1
|
Babicheva A, Elmadbouh I, Song S, Thompson M, Powers R, Jain PP, Izadi A, Chen J, Yung L, Parmisano S, Paquin C, Wang WT, Chen Y, Wang T, Alotaibi M, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Prakash YS, Pabelick CM, Yuan JXJ. Store-operated Ca 2+ entry is involved in endothelium-to-mesenchymal transition in lung vascular endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627034. [PMID: 39677696 PMCID: PMC11643270 DOI: 10.1101/2024.12.06.627034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β 1 (TGF-β 1 ), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC). An increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] cyt ) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca 2+ signaling is involved in EndMT. In this study we tested the hypothesis that TGF-β 1 -induced EndMT in human LVEC is Ca 2+ -dependent. Treatment of LVEC with TGF-β 1 for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1 and enhancement of store-operated Ca 2+ entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca 2+ with EGTA or BAPTA-AM respectively abolished EndMT in response to TGF-β 1 . Moreover, EGTA diminished TGF-β 1 -induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT, but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca 2+ signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca 2+ signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of pre-capillary pulmonary hypertension. New & Noteworthy EndMT has been reported to contribute to the pathogenesis of PH. In this study we aimed to determine the role of Ca 2+ signaling in the development of EndMT in human lung vascular endothelial cells. Our data suggest that TGF-β 1 requires store-operated Ca 2+ entry through STIM1/Orai channels to induce SNAI-mediated EndMT. For the first time we demonstrated that TGF-β 1 -induced EndMT is Ca 2+ -dependent event while inhibition of STIM1/Orai interaction attenuated EndMT in response to TGF-β 1 .
Collapse
|
2
|
Fuchs C, Stalnaker KJ, Dalgard CL, Sukumar G, Hupalo D, Dreyfuss JM, Pan H, Wang Y, Pham L, Wu X, Jozic I, Anderson RR, Cho S, Meyerle JH, Tam J. Plantar Skin Exhibits Altered Physiology, Constitutive Activation of Wound-Associated Phenotypes, and Inherently Delayed Healing. J Invest Dermatol 2024; 144:1633-1648.e14. [PMID: 38237729 DOI: 10.1016/j.jid.2023.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 06/24/2024]
Abstract
Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.
Collapse
Affiliation(s)
- Christiane Fuchs
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine J Stalnaker
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Hupalo
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Linh Pham
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xunwei Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillp Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunghun Cho
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jon H Meyerle
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Liu YN, Chen WY, Yeh HL, Chen WH, Jiang KC, Li HR, Dung PVT, Chen ZQ, Lee WJ, Hsiao M, Huang J, Wen YC. MCTP1 increases the malignancy of androgen-deprived prostate cancer cells by inducing neuroendocrine differentiation and EMT. Sci Signal 2024; 17:eadc9142. [PMID: 38861615 DOI: 10.1126/scisignal.adc9142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Neuroendocrine prostate cancer (PCa) (NEPC), an aggressive subtype that is associated with poor prognosis, may arise after androgen deprivation therapy (ADT). We investigated the molecular mechanisms by which ADT induces neuroendocrine differentiation in advanced PCa. We found that transmembrane protein 1 (MCTP1), which has putative Ca2+ sensing function and multiple Ca2+-binding C2 domains, was abundant in samples from patients with advanced PCa. MCTP1 was associated with the expression of the EMT-associated transcription factors ZBTB46, FOXA2, and HIF1A. The increased abundance of MCTP1 promoted PC3 prostate cancer cell migration and neuroendocrine differentiation and was associated with SNAI1-dependent EMT in C4-2 PCa cells after ADT. ZBTB46 interacted with FOXA2 and HIF1A and increased the abundance of MCTP1 in a hypoxia-dependent manner. MCTP1 stimulated Ca2+ signaling and AKT activation to promote EMT and neuroendocrine differentiation by increasing the SNAI1-dependent expression of EMT and neuroendocrine markers, effects that were blocked by knockdown of MCTP1. These data suggest an oncogenic role for MCTP1 in the maintenance of a rare and aggressive prostate cancer subtype through its response to Ca2+ and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Sweed D, Elhamed SMA, Aiad HAS, Ehsan NA, Hemida AS, Dawoud MM. STIM1/SOX2 proteins are co-expressed in the tumor and microenvironmental stromal cells of pancreatic ductal adenocarcinoma and ampullary carcinoma. World J Surg Oncol 2024; 22:84. [PMID: 38532463 DOI: 10.1186/s12957-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and ampullary carcinoma (AAC) are lethal malignancies with modest benefits from surgery. SOX2 and STIM1 have been linked to anticancer activity in several human malignancies. This study included 94 tumor cases: 48 primary PDAC, 25 metastatic PDAC, and 21 primary AAC with corresponding non-tumor tissue. All cases were immunohistochemically stained for STIM1 and SOX2 and results were correlated with clinicopathologic data, patient survival, and BCL2 immunostaining results. Results revealed that STIM1 and SOX2 epithelial/stromal expressions were significantly higher in PDAC and AAC in comparison to the control groups. STIM1 and SOX2 expressions were positively correlated in the primary and metastatic PDAC (P = 0.016 and, P = 0.001, respectively). However, their expressions were not significantly associated with BCL2 expression. SOX2 epithelial/stromal expressions were positively correlated with the large tumor size in the primary AAC group (P = 0.052, P = 0.044, respectively). STIM1 stromal and SOX2 epithelial over-expressions had a bad prognostic impact on the overall survival of AAC (P = 0.002 and P = 0.001, respectively). Therefore, STIM1 and SOX2 co-expression in tumor cells and intra-tumoral stroma could contribute to the development of PDAC and AAC. STIM1/SOX2 expression is linked to a bad prognosis in AAC.
Collapse
Affiliation(s)
- Dina Sweed
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Koom, Egypt
| | | | - Hayam Abdel Samie Aiad
- Pathology Department, Faculty of Medicine, Menoufia University, Shibin Al Koom, 32511, Egypt
| | - Nermine Ahmed Ehsan
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Koom, Egypt
| | - Aiat Shaban Hemida
- Pathology Department, Faculty of Medicine, Menoufia University, Shibin Al Koom, 32511, Egypt
| | - Marwa Mohammed Dawoud
- Pathology Department, Faculty of Medicine, Menoufia University, Shibin Al Koom, 32511, Egypt.
| |
Collapse
|
5
|
Serwach K, Nurowska E, Klukowska M, Zablocka B, Gruszczynska-Biegala J. STIM2 regulates NMDA receptor endocytosis that is induced by short-term NMDA receptor overactivation in cortical neurons. Cell Mol Life Sci 2023; 80:368. [PMID: 37989792 PMCID: PMC10663207 DOI: 10.1007/s00018-023-05028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Recent findings suggest an important role for the dysregulation of stromal interaction molecule (STIM) proteins, activators of store-operated Ca2+ channels, and the prolonged activation of N-methyl-D-aspartate receptors (NMDARs) in the development of neurodegenerative diseases. We previously demonstrated that STIM silencing increases Ca2+ influx through NMDAR and STIM-NMDAR2 complexes are present in neurons. However, the interplay between NMDAR subunits (GluN1, GluN2A, and GluN2B) and STIM1/STIM2 with regard to intracellular trafficking remains unknown. Here, we found that the activation of NMDAR endocytosis led to an increase in STIM2-GluN2A and STIM2-GluN2B interactions in primary cortical neurons. STIM1 appeared to migrate from synaptic to extrasynaptic sites. STIM2 silencing inhibited post-activation NMDAR translocation from the plasma membrane and synaptic spines and increased NMDAR currents. Our findings reveal a novel molecular mechanism by which STIM2 regulates NMDAR synaptic trafficking by promoting NMDAR endocytosis after receptor overactivation, which may suggest protection against excessive uncontrolled Ca2+ influx through NMDARs.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Nurowska
- Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Marta Klukowska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Zablocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
6
|
Janke EK, Chalmers SB, Roberts-Thomson SJ, Monteith GR. Intersection between calcium signalling and epithelial-mesenchymal plasticity in the context of cancer. Cell Calcium 2023; 112:102741. [PMID: 37060674 DOI: 10.1016/j.ceca.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a form of cellular phenotypic plasticity and is considered a crucial step in the progression of many cancers. The calcium ion (Ca2+) acts as a ubiquitous second messenger and is implicated in many cellular processes, including cell death, migration, invasion and more recently EMT. Throughout this review, the complex interplay between Ca2+ signalling and EMT will be explored. An overview of the Ca2+ pathways that are remodelled as a consequence of EMT is provided and the role of Ca2+ signalling in regulating EMT and its significance is considered. Ca2+ signalling pathways may represent a therapeutic opportunity to regulate EMT. However, as will be described in this review, the complexity of these signalling pathways represents significant challenges that must be considered if Ca2+ signalling is to be manipulated with the aim of therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Ellen K Janke
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Silke B Chalmers
- Department of Biomedicine, Aarhus University, Nordre Ringgade 1, Aarhus C, 8000, Denmark
| | - Sarah J Roberts-Thomson
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| |
Collapse
|
7
|
Eustace AJ, Lee MJ, Colley G, Roban J, Downing T, Buchanan PJ. Aberrant calcium signalling downstream of mutations in TP53 and the PI3K/AKT pathway genes promotes disease progression and therapy resistance in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:560-576. [PMID: 36176752 PMCID: PMC9511797 DOI: 10.20517/cdr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Alex J. Eustace
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Grace Colley
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Jack Roban
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Tim Downing
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Paul J. Buchanan
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin D9, Ireland
| |
Collapse
|
8
|
Wang Z, Chen J, Babicheva A, Jain PP, Rodriguez M, Ayon RJ, Ravellette KS, Wu L, Balistrieri F, Tang H, Wu X, Zhao T, Black SM, Desai AA, Garcia JGN, Sun X, Shyy JYJ, Valdez-Jasso D, Thistlethwaite PA, Makino A, Wang J, Yuan JXJ. Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am J Physiol Cell Physiol 2021; 321:C1010-C1027. [PMID: 34669509 PMCID: PMC8714987 DOI: 10.1152/ajpcell.00147.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.
Collapse
Affiliation(s)
- Ziyi Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ramon J Ayon
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Keeley S Ravellette
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Linda Wu
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Haiyang Tang
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Wu
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Stephen M Black
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ankit A Desai
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Joe G N Garcia
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | | | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
9
|
Orai3 Regulates Pancreatic Cancer Metastasis by Encoding a Functional Store Operated Calcium Entry Channel. Cancers (Basel) 2021; 13:cancers13235937. [PMID: 34885048 PMCID: PMC8656723 DOI: 10.3390/cancers13235937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) mediated by Orai1/2/3 channels is a highly regulated and ubiquitous Ca2+ influx pathway. Although the role of Orai1 channels is well studied, the significance of Orai2/3 channels is still emerging in nature. In this study, we performed extensive bioinformatic analysis of publicly available datasets and observed that Orai3 expression is inversely associated with the mean survival time of PC patients. Orai3 expression analysis in a battery of PC cell lines corroborated its differential expression profile. We then carried out thorough Ca2+ imaging experiments in six PC cell lines and found that Orai3 forms a functional SOCE channel in PC cells. Our in vitro functional assays show that Orai3 regulates PC cell cycle progression, apoptosis and migration. Most importantly, our in vivo xenograft studies demonstrate a critical role of Orai3 in PC tumor growth and secondary metastasis. Mechanistically, Orai3 controls G1 phase progression, matrix metalloproteinase expression and epithelial-mesenchymal transition in PC cells. Taken together, this study for the first-time reports that Orai3 drives aggressive phenotypes of PC cells, i.e., migration in vitro and metastasis in vivo. Considering that Orai3 overexpression leads to poor prognosis in PC patients, it appears to be a highly attractive therapeutic target.
Collapse
|
10
|
Metabolic Reprogramming of Mammary Epithelial Cells during TGF-β-Induced Epithelial-to-Mesenchymal Transition. Metabolites 2021; 11:metabo11090626. [PMID: 34564442 PMCID: PMC8464788 DOI: 10.3390/metabo11090626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023] Open
Abstract
The cytokine transforming growth factor-β (TGF-β) can induce normal breast epithelial cells to take on a mesenchymal phenotype, termed epithelial-to-mesenchymal transition (EMT). While the transcriptional and proteomic changes during TGF-β-induced EMT have been described, the metabolic rewiring that occurs in epithelial cells undergoing EMT is not well understood. Here, we quantitively analyzed the TGF-β-induced metabolic reprogramming during EMT of non-transformed NMuMG mouse mammary gland epithelial cells using nuclear magnetic resonance (NMR) spectroscopy. We found that TGF-β elevates glycolytic and tricarboxylic acid (TCA)-cycle activity and increases glutaminolysis. Additionally, TGF-β affects the hexosamine pathway, arginine-proline metabolism, the cellular redox state, and strongly affects choline metabolism during EMT. TGF-β was found to induce phosphocholine production. A kinase inhibitor RSM-93A that inhibits choline kinase α (CHKα) mitigated TGF-β-induced changes associated with EMT, i.e., increased filamentous (F)-actin stress fiber formation and N-Cadherin mesenchymal marker expression.
Collapse
|
11
|
Jones CA, Hazlehurst LA. Role of Calcium Homeostasis in Modulating EMT in Cancer. Biomedicines 2021; 9:1200. [PMID: 34572386 PMCID: PMC8471317 DOI: 10.3390/biomedicines9091200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Calcium is essential for cells to perform numerous physiological processes. In cancer, the augmentation of calcium signaling supports the more proliferative and migratory cells, which is a characteristic of the epithelial-to-mesenchymal transition (EMT). By genetically and epigenetically modifying genes, channels, and entire signaling pathways, cancer cells have adapted to survive with an extreme imbalance of calcium that allows them to grow and metastasize in an abnormal manner. This cellular remodeling also allows for the evasion of immune surveillance and the development of drug resistance, which lead to poor prognosis in patients. Understanding the role calcium flux plays in driving the phenotypes associated with invasion, immune suppression, metastasis, and drug resistance remains critical for determining treatments to optimize clinical outcomes and future drug discovery.
Collapse
Affiliation(s)
| | - Lori A. Hazlehurst
- Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
12
|
Store-operated Ca 2+ entry as a key oncogenic Ca 2+ signaling driving tumor invasion-metastasis cascade and its translational potential. Cancer Lett 2021; 516:64-72. [PMID: 34089807 DOI: 10.1016/j.canlet.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Tumor metastasis is the primary cause of treatment failure and cancer-related deaths. Store-operated Ca2+ entry (SOCE), which is mediated by stromal interaction molecules (STIM) and ORAI proteins, has been implicated in the tumor invasion-metastasis cascade. Epithelial-mesenchymal transition (EMT) is a cellular program that enables tumor cells to acquire the capacities needed for migration and invasion and the formation of distal metastases. Tumor-associated angiogenesis contributes to metastasis because aberrantly developed vessels offer a path for tumor cell dissemination as well as supply sufficient nutrients for the metastatic colony to develop into metastasis. Recently, increasing evidence has indicated that SOCE alterations actively participate in the multi-step process of tumor metastasis. In addition, the dysregulated expression of STIM/ORAI has been reported to be a predictor of poor prognosis. Herein, we review the latest advances about the critical role of SOCE in the tumor metastasis cascade and the underlying regulatory mechanisms. We emphasize the contributions of SOCE to the EMT program, tumor cell migration and invasion, and angiogenesis. We further discuss the possibility of modulating SOCE or intervening in the downstream signaling pathways as a feasible targeting therapy for cancer treatment.
Collapse
|
13
|
Kang Q, Peng X, Li X, Hu D, Wen G, Wei Z, Yuan B. Calcium Channel Protein ORAI1 Mediates TGF-β Induced Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells. Front Oncol 2021; 11:649476. [PMID: 34055617 PMCID: PMC8149897 DOI: 10.3389/fonc.2021.649476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence suggested that calcium release-activated calcium modulator 1(ORAI1), a key calcium channel pore-forming protein-mediated store-operated Ca2+ entry (SOCE), is associated with human cancer. However, its role in colorectal cancer (CRC) progression has not been well studied. Epithelial-mesenchymal transition (EMT) is a multistep process that occurs during the progression of cancers and is necessary for metastasis of epithelial cancer. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that has been shown to induce EMT. In this study, we are aimed at exploring the effects of ORAI1 on TGF-β1-induced EMT process in CRC cells. Herein, we confirmed ORAI1 expression was higher in CRC tissues than in adjacent non-cancerous tissues by using immunohistochemical staining and Western blot analysis. Higher ORAI1 expression was associated with more advanced clinical stage, higher incidence of metastasis and shorter overall survival. We compared ORAI1 expression in SW480 and SW620 cells, two CRC cell lines with the same genetic background, but different metastatic potential. We found ORAI1 expression was significantly higher in SW620 cells which exhibited higher EMT characteristics. Furthermore, knockdown of ORAI1 suppressed the EMT of SW620 Cells. After induced the EMT process in SW480 cells with TGF-β1, we found treatment of TGF-β1 showed a significant increase in cell migration along with the loss of E-cadherin and an increase in N-cadherin and Vimentin protein levels. Also, TGF-β1 treatment increased ORAI1 expression and was closely associated with the increase of SOCE. Silencing ORAI1 significantly suppressed Ca2+ entry, reversed the changes of EMT-relevant marks expression induced by TGF-β1, and inhibited TGF-β1-mediated calpain activation and cell migration. Finally, we blocked SOCE with 2-APB (2-Aminoethyl diphenylborinate), a pharmacological inhibitor. Interestingly, 2-APB and sh-ORAI1 both exhibited similar inhibition effects to the SW480 cells. In conclusion, our results demonstrated that ORAI1 could mediate TGF-β-Induced EMT by promoting Ca2+ entry and calpain activity in Colorectal Cancer Cells.
Collapse
Affiliation(s)
- Qingjie Kang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangshu Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Denghua Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangxu Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baohong Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Syndecan-1 (CD138), Carcinomas and EMT. Int J Mol Sci 2021; 22:ijms22084227. [PMID: 33921767 PMCID: PMC8072910 DOI: 10.3390/ijms22084227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.
Collapse
|
15
|
Adiga D, Radhakrishnan R, Chakrabarty S, Kumar P, Kabekkodu SP. The Role of Calcium Signaling in Regulation of Epithelial-Mesenchymal Transition. Cells Tissues Organs 2020; 211:134-156. [PMID: 33316804 DOI: 10.1159/000512277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca2+) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca2+ signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca2+ signal remodeling in the regulation of EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India, .,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
16
|
Said R, Lobanova L, Papagerakis S, Papagerakis P. Calcium Sets the Clock in Ameloblasts. Front Physiol 2020; 11:920. [PMID: 32848861 PMCID: PMC7411184 DOI: 10.3389/fphys.2020.00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023] Open
Abstract
Background Stromal interaction molecule 1 (STIM1) is one of the main components of the store operated Ca2+ entry (SOCE) signaling pathway. Individuals with mutated STIM1 present severely hypomineralized enamel characterized as amelogenesis imperfecta (AI) but the downstream molecular mechanisms involved remain unclear. Circadian clock signaling plays a key role in regulating the enamel thickness and mineralization, but the effects of STIM1-mediated AI on circadian clock are unknown. Objectives The aim of this study is to examine the potential links between SOCE and the circadian clock during amelogenesis. Methods We have generated mice with ameloblast-specific deletion of Stim1 (Stim1fl/fl/Amelx-iCre+/+, Stim1 cKO) and analyzed circadian gene expression profile in Stim1 cKO compared to control (Stim1fl/fl/Amelx-iCre–/–) using ameloblast micro-dissection and RNA micro-array of 84 circadian genes. Expression level changes were validated by qRT-PCR and immunohistochemistry. Results Stim1 deletion has resulted in significant upregulation of the core circadian activator gene Brain and Muscle Aryl Hydrocarbon Receptor Nuclear Translocation 1 (Bmal1) and downregulation of the circadian inhibitor Period 2 (Per2). Our analyses also revealed that SOCE disruption results in dysregulation of two additional circadian regulators; p38α mitogen-activated protein kinase (MAPK14) and transforming growth factor-beta1 (TGF-β1). Both MAPK14 and TGF-β1 pathways are known to play major roles in enamel secretion and their dysregulation has been previously implicated in the development of AI phenotype. Conclusion These data indicate that disruption of SOCE significantly affects the ameloblasts molecular circadian clock, suggesting that alteration of the circadian clock may be partly involved in the development of STIM1-mediated AI.
Collapse
Affiliation(s)
- Raed Said
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Liubov Lobanova
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Petros Papagerakis
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
18
|
Gregório C, Soares-Lima SC, Alemar B, Recamonde-Mendoza M, Camuzi D, de Souza-Santos PT, Rivero R, Machado S, Osvaldt A, Ashton-Prolla P, Pinto LFR. Calcium Signaling Alterations Caused by Epigenetic Mechanisms in Pancreatic Cancer: From Early Markers to Prognostic Impact. Cancers (Basel) 2020; 12:cancers12071735. [PMID: 32629766 PMCID: PMC7407273 DOI: 10.3390/cancers12071735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality rates. PDAC initiation and progression are promoted by genetic and epigenetic dysregulation. Here, we aimed to characterize the PDAC DNA methylome in search of novel altered pathways associated with tumor development. We examined the genome-wide DNA methylation profile of PDAC in an exploratory cohort including the comparative analyses of tumoral and non-tumoral pancreatic tissues (PT). Pathway enrichment analysis was used to choose differentially methylated (DM) CpGs with potential biological relevance. Additional samples were used in a validation cohort. DNA methylation impact on gene expression and its association with overall survival (OS) was investigated from PDAC TCGA (The Cancer Genome Atlas) data. Pathway analysis revealed DM genes in the calcium signaling pathway that is linked to the key pathways in pancreatic carcinogenesis. DNA methylation was frequently correlated with expression, and a subgroup of calcium signaling genes was associated with OS, reinforcing its probable phenotypic effect. Cluster analysis of PT samples revealed that some of the methylation alterations observed in the Calcium signaling pathway seemed to occur early in the carcinogenesis process, a finding that may open new insights about PDAC tumor biology.
Collapse
Affiliation(s)
- Cleandra Gregório
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Sheila Coelho Soares-Lima
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
| | - Bárbara Alemar
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
| | - Mariana Recamonde-Mendoza
- Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Diego Camuzi
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
| | | | - Raquel Rivero
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (R.R.); (S.M.)
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Simone Machado
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (R.R.); (S.M.)
| | - Alessandro Osvaldt
- Grupo de Vias Biliares e Pâncreas, Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil;
- Programa de Pós-graduação em Medicina: Ciências Cirúrgicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Brazil
| | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
- Departamento de Bioquimica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
- Correspondence: ; Tel.: +55-21-3207-6598
| |
Collapse
|
19
|
Kappel S, Kilch T, Baur R, Lochner M, Peinelt C. The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca 2+ Channels Alter the Pharmacology of I CRAC. Int J Mol Sci 2020; 21:ijms21072458. [PMID: 32252254 PMCID: PMC7178029 DOI: 10.3390/ijms21072458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca2+ release activated Ca2+ current (ICRAC). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | | | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
- Correspondence: ; Tel.: +41-31-631-3415
| |
Collapse
|
20
|
Huang HK, Lin YH, Chang HA, Lai YS, Chen YC, Huang SC, Chou CY, Chiu WT. Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca 2+ entry-mediated turnover of focal adhesions. J Biomed Sci 2020; 27:36. [PMID: 32079527 PMCID: PMC7033940 DOI: 10.1186/s12929-020-00630-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Abstract
Background Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown. Methods Transwell migration and wound healing migration assays were used to analyze the migration ability of ovarian cancer cells. Real-time recordings by total internal reflection fluorescence microscope (TIRFM) were performed to assess the turnover of focal adhesions with fluorescence protein-tagged focal adhesion molecules. SOCE inhibitors were used to verify the effects of SOCE on focal adhesion dynamics, cell migration, and chemoresistance in chemoresistant cells. Results We found that mesenchymal-like chemoresistant IGROV1 ovarian cancer cells have higher migration properties because of their rapid regulation of focal adhesion dynamics through FAK, paxillin, vinculin, and talin. Focal adhesions in chemoresistant cells, they were smaller and exhibited strong adhesive force, which caused the cells to migrate rapidly. Store-operated Ca2+ entry (SOCE) regulates focal adhesion turnover, and cell polarization and migration. Herein, we compared SOCE upregulation in chemoresistant ovarian cancer cells to its parental cells. SOCE inhibitors attenuated the assembly and disassembly of focal adhesions significantly. Results of wound healing and transwell assays revealed that SOCE inhibitors decreased chemoresistant cell migration. Additionally, SOCE inhibitors combined with chemotherapeutic drugs could reverse ovarian cancer drug resistance. Conclusion Our findings describe the role of SOCE in chemoresistance-mediated focal adhesion turnover, cell migration, and viability. Consequently, SOCE might be a promising therapeutic target in epithelial ovarian cancer. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ho-Kai Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying Campus, Tainan, 736, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
21
|
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers (Basel) 2019; 11:E457. [PMID: 30935064 PMCID: PMC6520831 DOI: 10.3390/cancers11040457] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.
Collapse
Affiliation(s)
- Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Leticia Prates Roma
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
22
|
Ion Channels: New Actors Playing in Chemotherapeutic Resistance. Cancers (Basel) 2019; 11:cancers11030376. [PMID: 30884858 PMCID: PMC6468599 DOI: 10.3390/cancers11030376] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular mechanisms linking ion channel expression and/or function with chemotherapy have mostly emerged in the last ten years. In this review, we will highlight the relationships between ion channels and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.
Collapse
|
23
|
Delbrel E, Uzunhan Y, Soumare A, Gille T, Marchant D, Planès C, Boncoeur E. ER Stress is Involved in Epithelial-To-Mesenchymal Transition of Alveolar Epithelial Cells Exposed to a Hypoxic Microenvironment. Int J Mol Sci 2019; 20:ijms20061299. [PMID: 30875855 PMCID: PMC6470993 DOI: 10.3390/ijms20061299] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal interstitial lung disease of unknown origin. Alveolar epithelial cells (AECs) play an important role in the fibrotic process as they undergo sustained endoplasmic reticulum (ER) stress, and may acquire a mesenchymal phenotype through epithelial-to-mesenchymal transition (EMT), two phenomena that could be induced by localized alveolar hypoxia. Here we investigated the potential links between hypoxia, ER stress and EMT in AECs. Methods: ER stress and EMT markers were assessed by immunohistochemistry, western blot and qPCR analysis, both in vivo in rat lungs exposed to normoxia or hypoxia (equivalent to 8% O2) for 48 h, and in vitro in primary rat AECs exposed to normoxia or hypoxia (1.5% O2) for 2–6 days. Results: Hypoxia induced expression of mesenchymal markers, pro-EMT transcription factors, and the activation of ER stress markers both in vivo in rat lungs, and in vitro in AECs. In vitro, pharmacological inhibition of ER stress by 4-PBA limited hypoxia-induced EMT. Calcium chelation or hypoxia-inducible factor (HIF) inhibition also prevented EMT induction under hypoxic condition. Conclusions: Hypoxia and intracellular calcium are both involved in EMT induction of AECs, mainly through the activation of ER stress and HIF signaling pathways.
Collapse
Affiliation(s)
- Eva Delbrel
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (Inserm U1272), F-93017 Bobigny, France.
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (Inserm U1272), F-93017 Bobigny, France.
- Assistance Publique Hôpitaux de Paris (APHP), Hôpital Avicenne, F-93017 Bobigny, France.
| | - Abdoulaye Soumare
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (Inserm U1272), F-93017 Bobigny, France.
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (Inserm U1272), F-93017 Bobigny, France.
- Assistance Publique Hôpitaux de Paris (APHP), Hôpital Avicenne, F-93017 Bobigny, France.
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (Inserm U1272), F-93017 Bobigny, France.
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (Inserm U1272), F-93017 Bobigny, France.
- Assistance Publique Hôpitaux de Paris (APHP), Hôpital Avicenne, F-93017 Bobigny, France.
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (Inserm U1272), F-93017 Bobigny, France.
| |
Collapse
|
24
|
Schacke M, Kumar J, Colwell N, Hermanson K, Folle GA, Nechaev S, Dhasarathy A, Lafon-Hughes L. PARP-1/2 Inhibitor Olaparib Prevents or Partially Reverts EMT Induced by TGF-β in NMuMG Cells. Int J Mol Sci 2019; 20:ijms20030518. [PMID: 30691122 PMCID: PMC6387051 DOI: 10.3390/ijms20030518] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023] Open
Abstract
Poly- adenosine diphosphate (ADP)-ribose (PAR) is a polymer synthesized as a posttranslational modification by some poly (ADP-ribose) polymerases (PARPs), namely PARP-1, PARP-2, tankyrase-1, and tankyrase-2 (TNKS-1/2). PARP-1 is nuclear and has also been detected in extracellular vesicles. PARP-2 and TNKS-1/2 are distributed in nuclei and cytoplasm. PARP or PAR alterations have been described in tumors, and in particular by influencing the Epithelial- Mesenchymal Transition (EMT), which influences cell migration and drug resistance in cancer cells. Pro-EMT and anti-EMT effects of PARP-1 have been reported while whether PAR changes occur specifically during EMT is currently unknown. The PARP-1/2 inhibitor Olaparib (OLA) is approved by FDA to treat certain patients harboring cancers with impaired homologous recombination. Here, we studied PAR changes and OLA effects on EMT. Total and nuclear PAR increased in EMT while PAR belts were disassembled. OLA prevented EMT, according to: (i) molecular markers evaluated by immuno-cytofluorescence/image quantification, Western blots, and RNA quantitation, (ii) morphological changes expressed as anisotropy, and (iii) migration capacity in the scratch assay. OLA also partially reversed EMT. OLA might work through unconventional mechanisms of action (different from synthetic lethality), even in non-BRCA (breast cancer 1 gene) mutated cancers.
Collapse
Affiliation(s)
- Michelle Schacke
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Janani Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Nicholas Colwell
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Kole Hermanson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Gustavo A Folle
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Sergei Nechaev
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9061, USA.
| | - Laura Lafon-Hughes
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| |
Collapse
|