisplatin. Some studies have also reported that the cytotoxic activity of the antipsychotics is selective for dividing cells. Based on this growing body of evidence and the availability and previous FDA-approval of the drugs, the compounds appear to be promising anti-cancer agents.
Collapse
Affiliation(s)
- Vikram Shaw
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Suyash Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
13
|
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles Targeting STATs in Cancer Therapy. Cells 2019; 8:E1158. [PMID: 31569687 PMCID: PMC6829305 DOI: 10.3390/cells8101158] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, an increase in the incidence rate of cancer has been witnessed. Although many efforts have been made to manage and treat this life threatening condition, it is still one of the leading causes of death worldwide. Therefore, scientists have attempted to target molecular signaling pathways involved in cancer initiation and metastasis. It has been shown that signal transducers and activator of transcription (STAT) contributes to the progression of cancer cells. This important signaling pathway is associated with a number of biological processes including cell cycle, differentiation, proliferation and apoptosis. It appears that dysregulation of the STAT signaling pathway promotes the migration, viability and malignancy of various tumor cells. Hence, there have been many attempts to target the STAT signaling pathway. However, it seems that currently applied therapeutics may not be able to effectively modulate the STAT signaling pathway and suffer from a variety of drawbacks such as low bioavailability and lack of specific tumor targeting. In the present review, we demonstrate how nanocarriers can be successfully applied for encapsulation of STAT modulators in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar 6451741117, Iran.
| | - Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway H91 W2TY, Ireland.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
14
|
Etebari M, Navari M, Agostinelli C, Visani A, Peron C, Iqbal J, Inghirami G, Piccaluga PP. Transcriptional Analysis of Lennert Lymphoma Reveals a Unique Profile and Identifies Novel Therapeutic Targets. Front Genet 2019; 10:780. [PMID: 31552092 PMCID: PMC6748072 DOI: 10.3389/fgene.2019.00780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Lennert lymphoma (LL) is a lymphoepithelioid morphological variant of peripheral T-cell lymphoma-not otherwise specified (PTCL/NOS), clinically characterized by better prognosis if compared with other PTCL/NOS. Although well characterized as far as morphology and phenotype are concerned, very little is known regarding its molecular features. In this study, we investigated the transcriptional profile of this tumor aiming 1) to identify its cellular counterparts; 2) to better define its relation with other PTCLs-and, therefore, its possible position in lymphoma classification; and 3) to define pathogenetic mechanisms, possibly unveiling novel therapeutic targets. To address these issues, we performed gene and microRNA expression profiling on LL and other PTCL/NOS cases; we identified different genes and microRNAs that discriminated LL from other PTCL/NOS. Particularly, LL revealed a molecular signature significantly enriched in helper function and clearly distinguishable from other PTCL/NOS. Furthermore, PI3K/Akt/mTOR pathway emerged as novel potential therapeutic target. In conclusion, based on the already known particular morphological and clinical features, the new molecular findings support the hypothesis that LL might be classified as a separate entity. Preclinical and clinical studies testing the efficacy of PI3K/MTOR inhibitors in this setting are warranted.
Collapse
Affiliation(s)
- Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Bologna, Italy.,Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Claudio Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Bologna, Italy
| | - Axel Visani
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Bologna, Italy
| | - Cristiano Peron
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Bologna, Italy
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Bologna, Italy.,Department of Biomolecular Strategies, Genetics, Avant-Garde Therapies and Neurosciences (SBGN), Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,School of Health, Department of Pathology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
15
|
Tolomeo M, Meli M, Grimaudo S. STAT5 and STAT5 Inhibitors in Hematological Malignancies. Anticancer Agents Med Chem 2019; 19:2036-2046. [PMID: 31490767 DOI: 10.2174/1871520619666190906160848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
The JAK-STAT pathway is an important physiologic regulator of different cellular functions including proliferation, apoptosis, differentiation, and immunological responses. Out of six different STAT proteins, STAT5 plays its main role in hematopoiesis and constitutive STAT5 activation seems to be a key event in the pathogenesis of several hematological malignancies. This has led many researchers to develop compounds capable of inhibiting STAT5 activation or interfering with its functions. Several anti-STAT5 molecules have shown potent STAT5 inhibitory activity in vitro. However, compared to the large amount of clinical studies with JAK inhibitors that are currently widely used in the clinics to treat myeloproliferative disorders, the clinical trials with STAT5 inhibitors are very limited. At present, a few STAT5 inhibitors are in phase I or II clinical trials for the treatment of leukemias and graft vs host disease. These studies seem to indicate that such compounds could be well tolerated and useful in reducing the occurrence of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Of interest, STAT5 seems to play an important role in the regulation of hematopoietic stem cell self-renewal suggesting that combination therapies including STAT5 inhibitors can erode the cancer stem cell pool and possibly open the way for the complete cancer eradication. In this review, we discuss the implication of STAT5 in hematological malignancies and the results obtained with the novel STAT5 inhibitors.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Meli
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Del Gaudio N, Di Costanzo A, Liu NQ, Conte L, Migliaccio A, Vermeulen M, Martens JHA, Stunnenberg HG, Nebbioso A, Altucci L. BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death Dis 2019; 10:338. [PMID: 31000698 PMCID: PMC6472371 DOI: 10.1038/s41419-019-1570-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Leukemia is characterized by genetic and epigenetic mutations resulting in selection of cancer cells, which are unable to differentiate. Although genetic alterations are difficult to target, the epigenome is intrinsically dynamic and readily offers new therapeutic strategies. Thus, identifying cancer-specific context-dependent targets and unraveling their biological function may open up new therapeutic perspectives. Here we identify bromodomain-containing protein 9 (BRD9) as a critical target required in acute myeloid leukemia (AML). We show that BRD9 is overexpressed in AML cells including ex vivo primary blasts compared with CD34+ cells. By targeting BRD9 expression in AML, we observed an alteration in proliferation and survival, ultimately resulting in the induction of apoptosis. Intriguingly, genome-wide profiling revealed that BRD9 binds enhancer regions in a cell type-specific manner, regulating cell type-related processes. We unveil a novel BRD9-sustained STAT5 pathway activation via regulation of SOCS3 expression levels. Our findings identify a previously undescribed BRD9-STAT5 axis as critical for leukemia maintenance, suggesting BRD9 as a potential therapeutic target.
Collapse
Affiliation(s)
- Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy.
| | - Antonella Di Costanzo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Ning Qing Liu
- Division Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Lidio Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW A comparative description of dysregulatory syndromes with mutations in signal transducer and activator of transcription (STAT) genes. RECENT FINDINGS STAT 1, 3 and 5b loss of function (LOF) and gain of function (GOF) mutations are a heterogeneous group of genetic disorders that range from immunodeficiency (ID) to autoimmune disease (AID), depending on the underlying signalling pathway defect. Between them, there are clear overlapping and differences in clinical presentation and laboratory findings. SUMMARY Dysregulatory syndromes due to LOF and GOF mutations in STAT1, 3 and 5b are a particular group of primary immunodeficiencies (PIDs) in which AID may be the predominant finding in addition to infections susceptibility. STAT1 GOF mutations were described as the major cause of chronic mucocutaneous candidiasis, while activating STAT3 mutations result in early-onset multiorgan autoimmunity and ID. Human STAT5b deficiency is a rare disease that also involves ID and severe growth failure. In recent years, the identification of the genes involved in these disorders allowed to differentiate these overlapping syndromes in order to choose the most effective therapeutic options.
Collapse
|
18
|
Gonçalves JM, Silva CAB, Rivero ERC, Cordeiro MMR. Inhibition of cancer stem cells promoted by Pimozide. Clin Exp Pharmacol Physiol 2018; 46:116-125. [PMID: 30383889 DOI: 10.1111/1440-1681.13049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Over the past years, studies have described that users of antipsychotics are less likely to develop cancer than the population in general due to cytotoxic properties of this class of drugs on cancer cells. For this reason, Pimozide has been widely studied as a potential anticancer treatment, and satisfactory results in melanoma, central nervous system tumours, osteosarcoma, neuroblastoma, myeloproliferative neoplasms, breast, lung, prostate, ovarian, colorectal, pancreatic, and hepatocellular carcinoma have been showed. Moreover, advantages as clinical use approved by the Food and Drug Administration (FDA), high clinical safety, low side effects, and reasonable price have stimulated the treatment with Pimozide instead of other agents. The action mechanism remains unclear, but three vias associated to cancer stem cell (CSC) hypothesis show that Pimozide: (a) blocks CSC features, as epithelial-to-mesenchymal transition (EMT), through inhibition of Wnt-β/catenin signalling; (b) acts as an inhibitor of signal transducer and activator of transcription (STAT-3 and 5), pathway which is activated and up-regulated in CSCs; (c) inhibits ubiquitine specific protease (USP1) and WD repeat-containing protein 48 (WDR48), that are proteins responsible to inhibit the differentiation and to maintain the cell in an undifferentiated state. Based on this perspective, the aim of this manuscript is to review the antineoplastic role of Pimozide during tumorigenesis and its potential to revert the process of undifferentiation and proliferation of CSC through different vias.
Collapse
Affiliation(s)
- Jussara Maria Gonçalves
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Elena Riet Correa Rivero
- Department of Pathology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|