1
|
Gammaraccio F, Villano D, Irrera P, Anemone AA, Carella A, Corrado A, Longo DL. Development and Validation of Four Different Methods to Improve MRI-CEST Tumor pH Mapping in Presence of Fat. J Imaging 2024; 10:166. [PMID: 39057737 PMCID: PMC11277679 DOI: 10.3390/jimaging10070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
CEST-MRI is an emerging imaging technique suitable for various in vivo applications, including the quantification of tumor acidosis. Traditionally, CEST contrast is calculated by asymmetry analysis, but the presence of fat signals leads to wrong contrast quantification and hence to inaccurate pH measurements. In this study, we investigated four post-processing approaches to overcome fat signal influences and enable correct CEST contrast calculations and tumor pH measurements using iopamidol. The proposed methods involve replacing the Z-spectrum region affected by fat peaks by (i) using a linear interpolation of the fat frequencies, (ii) applying water pool Lorentzian fitting, (iii) considering only the positive part of the Z-spectrum, or (iv) calculating a correction factor for the ratiometric value. In vitro and in vivo studies demonstrated the possibility of using these approaches to calculate CEST contrast and then to measure tumor pH, even in the presence of moderate to high fat fraction values. However, only the method based on the water pool Lorentzian fitting produced highly accurate results in terms of pH measurement in tumor-bearing mice with low and high fat contents.
Collapse
Affiliation(s)
- Francesco Gammaraccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Pietro Irrera
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Annasofia A. Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| |
Collapse
|
2
|
Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, Le Bihan D, Nakamoto Y. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12:6523. [PMID: 35444193 PMCID: PMC9021220 DOI: 10.1038/s41598-022-10081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the associations of time-dependent DWI, non-Gaussian DWI, and CEST parameters with histological biomarkers in a breast cancer xenograft model. 22 xenograft mice (7 MCF-7 and 15 MDA-MB-231) were scanned at 4 diffusion times [Td = 2.5/5 ms with 11 b-values (0–600 s/mm2) and Td = 9/27.6 ms with 17 b-values (0–3000 s/mm2), respectively]. The apparent diffusion coefficient (ADC) was estimated using 2 b-values in different combinations (ADC0–600 using b = 0 and 600 s/mm2 and shifted ADC [sADC200–1500] using b = 200 and 1500 s/mm2) at each of those diffusion times. Then the change (Δ) in ADC/sADC between diffusion times was evaluated. Non-Gaussian diffusion and intravoxel incoherent motion (IVIM) parameters (ADC0, the virtual ADC at b = 0; K, Kurtosis from non-Gaussian diffusion; f, the IVIM perfusion fraction) were estimated. CEST images were acquired and the amide proton transfer signal intensity (APT SI) were measured. The ΔsADC9–27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{9\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC9ms200-1500 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500 and ΔADC2.5_sADC27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}}_{{2.5\, {\text{ms}}}}^{0{-}600}$$\end{document}ADC2.5ms0-600 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500) was significantly larger for MCF-7 groups, and ΔADC2.5_sADC27.6 was positively correlated with Ki67max and APT SI. ADC0 decreased significantly in MDA-MB-231 group and K increased significantly with Td in MCF-7 group. APT SI and cellular area had a moderately strong positive correlation in MDA-MB-231 and MCF-7 tumors combined, and there was a positive correlation in MDA-MB-231 tumors. There was a significant negative correlation between APT SI and the Ki-67-positive ratio in MDA-MB-231 tumors and when combined with MCF-7 tumors. The associations of ΔADC2.5_sADC27.6 and API SI with Ki-67 parameters indicate that the Td-dependent DW and CEST parameters are useful to predict the histological markers of breast cancers.
Collapse
Affiliation(s)
- Yuko Someya
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, 91191, Gif-sur-Yvette, France.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Meng N, Wang X, Sun J, Han D, Bai Y, Wei W, Wang Z, Jia F, Wang K, Wang M. A comparative study of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in the diagnosis and evaluation of breast cancer. Eur Radiol 2020; 31:1707-1717. [PMID: 32888071 DOI: 10.1007/s00330-020-07169-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To compare the value of amide proton transfer-weighted imaging (APTWI) and diffusion kurtosis imaging (DKI) in differentiating benign and malignant breast lesions and analyze the correlations between the derived parameters and prognostic factors of breast cancer. METHODS One hundred thirty-five women underwent breast APTWI and DKI. The magnetization transfer ratio asymmetry (MTRasym (3.5 ppm)), apparent kurtosis coefficient (Kapp), and non-Gaussian diffusion coefficient (Dapp) were calculated according to the histological subtype, grade, and prognostic factors (Ki-67, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), lymph node metastasis, and maximum lesion diameter). The differences, efficacy, and correlation between the parameters were determined. RESULTS The Kapp value was higher and the Dapp and MTRasym (3.5 ppm) values were lower in the malignant group than in the benign group (all p < 0.001; AUC (Kapp) = 0.913, AUC (Dapp) = 0.910, and AUC (MTRasym (3.5 ppm)) = 0.796). The differences in the AUC between Kapp and MTRasym (3.5 ppm) and between Dapp and MTRasym (3.5 ppm) were significant (p = 0.023, 0.046). Kapp was moderately correlated with the pathological grade (|r| = 0.724) and mildly correlated with Ki-67 and HER-2 expression (|r| = 0.454, 0.333). Dapp was moderately correlated with the pathological grade (|r| = 0.648) and mildly correlated with Ki-67 expression (|r| = 0.400). MTRasym (3.5 ppm) was only mildly correlated with the pathological grade (|r| = 0.468). CONCLUSION DKI is superior to APTWI in differentiating between benign and malignant breast lesions. Each parameter is correlated with some prognostic factors to a certain extent. KEY POINTS • DKI and APTWI provide valuable information regarding lesion characterization. • Kapp, Dapp, and MTRasym (3.5 ppm) are valid parameters for the characterization of tissue microstructure. • DKI is superior to APTWI in the study of breast cancer.
Collapse
Affiliation(s)
- Nan Meng
- Department of Radiology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejia Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Dongming Han
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Yan Bai
- Department of Radiology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Radiology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Wang
- Department of Anesthesiology, the Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Fei Jia
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Kwiatkowski G, Kozerke S. Accelerating CEST MRI in the mouse brain at 9.4 T by exploiting sparsity in the Z-spectrum domain. NMR IN BIOMEDICINE 2020; 33:e4360. [PMID: 32621367 DOI: 10.1002/nbm.4360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) is an MR contrast modality offering an enhanced sensitivity for the detection of dilute metabolites with exchangeable protons. Quantitative analysis requires the acquisition of a number of images (usually between 20 and 50 RF offsets) per Z-spectrum, leading to long acquisition times of the order of 5-40 min in practice. In this work, we explore the possibility of employing sparsity in the Z-spectrum domain (irradiation offset dimension) to provide an accelerated acquisition scheme without compromising the quality of reconstructed CEST spectra. METHOD AND THEORY Ex vivo and in vivo data were acquired on an experimental, small animal 9.4 T system. Three different reconstruction methods were tested: k-Z SPARSE, k-Z SLR and k-Z principal component analysis (PCA) using retrospective undersampling with net acceleration factors R = 2, 3, 5. The quality of the reconstructed data was compared with respect to CEST spectra and full magnetization transfer ratio (MTR) asymmetry maps. RESULTS In both phantom and in vivo data, CEST spectra and the resulting MTR asymmetry maps were reconstructed without significant deterioration in data quality. For a low acceleration factor (R = 2, 3) all applied methods resulted in similar data quality, while for high acceleration factor (R = 5) only k-Z PCA and k-Z SLR could be used. Loss in spatial resolution was observed in reconstruction with k-Z PCA for all acceleration factors. An example of prospective undersampling with acceleration factor R = 3 and k-Z PCA reconstruction demonstrates improved CEST maps when compared with fully sampled data acquisition with either three times longer scan duration or threefold prolonged acquisition window per frequency offset. CONCLUSION The acquisition time of CEST spectra can be significantly accelerated by exploiting the sparsity of the Z-domain. For prospective and retrospective analysis using k-Z PCA, an acceleration factor of up to R = 3 can be used without significant loss in data quality.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Jia Y, Wang C, Zheng J, Lin G, Ni D, Shen Z, Huang B, Li Y, Guan J, Hong W, Chen Y, Wu R. Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo. J Nanobiotechnology 2019; 17:123. [PMID: 31847857 PMCID: PMC6918642 DOI: 10.1186/s12951-019-0557-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nanomedicine is a promising new approach to cancer treatment that avoids the disadvantages of traditional chemotherapy and improves therapeutic indices. However, the lack of a real-time visualization imaging technology to monitor drug distribution greatly limits its clinical application. Image-tracked drug delivery is of great clinical interest; it is useful for identifying those patients for whom the therapy is more likely to be beneficial. This paper discusses a novel nanomedicine that displays features of nanoparticles and facilitates functional magnetic resonance imaging but is challenging to prepare. RESULTS To achieve this goal, we synthesized an acylamino-containing amphiphilic block copolymer (polyethylene glycol-polyacrylamide-polyacetonitrile, PEG-b-P(AM-co-AN)) by reversible addition-fragmentation chain transfer (RAFT) polymerization. The PEG-b-P(AM-co-AN) has chemical exchange saturation transfer (CEST) effects, which enable the use of CEST imaging for monitoring nanocarrier accumulation and providing molecular information of pathological tissues. Based on PEG-b-P(AM-co-AN), a new nanomedicine PEG-PAM-PAN@DOX was constructed by nano-precipitation. The self-assembling nature of PEG-PAM-PAN@DOX made the synthesis effective, straightforward, and biocompatible. In vitro studies demonstrate decreased cytotoxicity of PEG-PAM-PAN@DOX compared to free doxorubicin (half-maximal inhibitory concentration (IC50), mean ~ 0.62 μg/mL vs. ~ 5 μg/mL), and the nanomedicine more efficiently entered the cytoplasm and nucleus of cancer cells to kill them. Further, in vivo animal experiments showed that the nanomedicine developed was not only effective against breast cancer, but also displayed an excellent sensitive CEST effect for monitoring drug accumulation (at about 0.5 ppm) in tumor areas. The CEST signal of post-injection 2 h was significantly higher than that of pre-injection (2.17 ± 0.88% vs. 0. 09 ± 0.75%, p < 0.01). CONCLUSIONS The nanomedicine with CEST imaging reflects the characterization of tumors and therapeutic functions has great potential medical applications.
Collapse
Affiliation(s)
- Yanlong Jia
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Chaochao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jiehua Zheng
- Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Guisen Lin
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiwei Shen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yan Li
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Jitian Guan
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Weida Hong
- Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yuanfeng Chen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Renhua Wu
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
| |
Collapse
|
6
|
Zimmermann F, Korzowski A, Breitling J, Meissner J, Schuenke P, Loi L, Zaiss M, Bickelhaupt S, Schott S, Schlemmer H, Paech D, Ladd ME, Bachert P, Goerke S. A novel normalization for amide proton transfer CEST MRI to correct for fat signal–induced artifacts: application to human breast cancer imaging. Magn Reson Med 2019; 83:920-934. [DOI: 10.1002/mrm.27983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ferdinand Zimmermann
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Max‐Planck‐Institute for Nuclear Physics Heidelberg Germany
| | - Jan‐Eric Meissner
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Patrick Schuenke
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Lisa Loi
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Moritz Zaiss
- Department of High‐field Magnetic Resonance Max‐Planck‐Institute for Biological Cybernetics Tübingen Germany
| | - Sebastian Bickelhaupt
- Medical Imaging and Radiology ‐ Cancer Prevention German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology University Hospital Heidelberg Heidelberg Germany
| | - Heinz‐Peter Schlemmer
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Daniel Paech
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|