1
|
Nojima Y, Yao R, Suzuki T. Single-cell RNA sequencing and machine learning provide candidate drugs against drug-tolerant persister cells in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167693. [PMID: 39870146 DOI: 10.1016/j.bbadis.2025.167693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging. We used single-cell RNA sequencing (scRNA-Seq) data and machine learning (ML) models to identify DTP cells in patient-derived organoids (PDOs) and computationally screened candidate drugs targeting these cells in familial adenomatous polyposis (FAP), associated with a high risk of colorectal cancer. Three PDOs (benign and malignant tumor organoids and a normal organoid) were evaluated using scRNA-Seq. ML models constructed based on public scRNA-Seq data classified DTP versus non-DTP cells. Candidate drugs for DTP cells in a malignant tumor organoid were identified from public drug sensitivity data. From FAP scRNA-Seq data, a specific TC1 cell cluster in tumor organoids was identified. The ML model identified up to 36 % of TC1 cells as DTP cells, a higher proportion than those for other clusters. A viability assay using a malignant tumor organoid demonstrated that YM-155 and THZ2 exert synergistic effects with trametinib. The constructed ML model is effective for DTP cell identification based on scRNA-Seq data for FAP and provides candidate treatments. This approach may improve DTP cell targeting in the treatment of colorectal and other cancers.
Collapse
Affiliation(s)
- Yosui Nojima
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Takashi Suzuki
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
2
|
Breder-Bonk C, Docter D, Barz M, Strieth S, Knauer SK, Gül D, Stauber RH. The Apoptosis Inhibitor Protein Survivin Is a Critical Cytoprotective Resistor against Silica-Based Nanotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2546. [PMID: 37764575 PMCID: PMC10535920 DOI: 10.3390/nano13182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Exposure to nanoparticles is inevitable as they become widely used in industry, cosmetics, and foods. However, knowledge of their (patho)physiological effects on biological entry routes of the human body and their underlying molecular mechanisms is still fragmented. Here, we examined the molecular effects of amorphous silica nanoparticles (aSiNPs) on cell lines mimicking the alveolar-capillary barrier of the lung. After state-of-the-art characterization of the used aSiNPs and the cell model, we performed cell viability-based assays and a protein analysis to determine the aSiNP-induced cell toxicity and underlying signaling mechanisms. We revealed that aSiNPs induce apoptosis in a dose-, time-, and size-dependent manner. aSiNP-induced toxicity involves the inhibition of pro-survival pathways, such as PI3K/AKT and ERK signaling, correlating with reduced expression of the anti-apoptotic protein Survivin on the protein and transcriptional levels. Furthermore, induced Survivin overexpression mediated resistance against aSiNP-toxicity. Thus, we present the first experimental evidence suggesting Survivin as a critical cytoprotective resistor against silica-based nanotoxicity, which may also play a role in responses to other NPs. Although Survivin's relevance as a biomarker for nanotoxicity needs to be demonstrated in vivo, our data give general impetus to investigate the pharmacological modulation of Survivin`s functions to attenuate the harmful effects of acute or chronic inhalative NP exposure.
Collapse
Affiliation(s)
- Christina Breder-Bonk
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Dominic Docter
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Shirley K. Knauer
- Center for Medical Biotechnology (ZMB), Department of Molecular Biology II, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany;
| | - Désirée Gül
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Roland H. Stauber
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| |
Collapse
|
3
|
Rustamadji P, Wiyarta E, Anggreani I. Correlation of Before and After Invasive Breast Cancer Neoadjuvant Chemotherapy for NFkB, Cyclin D1, and Survivin Expression. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:147-155. [PMID: 37600572 PMCID: PMC10439759 DOI: 10.30699/ijp.2023.562935.2983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/20/2023] [Indexed: 08/22/2023]
Abstract
Background & Objective Patients undergoing neoadjuvant chemotherapy (NC) for invasive breast cancer (IBC) therapy need biomarkers to track their progress. Because of the relationship between NFkB, Survivin, and Cyclin D1 with NC resistance, the different expression levels of each of these biomarkers can be different between pre- and post-NC in IBC. However, no research has examined the correlation between these biomarkers before and after the NC expression. This study aimed to determine the correlation among them. Methods Biomarkers expression (low and high) was used to classify 30 samples. ER, PR, HER2, Ki-67 status, tumor grade, age, and NC response were assessed. The amounts of Survivin, Cyclin D1, and NFkB were evaluated using immunohistochemistry, and the samples were classified based on the cut-off. Chi-square and linear regression were used to evaluate the data. Results No significant association was found with the changes in the expression of Survivin, Cyclin D1, and NFkB, both before and after the NC. Significant moderate correlations were shown between before and after the NC Survivin expression (r = 0.513) and Cyclin D1 expression (r = 0.543). The correlation between expression of NFkB before and after the NC was not significant. Conclusion The high potential of these proteins as prognostic indicators was demonstrated by the strong positive association between the expression of Survivin and Cyclin D1 before and after the NC. This upregulation of biomarkers indicates chemoresistance in developing IBC in the presence of NC.
Collapse
Affiliation(s)
- Primariadewi Rustamadji
- Department of Anatomic Pathology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Elvan Wiyarta
- Department of Medical Sciences, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Ineke Anggreani
- Department of Anatomic Pathology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| |
Collapse
|
4
|
Novinbahador T, Araj-Khodaei M, Mahdavi M. Evidence for Hesperidin as an Effective Factor in Initiating the Intrinsic Pathway of Apoptosis in KG1a Leukemia Cells. Int J Toxicol 2023; 42:165-171. [PMID: 36534417 DOI: 10.1177/10915818221146468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute myeloid leukemia (AML) is the most common subtype of leukemia, accounting for 62% of all leukemia fatalities. As a polyphenol glycoside, hesperidin triggers the apoptotic pathway, which might positively affect combating cancer cells. In this study, we investigated the pro-apoptotic effects of hesperidin in KG1a cells. The MTT assay was used to determine the IC50 of hesperidin in KG1a cell lines. For the apoptotic cell morphology study, we used Hoechst 33 258 staining. Activation of the caspase-3 enzyme was evaluated by the caspase-3 assay and spectrophotometry. Cell cycle distribution was analyzed by propidium iodide staining and flow cytometry. Moreover, p21, survivin, Bax, and Bcl2 gene expression was investigated by real-time PCR. Hesperidin decreased the viability of KG1a leukemic cell4s, but not that of HFF2, a non-cancer cell line. Apoptotic cell morphological alterations and increase in caspase-3 activity were observed after hesperidin treatment. Our results revealed that the expression of anti-apoptotic genes survivin and Bcl2 significantly decreased with hesperidin treatment, and pro-apoptotic gene Bax and cell cycle regulator p21 increased compared to the control group. These findings revealed that hesperidin may be an effective factor in initiating the intrinsic pathway of apoptosis and may be good candidate for the treatment of AML.
Collapse
Affiliation(s)
- Tannaz Novinbahador
- Department of Biology, Faculty of Natural Sciences, 56947University of Tabriz, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, Faculty of Traditional Medicine, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, 56947University of Tabriz, Tabriz, Iran.,Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Mafi A, Rezaee M, Hedayati N, Hogan SD, Reiter RJ, Aarabi MH, Asemi Z. Melatonin and 5-fluorouracil combination chemotherapy: opportunities and efficacy in cancer therapy. Cell Commun Signal 2023; 21:33. [PMID: 36759799 PMCID: PMC9912526 DOI: 10.1186/s12964-023-01047-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023] Open
Abstract
Combined chemotherapy is a treatment method based on the simultaneous use of two or more therapeutic agents; it is frequently necessary to produce a more effective treatment for cancer patients. Such combined treatments often improve the outcomes over that of the monotherapy approach, as the drugs synergistically target critical cell signaling pathways or work independently at different oncostatic sites. A better prognosis has been reported in patients treated with combination therapy than in patients treated with single drug chemotherapy. In recent decades, 5-fluorouracil (5-FU) has become one of the most widely used chemotherapy agents in cancer treatment. This medication, which is soluble in water, is used as the first line of anti-neoplastic agent in the treatment of several cancer types including breast, head and neck, stomach and colon cancer. Within the last three decades, many studies have investigated melatonin as an anti-cancer agent; this molecule exhibits various functions in controlling the behavior of cancer cells, such as inhibiting cell growth, inducing apoptosis, and inhibiting invasion. The aim of this review is to comprehensively evaluate the role of melatonin as a complementary agent with 5-FU-based chemotherapy for cancers. Additionally, we identify the potential common signaling pathways by which melatonin and 5-FU interact to enhance the efficacy of the combined therapy. Video abstract.
Collapse
Affiliation(s)
- Alireza Mafi
- grid.411036.10000 0001 1498 685XDepartment of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Malihe Rezaee
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran ,grid.411705.60000 0001 0166 0922Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Neda Hedayati
- grid.411746.10000 0004 4911 7066School of Medicine, Iran University of Medical Science, Tehran, Islamic Republic of Iran
| | - Sara Diana Hogan
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Russel J. Reiter
- grid.43582.380000 0000 9852 649XDepartment of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX USA
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
6
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
7
|
Martínez-Sifuentes MA, Bassol-Mayagoitia S, Nava-Hernández MP, Ruiz-Flores P, Ramos-Treviño J, Haro-Santa Cruz J, Hernández-Ibarra JA. Survivin in Breast Cancer: A Review. Genet Test Mol Biomarkers 2022; 26:411-421. [PMID: 36166738 DOI: 10.1089/gtmb.2021.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women and ranks second among causes for cancer-related death in women. Gene technology has led to the recognition that breast cancer is a heterogeneous disease composed of different biological subtypes, and genetic profiling enables the response to chemotherapy to be predicted. This fact emphasizes the importance of selecting sensitive diagnostic and prognostic markers in the early disease stage and more efficient targeted treatments for this disease. One such prognostic marker appears to be survivin. Many studies have shown that survivin is strongly expressed in different types of cancers. Its overexpression has been demonstrated in breast cancer, and high activity of the survivin gene has been associated with a poor prognosis and worse survival rates.
Collapse
Affiliation(s)
- Manuel Antonio Martínez-Sifuentes
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Susana Bassol-Mayagoitia
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Martha P Nava-Hernández
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Pablo Ruiz-Flores
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Juan Ramos-Treviño
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Jorge Haro-Santa Cruz
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - José Anselmo Hernández-Ibarra
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| |
Collapse
|
8
|
Liu Y, Li X, Pen R, Zuo W, Chen Y, Sun X, Gou J, Guo Q, Wen M, Li W, Yu S, Liu H, Huang M. Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes. Biomed Eng Online 2022; 21:53. [PMID: 35918704 PMCID: PMC9344698 DOI: 10.1186/s12938-022-01012-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/02/2022] [Indexed: 12/31/2022] Open
Abstract
Background CPT-11 (irinotecan) is one of the most efficient agents used for colorectal cancer chemotherapy. However, as for many other chemotherapeutic drugs, how to minimize the side effects of CPT-11 still needs to be thoroughly described. Objectives This study aimed to develop the CPT-11-loaded DSPE-PEG 2000 targeting EGFR liposomal delivery system and characterize its targeting specificity and therapeutic effect on colorectal cancer (CRC) cells in vitro and in vivo. Results The synthesized liposome exhibited spherical shapes (84.6 ± 1.2 nm to 150.4 nm ± 0.8 nm of estimated average sizes), good stability, sustained release, and enough drug loading (55.19%). For in vitro experiments, SW620 cells treated with CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome showed lower survival extended level of intracellular ROS production. In addition, it generated an enhanced apoptotic cell rate by upregulating the protein expression of both cleaved-caspase-3 and cleaved-caspase-9 compared with those of SW620 cells treated with free CPT-11. Importantly, the xenograft model showed that both the non-target and EGFR-targeted liposomes significantly inhibited tumor growth compared to free CPT-11. Conclusions Compared with the non-target CPT-11-loaded DSPE-PEG2000 liposome, CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome treatment showed much better antitumor activity in vitro in vivo. Thus, our findings provide new assets and expectations for CRC targeting therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-022-01012-8.
Collapse
Affiliation(s)
- Yongwei Liu
- Department of Infection, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China.
| | - Xinghui Li
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Renqun Pen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Wei Zuo
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Ya Chen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Xiuying Sun
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Juhua Gou
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Qianwen Guo
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Maoling Wen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Wuqi Li
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital), Chongqing, 400038, China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.11 Changyuan St Square North Rd, Rongchang District, Chongqing, 402460, China.
| | - Min Huang
- Department of Digestion, The Affiliated Hospital of North Sichuan Medical College, No.1, MaoYuan South Rd, Shunqing District, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
9
|
An emerging role of KRAS in biogenesis, cargo sorting and uptake of cancer-derived extracellular vesicles. Future Med Chem 2022; 14:827-845. [PMID: 35502655 DOI: 10.4155/fmc-2021-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles secreted for intercellular communication with endosomal network regulating secretion of small EVs (or exosomes) that play roles in cancer progression. As an essential oncoprotein, Kirsten rat sarcoma virus (KRAS) is tightly regulated by its endosomal trafficking for membrane attachment. However, the crosstalk between KRAS and EVs has been scarcely discussed despite its endocytic association. An overview of the oncogenic role of KRAS focusing on its correlation with cancer-associated EVs should provide important clues for disease prognosis and inspire novel therapeutic approaches for treating KRAS mutant cancers. Therefore, this review summarizes the relevant studies that provide substantial evidence linking KRAS mutation to EVs and discusses the oncogenic implication from the aspects of biogenesis, cargo sorting, and release and uptake of the EVs.
Collapse
|
10
|
Wetzker R. Hormesis Meetings at the Royal Palace. Dose Response 2022; 19:15593258211056835. [PMID: 34987333 PMCID: PMC8669123 DOI: 10.1177/15593258211056835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
This commentary describes the origin and the main results of experimental work on adaptive stress responses at the university town Jena in Germany. These cooperative research activities exemplify the heuristic power of the hormesis phenomenon.
Collapse
Affiliation(s)
- Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
11
|
Mihanfar A, Yousefi B, Ghazizadeh Darband S, Sadighparvar S, Kaviani M, Majidinia M. Melatonin increases 5-flurouracil-mediated apoptosis of colorectal cancer cells through enhancing oxidative stress and downregulating survivin and XIAP. ACTA ACUST UNITED AC 2021; 11:253-261. [PMID: 34631487 PMCID: PMC8494259 DOI: 10.34172/bi.2021.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/28/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Colorectal cancer (CRC) is one of the most lethal human malignancies with a global alarming rate of incidence. The development of resistance against common chemotherapeutics such as 5-fluorouracil (5-FU) remains a big burden for CRC therapy. Therefore, we investigated the effects of melatonin on the increasing 5-FU- mediated apoptosis and its underlying mechanism in SW-480 CRC cell line.
Methods: The effects of melatonin and 5- FU, alone or in combination, on cell proliferation were evaluated using an MTT assay. Further, Annexin-V Flow cytometry was used for determining the effects of melatonin and 5-FU on the apoptosis of SW-480 cell lines. The expression levels of Bax, Bcl-2, pro-caspase-3/activated caspase 3, X-linked inhibitor of apoptosis proteins (XIAP), and survivin were measured after 48 hours incubation with drugs. Cellular levels of reactive oxygen species (ROS), catalase, superoxide dismutase and glutathione peroxidase were also evaluated.
Results: Melatonin and 5-FU significantly decreased the cell proliferation of SW-480 cells. Combination of 5-FU with melatonin significantly decreased the IC50 value of 5-FU from 100 μM to 50 μM. Moreover, combination therapy increased intracellular levels of ROS and suppressed antioxidant enzymatic activities (P < 0.05). Treatment with either melatonin or 5-FU resulted in the induction of apoptosis in comparison to control (P > 0.05). XIAP and survivin expression levels potently decreased after combination treatment with melatonin and 5-FU (P < 0.05).
Conclusion: We demonstrated that melatonin exerts a reversing effect on the resistance to apoptosis by targeting oxidative stress, XIAP and survivin in CRC cells. Therefore, more studies need for better understanding of underlying mechanisms for beneficial effects of combination of melatonin and 5-FU.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Student Research Community, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Chen L, Wang S, Liu Q, Zhang Z, Lin S, Zheng Q, Cheng M, Li Y, Cheng C. Reduction sensitive nanocarriers mPEG-g-γ-PGA/SSBPEI@siRNA for effective targeted delivery of survivin siRNA against NSCLC. Colloids Surf B Biointerfaces 2020; 193:111105. [PMID: 32417465 DOI: 10.1016/j.colsurfb.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Poly γ-glutamic acid (γ-PGA) is attractive due to its desirable biological properties such as nontoxicity, excellent biocompatibility, and minimal immunogenicity. Additionally, γ-PGA could be recognized by γ-glutamyl transpeptidase, which is regarded as a potential biomarker for many tumors. In this study, we have developed a new biodegradable, reduction sensitive, and tumor-specific gene nano-delivery platform consisting of a cationic carrier (SSBPEI) for siRNA condensation, mPEG shell for nanoparticle stabilization, and γ-PGA for accelerated cellular uptake. Disulfide bonds (-SS-) could be reduced specifically in the tumor environment, which is full of reductants such as glutathione reductase. Conjugating polyethylene glycol (PEG) to the γ-PGA led to the formation of mPEG-g-γ-PGA, with a decreased positive charge on the surface of SSBPEI@siRNA and substantially higher stability in an aqueous medium. As a result, mPEG-g-γ-PGA/SSBPEI@siRNA nanoparticles could protect siRNAs from RNase A degradation and release siRNAs in a reduction sensitive way. The multifunctional delivery system was shown to silence the Survivin gene and further promote chemotherapeutic drug-induced apoptosis in the A549 NSCLC cell line efficiently, thereby representing a novel promising platform for the delivery of siRNAs.
Collapse
Affiliation(s)
- Li Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China; Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Siyuan Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.
| | - Zhihong Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Shaofeng Lin
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China; Department of Thoracic Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Miaomiao Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Yuying Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China
| | - Cui Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002 PR China.
| |
Collapse
|
13
|
Obatoclax, a Pan-BCL-2 Inhibitor, Downregulates Survivin to Induce Apoptosis in Human Colorectal Carcinoma Cells Via Suppressing WNT/β-catenin Signaling. Int J Mol Sci 2020; 21:ijms21051773. [PMID: 32150830 PMCID: PMC7084590 DOI: 10.3390/ijms21051773] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a highly prevailing cancer and the fourth leading cause of cancer mortality worldwide. Aberrant expression of antiapoptotic BCL-2 family proteins is closely linked to neoplastic progression and chemoresistance. Obatoclax is a clinically developed drug, which binds antiapoptotic BCL-2, BCL-xL, and MCL-1 for inhibition to elicit apoptosis. Survivin is an antiapoptotic protein, whose upregulation correlates with pathogenesis, therapeutic resistance, and poor prognosis in CRC. Herein, we provide the first evidence delineating the functional linkage between Obatoclax and survivin in the context of human CRC cells. In detail, Obatoclax was found to markedly downregulate survivin. This downregulation was mainly achieved via transcriptional repression, as Obatoclax lowered the levels of both survivin mRNA and promoter activity, while blocking proteasomal degradation failed to prevent survivin from downregulation by Obatoclax. Notably, ectopic survivin expression curtailed Obatoclax-induced apoptosis and cytotoxicity, confirming an essential role of survivin downregulation in Obatoclax-elicited anti-CRC effect. Moreover, Obatoclax was found to repress hyperactive WNT/β-catenin signaling activity commonly present in human CRC cells, and, markedly, ectopic expression of dominant-active β-catenin mutant rescued the levels of survivin along with elevated cell viability. We further revealed that, depending on the cell context, Obatoclax suppresses WNT/β-catenin signaling in HCT 116 cells likely via inducing β-catenin destabilization, or by downregulating LEF1 in DLD-1 cells. Collectively, we for the first time define survivin downregulation as a novel, pro-apoptotic mechanism of Obatoclax as a consequence of Obatocalx acting as an antagonist to WNT/β-catenin signaling.
Collapse
|
14
|
Targeting Ovarian Cancer Cell Cytotoxic Drug Resistance Phenotype with Xanthium strumarium L. Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6073019. [PMID: 31827554 PMCID: PMC6885198 DOI: 10.1155/2019/6073019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
Emerging drugs aim at targeting the genomic integrity and replication machinery in ovarian cancer. While the antiproliferative activity of Xanthium strumarium L. extract (XFC), a traditional herbal medicine, is believed to alter the mitotic apparatus of Chinese hamster ovary epithelial cells, its capacity to target and overcome the chemoresistance phenotype in ovarian cancer is unknown. Among the cancer cell lines tested, we found that the best proliferation inhibitory effect for XFC was against ovarian cancer cells and ranged from 30 to 35 μg/mL. XFC efficiently targeted both the cytotoxic drug chemoresistance phenotype of SKOV-3 cells and of the chemosensitive ES-2 cells. Early apoptosis and late apoptosis were effectively induced by XFC extract in ES-2 cells, whereas late apoptosis and necrosis events were triggered in SKOV-3 cells. Cell cycling regulation was trapped by XFC extract in the G2/M phase in both the ES-2 and SKOV-3 cell models. This effect was, in part, attributable to increased dose-dependent tubulin polymerization, which was increased in SKOV-3 cells. Whereas XFC extract triggered poly (ADP-Ribose) polymerase (PARP) cleavage in both ES-2 and SKOV-3 cells, it only lowered Nrf2 in ES-2 cells and phosphorylated Akt levels in SKOV-3 cells. Interestingly, cell cycling regulators Cdk4, Cyclin D3, and p27 were all decreased in SKOV-3 cells. XFC extracts were effective in inhibiting in vitro migration in both ovarian cancer cell models. Our data support the potential anticancer targeting of chemoresistant human ovarian cancer cells phenotype by XFC extract.
Collapse
|
15
|
Neophytou CM, Mesaritis A, Gregoriou G, Constantinou AI. d-a-Tocopheryl Polyethylene Glycol 1000 Succinate and a small-molecule Survivin suppressant synergistically induce apoptosis in SKBR3 breast cancer cells. Sci Rep 2019; 9:14375. [PMID: 31591437 PMCID: PMC6779903 DOI: 10.1038/s41598-019-50884-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/10/2019] [Indexed: 01/18/2023] Open
Abstract
Breast cancer is the second in mortality rate malignancy among women. Despite the many advances in breast cancer treatment, there is still a need to improve drug efficacy and reduce non-specific effects. D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is frequently used in the development of drug delivery systems to improve the pharmacokinetics of anti-cancer drugs and reduce multi-drug resistance. We have previously shown that TPGS not only acts as a carrier molecule but also exerts anti-cancer effects. As part of this study, we investigated the effect of TPGS with YM155, a small molecule suppressant of Survivin, in various breast cancer cell lines representing different subtypes of the disease. We aimed to evaluate the presumed synergistic effect of the TPGS-YM155 combination and reveal its mechanism of action. Our results show that the TPGS-YM155 combination acts synergistically to reduce specifically the viability of SKBR3 cells. The combination of these agents reduced activation of the AKT pathway, decreased Survivin and Bcl-2 levels, and induced caspase-dependent and independent apoptosis via the mitochondrial pathway. Importantly, the TPGS-YM155 combination did not significantly affect the viability of MCF-10A normal immortalized cells. In conclusion, the combination of YM155 and TPGS could be a promising approach against SKBR3-type breast cancer.
Collapse
Affiliation(s)
- Christiana M Neophytou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
- European University Research Center, Nicosia, Cyprus
| | - Avgoustinos Mesaritis
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
| | - Gregoria Gregoriou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
| | - Andreas I Constantinou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus.
- University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
16
|
Fu R, Han CF, Ni T, Di L, Liu LJ, Lv WC, Bi YR, Jiang N, He Y, Li HM, Wang S, Xie H, Chen BA, Wang XS, Weiss SJ, Lu T, Guo QL, Wu ZQ. A ZEB1/p53 signaling axis in stromal fibroblasts promotes mammary epithelial tumours. Nat Commun 2019; 10:3210. [PMID: 31324807 PMCID: PMC6642263 DOI: 10.1038/s41467-019-11278-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence indicates that the zinc-finger transcription factor ZEB1 is predominantly expressed in the stroma of several tumours. However, the role of stromal ZEB1 in tumour progression remains unexplored. In this study, while interrogating human databases, we uncover a remarkable decrease in relapse-free survival of breast cancer patients expressing high ZEB1 levels in the stroma. Using a mouse model of breast cancer, we show that ZEB1 inactivation in stromal fibroblasts suppresses tumour initiation, progression and metastasis. We associate this with reduced extracellular matrix remodeling, immune cell infiltration and decreased angiogenesis. ZEB1 deletion in stromal fibroblasts increases acetylation, expression and recruitment of p53 to FGF2/7, VEGF and IL6 promoters, thereby reducing their production and secretion into the surrounding stroma. Importantly, p53 ablation in ZEB1 stroma-deleted mammary tumours sufficiently recovers the impaired cancer growth and progression. Our findings identify the ZEB1/p53 axis as a stroma-specific signaling pathway that promotes mammary epithelial tumours.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Extracellular Matrix/metabolism
- Female
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 7/metabolism
- Fibroblasts/metabolism
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease/genetics
- Humans
- Interleukin-6
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Neoplasm Recurrence, Local/metabolism
- Neoplasms, Experimental
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Signal Transduction
- Tumor Microenvironment
- Tumor Suppressor Protein p53/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
Collapse
Affiliation(s)
- Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen-Feng Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting Ni
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Di
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Juan Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan-Ran Bi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Nan Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yin He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hong-Mei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Shui Wang
- Division of Breast Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210036, China
| | - Hui Xie
- Division of Breast Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210036, China
| | - Bao-An Chen
- Division of Hematology and Oncology, The Affiliated Zhong-Da Hospital, Southeast University, Nanjing, 210009, China
| | - Xiao-Sheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Stephen J Weiss
- The Life Sciences Institute, Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
17
|
Prognostic Value of BIRC5 in Lung Adenocarcinoma Lacking EGFR, KRAS, and ALK Mutations by Integrated Bioinformatics Analysis. DISEASE MARKERS 2019; 2019:5451290. [PMID: 31093306 PMCID: PMC6481100 DOI: 10.1155/2019/5451290] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022]
Abstract
Objective This study was aimed at investigating the prognostic significance of Baculoviral IAP repeat containing 5 (BIRC5) in lung adenocarcinoma (LAD) lacking EGFR, KRAS, and ALK mutations (triple-negative (TN) adenocarcinomas). Methods The gene expression profiles were obtained from Gene Expression Omnibus (GEO). The identification of the differentially expressed genes (DEGs) was performed by GeneSpring GX. Gene set enrichment analysis (GSEA) was used to execute gene ontology function and pathway enrichment analysis. The protein interaction network was constructed by Cytoscape. The hub genes were extracted by MCODE and cytoHubba plugin from the network. Then, using BIRC5 as a candidate, the prognostic value in LAD and TN adenocarcinomas was verified by the Kaplan-Meier plotter and The Cancer Genome Atlas (TCGA) database, respectively. Finally, the mechanism of BIRC5 was predicted by a coexpressed network and enrichment analysis. Results A total of 38 upregulated genes and 121 downregulated genes were identified. 9 hub genes were extracted. Among them, the mRNA expression of 5 genes, namely, BIRC5, MCM4, CDC20, KIAA0101, and TRIP13, were significantly upregulated among TN adenocarcinomas (all P < 0.05). Notably, only the overexpression of BIRC5 was associated with unfavorable overall survival (OS) in TN adenocarcinomas (log rank P = 0.0037). TN adenocarcinoma patients in the BIRC5 high-expression group suffered from a significantly high risk of distant metastasis (P = 0.046), advanced N stage (P = 0.033), and tumor-bearing (P = 0.031) and deceased status (P = 0.003). The mechanism of BIRC5 and coexpressed genes may be linked closely with the cell cycle. Conclusion Overexpressed in tumors, BIRC5 is associated with unfavorable overall survival in TN adenocarcinomas. BIRC5 is a potential predictor and therapeutic target in TN adenocarcinomas.
Collapse
|
18
|
Gock M, Mullins CS, Bergner C, Prall F, Ramer R, Göder A, Krämer OH, Lange F, Krause BJ, Klar E, Linnebacher M. Establishment, functional and genetic characterization of three novel patient-derived rectal cancer cell lines. World J Gastroenterol 2018; 24:4880-4892. [PMID: 30487698 PMCID: PMC6250916 DOI: 10.3748/wjg.v24.i43.4880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish patient-individual tumor models of rectal cancer for analyses of novel biomarkers, individual response prediction and individual therapy regimens.
METHODS Establishment of cell lines was conducted by direct in vitro culturing and in vivo xenografting with subsequent in vitro culturing. Cell lines were in-depth characterized concerning morphological features, invasive and migratory behavior, phenotype, molecular profile including mutational analysis, protein expression, and confirmation of origin by DNA fingerprint. Assessment of chemosensitivity towards an extensive range of current chemotherapeutic drugs and of radiosensitivity was performed including analysis of a combined radio- and chemotherapeutic treatment. In addition, glucose metabolism was assessed with 18F-fluorodeoxyglucose (FDG) and proliferation with 18F-fluorothymidine.
RESULTS We describe the establishment of ultra-low passage rectal cancer cell lines of three patients suffering from rectal cancer. Two cell lines (HROC126, HROC284Met) were established directly from tumor specimens while HROC239 T0 M1 was established subsequent to xenografting of the tumor. Molecular analysis classified all three cell lines as CIMP-0/ non-MSI-H (sporadic standard) type. Mutational analysis revealed following mutational profiles: HROC126: APCwt, TP53wt, KRASwt, BRAFwt, PTENwt; HROC239 T0 M1: APCmut, P53wt, KRASmut, BRAFwt, PTENmut and HROC284Met: APCwt, P53mut, KRASmut, BRAFwt, PTENmut. All cell lines could be characterized as epithelial (EpCAM+) tumor cells with equivalent morphologic features and comparable growth kinetics. The cell lines displayed a heterogeneous response toward chemotherapy, radiotherapy and their combined application. HROC126 showed a highly radio-resistant phenotype and HROC284Met was more susceptible to a combined radiochemotherapy than HROC126 and HROC239 T0 M1. Analysis of 18F-FDG uptake displayed a markedly reduced FDG uptake of all three cell lines after combined radiochemotherapy.
CONCLUSION These newly established and in-depth characterized ultra-low passage rectal cancer cell lines provide a useful instrument for analysis of biological characteristics of rectal cancer.
Collapse
Affiliation(s)
- Michael Gock
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Christina S Mullins
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center, Rostock 18055, Germany
| | - Robert Ramer
- Institute of Pharmacology, University Medical Center, Rostock 18055, Germany
| | - Anja Göder
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz 55131, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center, Rostock 18055, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, University Medical Center, Rostock 18055, Germany
| | - Ernst Klar
- Department of General Surgery, University Medical Center, Rostock 18055, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, University Medical Center, Rostock 18055, Germany
| |
Collapse
|