1
|
Veronez LC, Xavier AET, Nagano LF, Correa CAP, Borges KS, Santos P, Baroni M, Silva Queiroz RDP, Antonini SRR, Yunes JA, Brandalise SR, Molina CAF, Pinto EM, Valera ET, Tone LG, Scrideli CA. Identifying prognostic hub genes and key pathways in pediatric adrenocortical tumors through RNA sequencing and Co-expression analysis. Mol Cell Endocrinol 2024; 594:112383. [PMID: 39413985 DOI: 10.1016/j.mce.2024.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Pediatric adrenocortical tumors (ACTs), rare conditions with uncertain prognoses, have high incidence in southern and southeastern Brazil. Pediatric ACTs are highly heterogeneous, so establishing prognostic markers for these tumors is challenging. We have conducted transcriptomic analysis on 14 pediatric ACT samples and compared cases with favorable and unfavorable clinical outcomes to identify prognostically significant genes. This comparison showed 1257 differentially expressed genes in favorable and unfavorable cases. Among these genes, 15 out of 60 hub genes were significantly associated with five-year event-free survival (EFS), and 10 had significant diagnostic value for predicting ACT outcomes in an independent microarray dataset of pediatric adrenocortical carcinomas (GSE76019). Overexpression of N4BP2, HSPB6, JUN, APBB1IP, STK17B, CSNK1D, and KDM3A was associated with poorer EFS, whereas lower expression of ISCU, PTPR, PRKAB2, CD48, PRF1, ITGAL, KLK15, and HIST1H3J was associated with worse outcomes. Collectively, these findings underscore the prognostic significance of these hub genes and suggest that they play a potential role in pediatric ACT progression and are useful predictors of clinical outcomes.
Collapse
Affiliation(s)
- Luciana Chain Veronez
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Luiz Fernando Nagano
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Carolina Alves Pereira Correa
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Paula Santos
- Department of Psychology, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, 14049-900, Ribeirão Preto, SP, Brazil
| | - Mirella Baroni
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Rosane de Paula Silva Queiroz
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Sonir Roberto Rauber Antonini
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | - Carlos Augusto Fernandes Molina
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of Sao Paulo, São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Emilia Modolo Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elvis Terci Valera
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Luiz Gonzaga Tone
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Carlos Alberto Scrideli
- Departments of Pediatrics and Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology, INCT BioOncoPed, Brazil.
| |
Collapse
|
2
|
Lishman-Walker E, Coffey K. Casein Kinase 1α-A Target for Prostate Cancer Therapy? Cancers (Basel) 2024; 16:2436. [PMID: 39001502 PMCID: PMC11240421 DOI: 10.3390/cancers16132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
The androgen receptor (AR) is a key driver of prostate cancer (PCa) and, as such, current mainstay treatments target this molecule. However, resistance commonly arises to these therapies and, therefore, additional targets must be evaluated to improve patient outcomes. Consequently, alternative approaches for indirectly targeting the AR are sought. AR crosstalk with other signalling pathways, including several protein kinase signalling cascades, has been identified as a potential route to combat therapy resistance. The casein kinase 1 (CK1) family of protein kinases phosphorylate a multitude of substrates, allowing them to regulate a diverse range of pathways from the cell cycle to DNA damage repair. As well as its role in several signalling pathways that are de-regulated in PCa, mutational data suggest its potential to promote prostate carcinogenesis. CK1α is one isoform predicted to regulate AR activity via phosphorylation and has been implicated in the progression of several other cancer types. In this review, we explore how the normal biological function of CK1 is de-regulated in cancer, the impact on signalling pathways and how this contributes towards prostate tumourigenesis, with a particular focus on the CK1α isoform as a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Emma Lishman-Walker
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Marshall ML, Fung KY, Jans DA, Wagstaff KM. Tumour-specific phosphorylation of serine 419 drives alpha-enolase (ENO1) nuclear export in triple negative breast cancer progression. Cell Biosci 2024; 14:74. [PMID: 38849850 PMCID: PMC11157870 DOI: 10.1186/s13578-024-01249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The glycolytic enzyme alpha-enolase is a known biomarker of many cancers and involved in tumorigenic functions unrelated to its key role in glycolysis. Here, we show that expression of alpha-enolase correlates with subcellular localisation and tumorigenic status in the MCF10 triple negative breast cancer isogenic tumour progression model, where non-tumour cells show diffuse nucleocytoplasmic localisation of alpha-enolase, whereas tumorigenic cells show a predominantly cytoplasmic localisation. Alpha-enolase nucleocytoplasmic localisation may be regulated by tumour cell-specific phosphorylation at S419, previously reported in pancreatic cancer. RESULTS Here we show ENO1 phosphorylation can also be observed in triple negative breast cancer patient samples and MCF10 tumour progression cell models. Furthermore, prevention of alpha-enolase-S419 phosphorylation by point mutation or a casein kinase-1 specific inhibitor D4476, induced tumour-specific nuclear accumulation of alpha-enolase, implicating S419 phosphorylation and casein kinase-1 in regulating subcellular localisation in tumour cell-specific fashion. Strikingly, alpha-enolase nuclear accumulation was induced in tumour cells by treatment with the specific exportin-1-mediated nuclear export inhibitor Leptomycin B. This suggests that S419 phosphorylation in tumour cells regulates alpha-enolase subcellular localisation by inducing its exportin-1-mediated nuclear export. Finally, as a first step to analyse the functional consequences of increased cytoplasmic alpha-enolase in tumour cells, we determined the alpha-enolase interactome in the absence/presence of D4476 treatment, with results suggesting clear differences with respect to interaction with cytoskeleton regulating proteins. CONCLUSIONS The results suggest for the first time that tumour-specific S419 phosphorylation may contribute integrally to alpha-enolase cytoplasmic localisation, to facilitate alpha-enolase's role in modulating cytoskeletal organisation in triple negative breast cancer. This new information may be used for development of triple negative breast cancer specific therapeutics that target alpha-enolase.
Collapse
Affiliation(s)
- Morgan L Marshall
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kim Yc Fung
- Health and Biosecurity, CSIRO, Westmead, NSW, 2145, Australia
| | - David A Jans
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kylie M Wagstaff
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
4
|
Lakis F, Ayoub R, Faour WH, Makki M, Yassine H, Fayyad-Kazan H, Abdel Sater F. Identification of CSNK1D and KLK6 as two common upregulated genes present in BRCA1 mutated triple-negative breast cancer and ovarian epithelial carcinoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-14. [PMID: 38781585 DOI: 10.1080/15257770.2024.2357267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Deficiency in the breast cancer type 1 (BRCA1) gene expression predisposes to triple-negative breast cancer (TNBC) and ovarian cancer (OC). We previously identified by Comparative Genomic Hybridization (CGH) array a gain in the 17q25.3 genomic region in 90% of the BRCA1 mutated TNBC tissues, where 17 genes were up-regulated. A second region (Chr19_45681759_54221324) was identified as the second most frequent gain in the BRCA1-mutated population and has not yet been described in the context of BRCA1 mutation. We thus aimed to validate the expression of the Casein kinase 1 delta (CSNK1D) gene of Chr17 in TNBC and OC cell lines and to investigate the expression of genes of Chr19 in TNBC cell lines and tissues as well as in OC cell lines. Expression level of the genes of the 17q25.3, 19q13.32,13.33 and 13.41 chromosomal regions was analyzed using RT-PCR in BRCA1 deficient TNBC and OC cell lines, as well as in 10 BRCA1-mutated TNBC tissues versus 10 wild type carriers. Our results revealed a significant upregulation of CSNK1D gene expression in BRCA1 deficient TNBC and OC cell lines when compared to control ones, and a significant aberration in the expression of the other six genes of Chr19 was observed. Interestingly, upregulation of kallikrein-related peptidase 6 (KLK6) was detected among the BRCA1 deficient TNBC (cell lines and tissues) and OC cell lines. In conclusion, our results suggested that CSNK1D and KLK6 expression levels could be very promising in the search for biomarkers for BRCA1 deficient TNBC and OC.
Collapse
Affiliation(s)
- Fatima Lakis
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Rita Ayoub
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mohammad Makki
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Hanane Yassine
- Biology Department, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Fadi Abdel Sater
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
5
|
Long NH, Lee SJ. Targeting casein kinase 1 for cancer therapy: current strategies and future perspectives. Front Oncol 2023; 13:1244775. [PMID: 38023245 PMCID: PMC10666751 DOI: 10.3389/fonc.2023.1244775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Casein Kinase 1 (CK1) is a family of serine/threonine protein kinases that play a crucial role in various cellular processes, including cell proliferation, survival, and metabolism. The dysregulation of CK1 expression has been implicated in the development and progression of several types of cancer, making it an attractive target for anticancer therapy. In this review, we provide an overview of the current strategies employed to target CK1 for cancer therapy and discuss the future perspectives in this field. We highlight the different approaches, including small molecule inhibitors, RNA interference, genome editing, and immunotherapies, which hold immense potential for targeted modulation of CK1 activity in cancer cells. Furthermore, we discuss the challenges associated with targeting CK1 and propose potential strategies to overcome these hurdles. Overall, targeting CK1 holds great promise as a therapeutic strategy for cancer treatment, and further research in this area is warranted.
Collapse
Affiliation(s)
| | - Sook-Jeong Lee
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Zhu M, Zhang J, Bian S, Zhang X, Shen Y, Ni Z, Xu S, Cheng C, Zheng W. Circadian gene CSNK1D promoted the progression of hepatocellular carcinoma by activating Wnt/β-catenin pathway via stabilizing Dishevelled Segment Polarity Protein 3. Biol Proced Online 2022; 24:21. [PMID: 36460966 PMCID: PMC9717411 DOI: 10.1186/s12575-022-00183-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE A variety of studies have connected circadian rhythm to the initiation and progression of hepatocellular carcinoma (HCC). The purpose of this study was to figure out about the circadian genes' profile characteristics, prognostic significance, and targeted values in HCC. METHODS The expression profiles and prognostic significance of circadian genes in the cancer genome atlas liver hepatocellular carcinoma (TCGA-LIHC) database were investigated using bioinformatics analysis. The expression features of Casein Kinase 1 Delta (CSNK1D), a robust signature gene, was further detected by immunohistochemistry, western blotting and Real-time quantitative PCR (RT-qPCR) in a local HCC cohort. The effect of CSNK1D on corresponding phenotypes of HCC cells was evaluated using Cell Counting Kit-8 (CCK8), flowcytometry, clone assay, Transwell assay, and xenograft assay. In addition, the underlying mechanisms of CSNK1D in the Wnt/β-catenin signaling were validated by multiple molecular experiments. RESULTS Abnormal expression of the Circadian genome was associated with the malignant clinicopathological characteristics of HCC patients. A 10 circadian gene-based signature with substantial prognostic significance was developed using Cox regression and least absolute shrinkage and selection operator (LASSO) analysis. Of them, CSNK1D, significantly elevated in a local HCC cohort, was chosen for further investigation. Silencing or overexpression of CSNK1D significantly reduced or increased proliferation, invasion, sorafenib resistance, xenograft development, and epithelial-mesenchymal transformation (EMT) of HCC cells, respectively. Mechanically, CSNK1D exacerbated the aggressiveness of HCC cells by activating Wnt/β-catenin signaling through interacting with Dishevelled Segment Polarity Protein 3 (DVL3). CONCLUSIONS The Circadian gene CSNK1D was found to contribute to HCC progression by boosting the Wnt/β-catenin pathway, hinting that it could be a prospective therapeutic target for HCC.
Collapse
Affiliation(s)
- Mengqi Zhu
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China ,grid.440642.00000 0004 0644 5481Department of Oncology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001 China ,grid.459521.eThe First People’s Hospital of Xuzhou, Xuzhou, 221000 China
| | - Jianping Zhang
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China ,grid.440642.00000 0004 0644 5481Department of Oncology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001 China
| | - Saiyan Bian
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China
| | - Xue Zhang
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China
| | - Yiping Shen
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China
| | - Zhiyu Ni
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China
| | - Shiyu Xu
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China
| | - Chun Cheng
- grid.440642.00000 0004 0644 5481Department of Oncology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001 China
| | - Wenjie Zheng
- grid.440642.00000 0004 0644 5481Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 China ,grid.440642.00000 0004 0644 5481Department of Oncology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong, 226001 China
| |
Collapse
|
7
|
Aslebagh R, Whitham D, Channaveerappa D, Mutsengi P, Pentecost BT, Arcaro KF, Darie CC. Mass Spectrometry-Based Proteomics of Human Milk to Identify Differentially Expressed Proteins in Women with Breast Cancer versus Controls. Proteomes 2022; 10:36. [PMID: 36412635 PMCID: PMC9680319 DOI: 10.3390/proteomes10040036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
It is thought that accurate risk assessment and early diagnosis of breast cancer (BC) can help reduce cancer-related mortality. Proteomics analysis of breast milk may provide biomarkers of risk and occult disease. Our group works on the analysis of human milk samples from women with BC and controls to investigate alterations in protein patterns of milk that could be related to BC. In the current study, we used mass spectrometry (MS)-based proteomics analysis of 12 milk samples from donors with BC and matched controls. Specifically, we used one-dimensional (1D)-polyacrylamide gel electrophoresis (PAGE) coupled with nanoliquid chromatography tandem MS (nanoLC-MS/MS), followed by bioinformatics analysis. We confirmed the dysregulation of several proteins identified previously in a different set of milk samples. We also identified additional dysregulations in milk proteins shown to play a role in cancer development, such as Lactadherin isoform A, O-linked N-acetylglucosamine (GlcNAc) transferase, galactosyltransferase, recoverin, perilipin-3 isoform 1, histone-lysine methyltransferase, or clathrin heavy chain. Our results expand our current understanding of using milk as a biological fluid for identification of BC-related dysregulated proteins. Overall, our results also indicate that milk has the potential to be used for BC biomarker discovery, early detection and risk assessment in young, reproductively active women.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Panashe Mutsengi
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Kathleen F. Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
8
|
Liu X, Zhang XJ. Decreased Expressions of CK1α and PTEN in Sinonasal Inverted Papilloma. Appl Immunohistochem Mol Morphol 2022; 30:469-475. [PMID: 35588152 DOI: 10.1097/pai.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
To investigate the diagnostic value of casein kinase 1α (CK1α) and phosphatase and tensin homolog (PTEN) in sinonasal inverted papilloma (SNIP), 42 control subjects and 56 SNIP patients were recruited in this study. Demographic and clinical characteristics, computerized tomography scans and endoscopic examinations were analyzed according to the Krouse staging system. Real-time quantitative-polymerase chain reaction and Western blotting were performed to detect CK1α and PTEN expression levels in different subgroups. Receiver operating characteristic and correlation analyses were conducted to assess their clinical significance in SNIP diagnosis. The expression levels of CK1α and PTEN were decreased in SNIP patients. Interestingly, the declined mRNA levels were consistent with the elevated Krouse staging and closely associated with the pathophysiological characteristics. Their expression levels also negatively correlated with neutrophil counts and positively correlated with lymphocyte counts in the blood of SNIP patients. This study suggests that CK1α and PTEN might be useful biomarkers for the occurrence and recurrence diagnosis of SNIP.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Otolaryngology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Jiangsu, China
| | | |
Collapse
|
9
|
Francisco JC, Virshup DM. Casein Kinase 1 and Human Disease: Insights From the Circadian Phosphoswitch. Front Mol Biosci 2022; 9:911764. [PMID: 35720131 PMCID: PMC9205208 DOI: 10.3389/fmolb.2022.911764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Biological systems operate in constant communication through shared components and feedback from changes in the environment. Casein kinase 1 (CK1) is a family of protein kinases that functions in diverse biological pathways and its regulation is beginning to be understood. The several isoforms of CK1 take part in key steps of processes including protein translation, cell-cell interactions, synaptic dopaminergic signaling and circadian rhythms. While CK1 mutations are rarely the primary drivers of disease, the kinases are often found to play an accessory role in metabolic disorders and cancers. In these settings, the dysregulation of CK1 coincides with increased disease severity. Among kinases, CK1 is unique in that its substrate specificity changes dramatically with its own phosphorylation state. Understanding the process that governs CK1 substrate selection is thus useful in identifying its role in various ailments. An illustrative example is the PERIOD2 (PER2) phosphoswitch, where CK1δ/ε kinase activity can be varied between three different substrate motifs to regulate the circadian clock.
Collapse
Affiliation(s)
- Joel C. Francisco
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: David M. Virshup,
| |
Collapse
|
10
|
Huang P, Zhang B, Zhao J, Li MD. Integrating the Epigenome and Transcriptome of Hepatocellular Carcinoma to Identify Systematic Enhancer Aberrations and Establish an Aberrant Enhancer-Related Prognostic Signature. Front Cell Dev Biol 2022; 10:827657. [PMID: 35300417 PMCID: PMC8921559 DOI: 10.3389/fcell.2022.827657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Recently, emerging evidence has indicated that aberrant enhancers, especially super-enhancers, play pivotal roles in the transcriptional reprogramming of multiple cancers, including hepatocellular carcinoma (HCC). In this study, we performed integrative analyses of ChIP-seq, RNA-seq, and whole-genome bisulfite sequencing (WGBS) data to identify intergenic differentially expressed enhancers (DEEs) and genic differentially methylated enhancers (DMEs), along with their associated differentially expressed genes (DEE/DME-DEGs), both of which were also identified in independent cohorts and further confirmed by HiC data. Functional enrichment and prognostic model construction were conducted to explore the functions and clinical significance of the identified enhancer aberrations. We identified a total of 2,051 aberrant enhancer-associated DEGs (AE-DEGs), which were highly concurrent in multiple HCC datasets. The enrichment results indicated the significant overrepresentations of crucial biological processes and pathways implicated in cancer among these AE-DEGs. A six AE-DEG-based prognostic signature, whose ability to predict the overall survival of HCC was superior to that of both clinical phenotypes and previously published similar prognostic signatures, was established and validated in TCGA-LIHC and ICGC-LIRI cohorts, respectively. In summary, our integrative analysis depicted a landscape of aberrant enhancers and associated transcriptional dysregulation in HCC and established an aberrant enhancer-derived prognostic signature with excellent predictive accuracy, which might be beneficial for the future development of epigenetic therapy for HCC.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- *Correspondence: Ming D. Li,
| |
Collapse
|
11
|
Zhang H, Qiu C, Zeng H, Zhu W, Lyu W, Lao X. Upregulation of Stress-Induced Protein Kinase CK1 Delta is associated with a Poor Prognosis for patients with Hepatocellular Carcinoma. Genet Test Mol Biomarkers 2021; 25:504-514. [PMID: 34280005 DOI: 10.1089/gtmb.2020.0093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: This study was designed to analyze the expression of CSNK1D in hepatocellular carcinoma (HCC) and investigate the relationship between the expression of CSNK1D and the prognosis of HCC patients. Methods: The CSNK1D and alpha-fetoprotein (AFP) expression levels in patients with HCC and their corresponding clinical data were downloaded from The Cancer Genome Atlas (TCGA) and sorted with a Perl program. CSNK1D and AFP expression differences in liver tissue and liver cancer were compared and analyzed, based on the online database human cancer metastasis database, the relationships between the expression levels of CSNK1D and AFP and the proliferation and metastases of HCC were explored. The immunohistochemical data obtained from the Human Protein Atlas Database further verified the differences in the expression levels of CSNK1D and AFP in liver tissues and liver cancer tissues. Through Kaplan-Meier survival analysis, the effects of CSNK1D and AFP expression levels on the prognosis of patients with HCC were investigated, and the influences of and patients' gender, age and grades of cancer cells, tumor size, the status of lymph node metastasis, distant metastasis, and tumor stage on the expression of CSNK1D were analyzed with R language. The influence of differential expressions of CSNK1D on survival time was compared and the prognostic factors influencing the survival of HCC patients were statistically explored by univariate analysis and multivariate analysis. The potential influencing mechanism of CSNK1D on the prognosis of HCC patients was explored by Gene Set Enrichment Analysis (GSEA) enrichment. Results: The expression level of CSNK1D and AFP in cancer foci was significantly higher than that in normal tissues, However, in the same patient, the expression levels of AFP in paracarcinoma tissues and cancer tissues showed no significant difference. The expression level of CSNK1D in HCC with distant metastases was higher than that in those without metastasis, but the expression level of AFP in metastatic HCC was lower than that in those HCC without metastases. In immunohistochemical tests, CSNK1D was moderately positive in normal liver tissues, slightly positive in normal bile duct tissues, and highly positive in HCC. AFP was slightly positive in normal liver tissues and negative in HCC, but it was not detected in normal intrahepatic bile duct tissue. Survival analysis results suggested that the higher expression level of CSNK1D corresponded to the shorter survival period, whereas the expression level of AFP showed no significant influence on survival time. The expression level of CSNK1D was not correlated with gender, age, the status of lymph node metastasis status, or distant metastasis of patients. The main factors influencing the expression level of CSNK1D included tumor size, cancer cell grade, and tumor stage. The expression levels of CSNK1D in T2 and T3 were higher than that in T1. The expression levels of CSNK1D in G3 and G4 were higher than that in G1. The expression levels of CSNK1D in Stage II and Stage III were higher than that in Stage I. Univariate analysis suggested that tumor size, cell grade, distant metastasis, clinical stage, and CSNK1D expression level were the prognostic factors influencing the survival of patients. Multivariate analysis suggested that CSNK1D expression level was an independent factor influencing the prognosis of HCC patients. GSEA enrichment analysis indicated that CSNK1D mainly affected the prognosis of HCC patients through cell cycle, WNT signaling pathway, amino acid degradation metabolism, and other pathways. Conclusion: CSNK1D is an independent influencing factor for the prognosis of HCC patients and has the potential to be developed as a potential therapeutic target for HCC, and better than AFP in predicting the prognosis of HCC.
Collapse
Affiliation(s)
| | | | - Haifeng Zeng
- Zhaoqing First People's Hospital, Zhaoqing, China
| | - Wentian Zhu
- Zhaoqing First People's Hospital, Zhaoqing, China
| | - Weidong Lyu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Xuejun Lao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Chraibi S, Rosière R, Larbanoix L, Gérard P, Hennia I, Laurent S, Vermeersch M, Amighi K, Wauthoz N. The combination of an innovative dry powder for inhalation and a standard cisplatin-based chemotherapy in view of therapeutic intensification against lung tumours. Eur J Pharm Biopharm 2021; 164:93-104. [PMID: 33957225 DOI: 10.1016/j.ejpb.2021.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
Cisplatin is one of the most commonly used chemotherapy in lung cancer despite its high nephrotoxicity leading to an administration only every 3-4 weeks. This study is the first report of a preclinical investigation of therapeutic intensification combining a cisplatin dry powder for inhalation (CIS-DPI) with an intravenous (iv) cisplatin-based treatment. CIS-DPI with 50% cisplatin content (CIS-DPI-50) was developed using lipid excipients through scalable processes (high-speed and high-pressure homogenization and spray-drying). CIS-DPI-50 showed good aerodynamic performance (fine particle fraction of ~ 55% and a mass median aerodynamic particle size of ~ 2 µm) and a seven-fold increase and decrease in Cmax in the lungs and in plasma, respectively, in comparison with an iv cisplatin solution (CIS-iv) in healthy mice. Finally, the addition of CIS-DPI-50 to the standard cisplatin/paclitaxel iv doublet increased the response rate (67% vs 50%), decreased the tumour growth and prolonged the median survival (31 vs 21 days), compared to the iv doublet in the M109 lung carcinoma model tending to demonstrate a therapeutic intensification of cisplatin.
Collapse
Affiliation(s)
- Selma Chraibi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Rémi Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium; InhaTarget Therapeutics, Rue Auguste Piccard 37, Gosselies, Belgium.
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium
| | - Pierre Gérard
- InhaTarget Therapeutics, Rue Auguste Piccard 37, Gosselies, Belgium
| | - Ismael Hennia
- InhaTarget Therapeutics, Rue Auguste Piccard 37, Gosselies, Belgium
| | - Sophie Laurent
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium
| | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
13
|
Astone M, Santoro MM. Time to fight: targeting the circadian clock molecular machinery in cancer therapy. Drug Discov Today 2021; 26:1164-1184. [PMID: 33549826 DOI: 10.1016/j.drudis.2021.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The circadian clock regulates a wide range of molecular pathways and biological processes. The expression of clock genes is often altered in cancer, fostering tumor initiation and progression. Inhibition and activation of core circadian clock genes, as well as treatments that restore circadian rhythmicity, have been successful in counteracting tumor growth in different experimental models. Here, we provide an up-to-date overview of studies that show the therapeutic effects of targeting the clock molecular machinery in cancer, both genetically and pharmacologically. We also highlight future areas for progress that offer a promising path towards innovative anticancer strategies. Substantial limitations in the current understanding of the complex interplay between the circadian clock and cancer in vivo need to be addressed in order to allow clock-targeting therapies in cancer.
Collapse
Affiliation(s)
- Matteo Astone
- Department of Biology, University of Padova, I-35131, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padova, I-35131, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| |
Collapse
|
14
|
Huang Y, Wei J, Huang X, Zhou W, Xu Y, Deng DH, Cheng P. Comprehensively analyze the expression and prognostic role for ten-eleven translocations (TETs) in acute myeloid leukemia. Transl Cancer Res 2020; 9:7259-7283. [PMID: 35117329 PMCID: PMC8798779 DOI: 10.21037/tcr-20-3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022]
Abstract
BACKGROUND The ten-eleven translocation (TET) family oxidize 5-methylcytosines (5mCs) and promote the locus-specific reversal of DNA. The role of TETs in acute myeloid leukemia (AML) is mostly unknown. METHODS TETs mRNA expression levels were analyzed via Gene Expression Profiling Interactive Analysis (GEPIA). The association TETs expression levels and methylation with prognosis by UALCAN GenomicScape, and METHsurv. We analyzed TETs' aberration types, located mutations, and structures via cBioPortal. GeneMANIA performed the functional network. Gene ontology (GO) enrichment was analyzed via LinkedOmics. MiWalK identified miRNAs, miTarbase, and TargetScan. Transcription factor (TF) targets were analyzed via ChEA3. GSCAlite analyzed the role of these defined genes in cancer pathways and potential drug targets. Finally, we selected AML patients in our department to investigate the mutated types of TETs. RESULTS TETs expression level results showed TET1 (P=0.003) and TET2 (P=0.004) overexpressed in Haferlach leukemia samples, TET3 (P=4.04e-8) downregulation in Andersson leukemia samples. TET2 and TET3 overexpression but TET1 downregulation in the GEPIA database. Overexpression of TET2 leads to positive outcomes (P=0.0091). The upregulation of TET2 led to poor survival for CN-AML patients, but downregulation of TET3 indicated a satisfactory prognosis. The hypermethylation of TETs like cg24705708 (P=0.036), cg05976228 (P=0.022), cg19127638 (P=0.022), cg15254238 (P=0.025), cg07669489 (P=0.037) indicate poor outcomes. Overexpression of GALNS (P=0.024) as an adverse biomarker, downregulation of E2F5 (P=0.037), MAP7 (P=0.019), and NRIP1 (P=0.0013) indicated good prognosis. Regulatory network analysis indicated TETs' functions, including covalent chromatin modification, histone modification, DNA methylation, or demethylation. Enrichment functions involving. TETs participate in several cancer pathways, including DNA repair response and receptor tyrosine kinase (RTK) signaling pathway. TETs are sensitive to belinostat, ceranib-2, docetaxel, tivantinib, and vincristine. CONCLUSION Present study showed that TETs have different expressions in AML, and the expression levels of TETs lead to different outcomes of AML. The TETs cancer pathway analysis will also provide potential therapy methods for AML patients with TETs aberrations.
Collapse
Affiliation(s)
- Yan Huang
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Jie Wei
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Xunjun Huang
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Weijie Zhou
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Yuling Xu
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong-Hong Deng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Cheng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Li QH, Liu ZZ, Ge YΝ, Liu X, Xie XD, Zheng ZD, Ma YH, Liu B. Small breast epithelial mucin promotes the invasion and metastasis of breast cancer cells via promoting epithelial‑to‑mesenchymal transition. Oncol Rep 2020; 44:509-518. [PMID: 32627029 PMCID: PMC7336452 DOI: 10.3892/or.2020.7640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to observe the influence of the small breast epithelial mucin (MUCL1) (also known as SBEM) gene on migration and invasion ability of breast cancer cells and to explore the potentially involved mechanism. SBEM‑interference plasmid and SBEM‑overexpressing plasmid were constructed. SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 breast cancer cells were established by lentivirus‑mediated stable transfection method. The scratch wound‑healing assay and Transwell chamber experiment were used to detect the influence of the SBEM gene on the migration and invasion abilities of MCF‑7 and MDA‑MB‑231 cells. Real‑time PCR (polymerase chain reaction) and western blotting were used to detect the expression of epithelial‑to‑mesenchymal transition (EMT)‑related markers and regulators. The cell morphology was observed after transfection. The SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 cells were established successfully. The migration and invasion abilities were decreased after SBEM was downregulated, and were increased after SBEM was overexpressed both in MCF‑7 and MDA‑MB‑231 cell lines. The mRNA and protein expressions of N‑cadherin, Twist and vimentin were elevated following SBEM overexpression, while the expression of E‑cadherin and claudin‑1 were found to be decreased following SBEM overexpression. In conclusion, SBEM has the potential to promote migration and invasion ability of breast cancer cells via promoting epithelial‑to‑mesenchymal transition.
Collapse
Affiliation(s)
- Qiu-Hua Li
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Zhao-Zhe Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Ya-Νan Ge
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xing Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xiao-Dong Xie
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Zhen-Dong Zheng
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yue-Hai Ma
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Bin Liu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
16
|
Lin YC, Chen MC, Hsieh TH, Liou JP, Chen CH. CK1δ as a potential therapeutic target to treat bladder cancer. Aging (Albany NY) 2020; 12:5764-5780. [PMID: 32282334 PMCID: PMC7185098 DOI: 10.18632/aging.102966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Bladder cancer is the second most common genitourinary malignancy in the world. However, only immune-checkpoint inhibitors and erdafitinib are available to treat advanced bladder cancer. Our previous study reported that 4-((4-(4-ethylpiperazin-1-yl) phenyl)amino)-N-(3,4,5-trichlorophenyl)-7H-pyrrolo-[2, 3-d]pyrimidine-7-carboxamide hydrochloride (13i HCl) is a potent CK1δ inhibitor showing significant anti-bladder cancer activity. In this study, we elucidated the pharmacological mechanisms underlying 13i HCl’s inhibition of human bladder cancer. Our results demonstrate that expression of the CSNK1D gene, which codes for CK1δ, is upregulated in superficial and infiltrating bladder cancer patients in two independent datasets. CK1δ knockdown decreased β-catenin expression in bladder cancer cells and inhibited their growth. Additionally, 13i HCl suppressed bladder cancer cell proliferation and increased apoptosis. We also observed that inhibition of CK1δ using 13i HCl or PF-670462 triggers necroptosis in bladder cancer cells. Finally, 13i HCl inhibited bladder cancer cell migration and reversed their mesenchymal characteristics. These findings suggest further development of 13i HCl as a potential therapeutic agent to treat bladder cancer is warranted.
Collapse
Affiliation(s)
- Yu-Chen Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chuan Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Yuan F, Li D, Guo M, Fang T, Sun J, Qi F, Rao Q, Zhao Z, Huang P, Yang B, Xia J. IC261 suppresses progression of hepatocellular carcinoma in a casein kinase 1 δ/ε independent manner. Biochem Biophys Res Commun 2020; 523:809-815. [PMID: 31954519 DOI: 10.1016/j.bbrc.2019.12.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide that responds poorly to existing therapies. The Casein kinase 1 (CK1) isoforms CK1δ and CK1ε are reported to be highly expressed in several tumor types, and both genetic and pharmacological inhibition of CK1δ/ε activity has deleterious effects on tumor cell growth. IC261, an CK1δ/ε selectively inhibitor, shows anti-tumor effect against pancreatic tumor and glioblastoma, but its role in HCC remains poorly characterized. In our research, IC261 displayed time- and dose-dependent inhibition of HCC cell proliferation, and induced G2/M arrest and cell apoptosis in vitro. However, the anti-tumor effects of IC261 was independent of CK1δ/ε. Additionally, IC261 was verified to induce centrosome fragmentation during mitosis independent of CK1δ status, and intraperitoneal injection of IC261 to HCCLM3 xenograft models inhibited tumor growth. Taken together, our data indicated that IC261 has therapeutic potential for HCC.
Collapse
Affiliation(s)
- Feifei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Donghe Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; School of Life Sciences and Biotechnology and School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Qianwen Rao
- Minhang Hospital, Shanghai Medical School of Fudan University, Shanghai, 201100, PR China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
18
|
Park H, Jung HY, Mah S, Kim K, Hong S. Kinase and GPCR polypharmacological approach for the identification of efficient anticancer medicines. Org Biomol Chem 2020; 18:8402-8413. [PMID: 33112339 DOI: 10.1039/d0ob01917h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Discovery of an anticancer medicine using a single target protein has often been unsuccessful due to the complexity of pathogenic mechanisms as well as the presence of redundant signaling pathways. In this work, we attempted to find promising anticancer drug candidates by simultaneously targeting casein kinase 1 delta (CK1δ) and muscarinic acetylcholine receptor M3 (M3R). Through the structure-based virtual screening and de novo design with the modified potential function for protein-ligand binding, a series of benzo[4,5]imidazo[1,2-a][1,3,5]triazine-2-amine (BITA) derivatives were identified as CK1δ inhibitors and also as M3R antagonists. The biochemical potencies of these bifunctional molecules reached the nanomolar and low-micromolar levels with respect to CK1δ and M3R, respectively. A common interaction feature in the calculated CK1δ-inhibitor and M3R-antagonist complexes is that the BITA moiety is well-stabilized in the orthosteric site of M3R and the hinge region of CK1δ through the establishment of the three hydrogen bonds and the hydrophobic contacts in the vicinity. The computational and experimental results found in this work exemplify the efficiency of kinase and GPCR polypharmacology in developing anticancer medicines.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology & Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Republic of Korea.
| | - Hoi-Yun Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Shinmee Mah
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kewon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Mazzoldi EL, Pastò A, Ceppelli E, Pilotto G, Barbieri V, Amadori A, Pavan S. Casein Kinase 1 Delta Regulates Cell Proliferation, Response to Chemotherapy and Migration in Human Ovarian Cancer Cells. Front Oncol 2019; 9:1211. [PMID: 31799185 PMCID: PMC6874158 DOI: 10.3389/fonc.2019.01211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Casein kinase 1 delta (CK1δ) has a tumor-promoting role in different cancers and it is genetically amplified in a portion of human epithelial ovarian cancer (EOC). CK1δ is involved in pleiotropic cellular functions such as cell proliferation, DNA damage, and migration. We specifically knocked down CK1δ by short hairpin RNA (shRNA) in human ovarian cancer cells and we performed proliferation, chemosensitivity, as well as in vitro and in vivo migration assays. CK1δ knocked-down cells displayed reduced proliferation capability both in vitro and in vivo. Nonetheless, these cells were sensitized to the first line chemotherapeutic agent carboplatin (CPT), and this observation could be associated to reduced expression levels of p21(Cip1/Waf1), involved in DNA damage response, and the anti-apoptotic X-linked inhibitor of apoptosis protein (XIAP). Moreover, CK1δ knocked-down cells were affected in their migratory and lung homing capability, even if in opposite ways, i.e., IGROV1, SKOV3 and MES-OV lost, while OVCAR3 gained motility potential. The results suggest CK1δ as a potential exploitable target for pharmacological EOC treatment, but they also advise further investigation of its role in cell migration.
Collapse
Affiliation(s)
- Elena Laura Mazzoldi
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Anna Pastò
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Elisa Ceppelli
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Giorgia Pilotto
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Alberto Amadori
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Simona Pavan
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| |
Collapse
|
20
|
Synthesis and evaluation of novel 7 H-pyrrolo-[2,3- d]pyrimidine derivatives as potential anticancer agents. Future Med Chem 2019; 11:959-974. [PMID: 30789758 DOI: 10.4155/fmc-2018-0564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Bladder cancer is a highly recurrent urologic malignancy with limited treatment approaches. Previously, we reported compound 11 is a FGFR3 inhibitor with significant antibladder cancer activity. Materials & methods: In this study, a series of 7H-pyrrolo-[2,3-d]pyrimidine derivatives were synthesized through ring formation and modification of compound 11 for anticancer activity evaluation. Results: Compound 13i is the most effective agent against human RT-112 bladder cancer cells. Notably, 13i strongly inhibits CK1δ without affecting FGFR3 activity. We generated 13i HCl to increase solubility and showed profound cell cycle accumulation at the sub-G1 phase and apoptosis in CK1δ-overexpressed bladder and ovarian cancer cells. Conclusion: These results indicate that compound 13i could be a lead compound for further development of novel anticancer agents.
Collapse
|