1
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Farghadani R, Naidu R. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC). Biomed Pharmacother 2023; 165:115170. [PMID: 37481930 DOI: 10.1016/j.biopha.2023.115170] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.
Collapse
Affiliation(s)
- Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
3
|
Bourbour F, Abadijoo H, Nazari F, Ehtesabi H, Abdolahad M. The Impact of Microelectrode Pattern on the Sensitivity of Tracing Environmental CO 2 Deficiency in Cellular Metabolism by a New Design of Electrochemical Biosensor. BIOSENSORS 2023; 13:762. [PMID: 37622848 PMCID: PMC10452169 DOI: 10.3390/bios13080762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Here, two different electrode patterns are described as cyclic voltammetry (CV) biosensors to detect the effect of a hypo CO2 condition (for 6 h) in ambient on cellular secretion. The cells were selected from breast cancer and endothelial standard lines. Changes in CV peaks of the secretions were recorded by the modified pattern whereby increasing the interactive surface with homogenous electric paths was considered by simulation before fabrication. The results of the simulation and experimental procedures showed a meaningful correlation between hypo CO2 samples and the occurrence of CV oxidative peaks at about 0.07 V and reductive peaks at approximately -0.22 V in the modified biosensor in all cell lines, while no apoptosis was found in any of the control and hypo CO2 samples. This observation could not be related to the lack of H+ (alkaline pH induction) in the media solution as such peaks were not observed in the pure cell culture medium but had been maintained in the hypo CO2 ambient. This approach could be used as a cell-free sensor to monitor ambient shocks. This may not induce apoptosis but may be vital in the proliferation and protein expression of the cells, such as the hypo CO2 ambient. The sensor is not disposable in use and showed repeatable responses after rinsing.
Collapse
Affiliation(s)
- Faegheh Bourbour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Hamed Abadijoo
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Fatemeh Nazari
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Hamideh Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| |
Collapse
|
4
|
Cavalcante de Freitas PG, Rodrigues Arruda B, Araújo Mendes MG, Barroso de Freitas JV, da Silva ME, Sampaio TL, Petrilli R, Eloy JO. Resveratrol-Loaded Polymeric Nanoparticles: The Effects of D-α-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS) on Physicochemical and Biological Properties against Breast Cancer In Vitro and In Vivo. Cancers (Basel) 2023; 15:2802. [PMID: 37345140 DOI: 10.3390/cancers15102802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Resveratrol (RSV), a phytoalexin from grapes and peanuts, has been reported to exhibit antiproliferative effects on various cancer cell lines. In breast cancer, RSV has been demonstrated to exert an antiproliferative effect on both hormone-dependent and hormone-independent breast cancer cell lines. However, RSV is a lipophilic drug, and its therapeutic effect could be improved through nanoencapsulation. Functionalizing polymeric nanoparticles based on polycaprolactone (PCL) with polyethylene glycol 1000 tocopheryl succinate (TPGS) has been reported to prolong drug circulation and reduce drug resistance. However, the effect of TPGS on the physicochemical properties and biological effects of breast cancer cells remains unclear. Therefore, this study aimed to develop RSV-loaded PCL nanoparticles using nanoprecipitation and investigate the effect of TPGS on the nanoparticles' physicochemical characteristics (particle size, zeta potential, encapsulation efficiency, morphology, and release rate) and biological effects on the 4T1 breast cancer cell line (cytotoxicity and cell uptake), in vitro and in vivo. The optimized nanoparticles without TPGS had a size of 138.1 ± 1.8 nm, a polydispersity index (PDI) of 0.182 ± 0.01, a zeta potential of -2.42 ± 0.56 mV, and an encapsulation efficiency of 98.2 ± 0.87%, while nanoparticles with TPGS had a size of 127.5 ± 3.11 nm, PDI of 0.186 ± 0.01, zeta potential of -2.91 ± 0.90 mV, and an encapsulation efficiency of 98.40 ± 0.004%. Scanning electron microscopy revealed spherical nanoparticles with low aggregation tendency. Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) identified the constituents of the nanoparticles and the presence of drug encapsulation in an amorphous state. In vitro release studies showed that both formulations followed the same dissolution profiles, with no statistical differences. In cytotoxicity tests, IC50 values of 0.12 µM, 0.73 µM, and 4.06 µM were found for the formulation without TPGS, with TPGS, and pure drug, respectively, indicating the potentiation of the cytotoxic effect of resveratrol when encapsulated. Flow cytometry and confocal microscopy tests indicated excellent cellular uptake dependent on the concentration of nanoparticles, with a significant difference between the two formulations, suggesting that TPGS may pose a problem in the endocytosis of nanoparticles. The in vivo study evaluating the antitumor activity of the nanoparticles confirmed the data obtained in the in vitro tests, demonstrating that the nanoparticle without TPGS significantly reduced tumor volume, tumor mass, maintained body weight, and improved survival in mice. Moreover, the biochemical evaluation evidenced possible hepatotoxicity for formulation with TPGS.
Collapse
Affiliation(s)
| | - Bruno Rodrigues Arruda
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza 60430-160, CE, Brazil
| | - Maria Gabriela Araújo Mendes
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza 60430-160, CE, Brazil
| | - João Vito Barroso de Freitas
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza 60430-160, CE, Brazil
| | - Mateus Edson da Silva
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza 60430-160, CE, Brazil
| | - Tiago Lima Sampaio
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza 60430-160, CE, Brazil
| | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony-UNILAB, Redenção 62790-000, CE, Brazil
- Pharmaceutical Sciences Graduate Course, Federal University of Ceará, Fortaleza 60430-160, CE, Brazil
| | - Josimar O Eloy
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza 60430-160, CE, Brazil
| |
Collapse
|
5
|
Evidence for Multilevel Chemopreventive Activities of Natural Phenols from Functional Genomic Studies of Curcumin, Resveratrol, Genistein, Quercetin, and Luteolin. Int J Mol Sci 2022; 23:ijms232314957. [PMID: 36499286 PMCID: PMC9737263 DOI: 10.3390/ijms232314957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Herein, I present an updated and contextualized literature review of functional genomic studies of natural phenols in the context of cancer. I suggest multilevel chemopreventive and anticancer mechanisms of action, which are shared by multiple dietary natural phenols. Specifically, I cite evidence that curcumin and resveratrol have multilevel anti-cancer effects through: (1) inducing either p53-dependent or p53-independent apoptosis in cancer cell lines, (2) acting as potent regulators of expression of oncogenic and anti-oncogenic microRNAs, and (3) inducing complex epigenetic changes that can switch off oncogenes/switch on anti-oncogenes. There is no simple reductionist explanation for anti-cancer effects of curcumin and resveratrol. More generally, multilevel models of chemoprevention are suggested for related natural phenols and flavonoids such as genistein, quercetin, or luteolin.
Collapse
|
6
|
The Anti-Cancer Effects of Mitochondrial-Targeted Triphenylphosphonium-Resveratrol Conjugate on Breast Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15101271. [PMID: 36297383 PMCID: PMC9610967 DOI: 10.3390/ph15101271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Resveratrol, a naturally occurring phytochemical, shows great promise in developing novel anti-cancer therapies. This study hypothesized that the mitochondria-targeted delivery of resveratrol would increase its potency and induce mitochondria-mediated apoptosis. The targeted delivery of resveratrol was achieved by conjugating resveratrol to triphenylphosphonium (TPP). The anti-cancer effects of TPP-resveratrol were studied in the murine breast cancer 4T1 and the human breast cancer MDA-MB-231 cell lines. Flow cytometry was used to study apoptosis induction, cell cycle arrest, and mitochondrial membrane potential loss. The morphological changes in the mitochondria in MDA-MB-231 cells after TPP-resveratrol treatments were examined using transmission electron microscopy. Moreover, the changes in MDA-MB-231 cell metabolism after resveratrol and TPP-resveratrol treatments were studied using metabolomic analysis. We demonstrate that TPP-resveratrol significantly improved cytotoxicity in 4T1 cells and MDA-MB-231 cells by inducing apoptosis and mitochondrial membrane potential loss. Swollen and vacuolated mitochondria were observed after the TPP-resveratrol treatment. Meanwhile, TPP-resveratrol treatment down-regulated amino acid and energy metabolism and caused the dysfunction of purine and pyrimidine metabolism. Our results provide evidence supporting the targeted delivery of resveratrol to mitochondria and suggest that TPP-resveratrol may be an effective agent for breast cancer treatment.
Collapse
|
7
|
Targeting Breast Cancer Stem Cells Using Naturally Occurring Phytoestrogens. Int J Mol Sci 2022; 23:ijms23126813. [PMID: 35743256 PMCID: PMC9224163 DOI: 10.3390/ijms23126813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer therapies have made significant strides in improving survival for patients over the past decades. However, recurrence and drug resistance continue to challenge long-term recurrence-free and overall survival rates. Mounting evidence supports the cancer stem cell model in which the existence of a small population of breast cancer stem cells (BCSCs) within the tumor enables these cells to evade conventional therapies and repopulate the tumor, giving rise to more aggressive, recurrent tumors. Thus, successful breast cancer therapy would need to target these BCSCs, as well the tumor bulk cells. Since the Women’s Health Initiative study reported an increased risk of breast cancer with the use of conventional hormone replacement therapy in postmenopausal women, many have turned their attention to phytoestrogens as a natural alternative. Phytoestrogens are plant compounds that share structural similarities with human estrogens and can bind to the estrogen receptors to alter the endocrine responses. Recent studies have found that phytoestrogens can also target BCSCs and have the potential to complement conventional therapy eradicating BCSCs. This review summarized the latest findings of different phytoestrogens and their effect on BCSCs, along with their mechanisms of action, including selective estrogen receptor binding and inhibition of molecular pathways used by BCSCs. The latest results of phytoestrogens in clinical trials are also discussed to further evaluate the use of phytoestrogen in the treatment and prevention of breast cancer.
Collapse
|
8
|
Evidence That β1-Integrin Is Required for the Anti-Viability and Anti-Proliferative Effect of Resveratrol in CRC Cells. Int J Mol Sci 2022; 23:ijms23094714. [PMID: 35563105 PMCID: PMC9099493 DOI: 10.3390/ijms23094714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
The β1-integrin receptor is broadly expressed on tumor and other cells in the tumor microenvironment (TME), and is an unfavorable prognostic factor for cancers. Nature-derived resveratrol has preventive and apoptotic effects on tumors, but whether resveratrol can exert its suppressive actions on TME-induced tumorigenesis through β1-integrin on the surface of CRC cells is still unknown. HCT116 or SW480 cells were exposed to inhibitory antibodies against β1-integrin, bacitracin (selective β1-integrin inhibitor), integrin-binding RGD (Arg-Gly-Asp) peptide, and/or resveratrol. We evaluated the anti-tumor actions and signaling impacts of resveratrol in colorectal cancer (CRC)-TME. We found that resveratrol completely altered the β1-integrin distribution pattern and expression on the surface of CRC cells in TME. Moreover, resveratrol down-regulated CRC cell proliferation, colony formation, viability, and up-regulated apoptosis in a concentration-dependent way. These actions of resveratrol were antagonized mainly by inhibitory antibodies against β1-integrin but not β5-integrin, and by an integrin-binding RGD peptide but not by RGE peptide, and by bacitracin in TME. Similarly, resveratrol-blocked TME-induced p65-NF-kB and its promoted gene markers linked to proliferation (cyclin D1), invasion (focal adhesion kinase, FAK), or apoptosis (caspase-3), were largely abrogated by anti-β1-integrin or RGD peptide, suggesting that β1-integrin is a potential transmission pathway for resveratrol/integrin down-stream signaling in CRC cells. The current results highlight, for the first time, the important gateway role of β1-integrins as signal carriers for resveratrol on the surfaces of HCT116 and SW480 cells, and their functional cooperation for the modulatory effects of resveratrol on TME-promoted tumorigenesis.
Collapse
|
9
|
Islam MR, Islam F, Nafady MH, Akter M, Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, Alhumaydhi FA, Emran TB, Cavalu S. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072165. [PMID: 35408561 PMCID: PMC9000328 DOI: 10.3390/molecules27072165] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Humaira Urmee
- Department of Pharmaceutical Science, North South University, Dhaka 1229, Bangladesh;
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (T.B.E.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Correspondence: (T.B.E.); (S.C.)
| |
Collapse
|
10
|
Akter R, Rahman MH, Kaushik D, Mittal V, Uivarosan D, Nechifor AC, Behl T, Karthika C, Stoicescu M, Munteanu MA, Bustea C, Bungau S. Chemo-Preventive Action of Resveratrol: Suppression of p53-A Molecular Targeting Approach. Molecules 2021; 26:molecules26175325. [PMID: 34500758 PMCID: PMC8433711 DOI: 10.3390/molecules26175325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Extensive experimental, clinical, and epidemiological evidence has explained and proven that products of natural origin are significantly important in preventing and/or ameliorating various disorders, including different types of cancer that researchers are extremely focused on. Among these studies on natural active substances, one can distinguish the emphasis on resveratrol and its properties, especially the potential anticancer role. Resveratrol is a natural product proven for its therapeutic activity, with remarkable anti-inflammatory properties. Various other benefits/actions have also been reported, such as cardioprotective, anti-ageing, antioxidant, etc. and its rapid digestion/absorption as well. This review aims to collect and present the latest published studies on resveratrol and its impact on cancer prevention, molecular signals (especially p53 protein participation), and its therapeutic prospects. The most recent information regarding the healing action of resveratrol is presented and concentrated to create an updated database focused on this topic presented above.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Correspondence: (M.H.R.); (S.B.)
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Cristiana Bustea
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.S.); (M.A.M.); (C.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (M.H.R.); (S.B.)
| |
Collapse
|
11
|
Arabzadeh A, Mortezazadeh T, Aryafar T, Gharepapagh E, Majdaeen M, Farhood B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: a mechanistic review. Cancer Cell Int 2021; 21:391. [PMID: 34289841 PMCID: PMC8296583 DOI: 10.1186/s12935-021-02099-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, WHO grade IV astrocytoma, is the most aggressive type of brain tumors. These cancerous cells have a rapid growth rate, tendency to penetrate vital brain structures, molecular heterogeneity, etc. and this cancer is associated with a poor prognosis and low survival rate. Due to the resistance of glioblastoma cells to conventional therapeutic modalities (such as radiation therapy and chemotherapy) as well as the adverse effects of these modalities, the researchers have attempted to discover an appropriate alternative or adjuvant treatment for glioblastoma. Resveratrol, as an herbal and natural polyphenolic compound, has anti-tumoral property and has shown to be effective in GBM treatment. Resveratrol exerts its anti-tumoral effect through various mechanisms such as regulation of cell cycle progression and cell proliferation, autophagy, oxidant system, apoptosis pathways, and so on. Resveratrol in combination with radiation therapy and chemotherapy has also been used. In the present study, we summarized the current findings on therapeutic potentials of resveratrol in glioblastoma radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Tayebeh Aryafar
- Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team , Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Bhaskar BV, Rammohan A, Babu TM, Zheng GY, Chen W, Rajendra W, Zyryanov GV, Gu W. Molecular insight into isoform specific inhibition of PI3K-α and PKC-η with dietary agents through an ensemble pharmacophore and docking studies. Sci Rep 2021; 11:12150. [PMID: 34108504 PMCID: PMC8190100 DOI: 10.1038/s41598-021-90287-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Dietary compounds play an important role in the prevention and treatment of many cancers, although their specific molecular mechanism is not yet known. In the present study, thirty dietary agents were analyzed on nine drug targets through in silico studies. However, nine dietary scaffolds, such as silibinin, flavopiridol, oleandrin, ursolic acid, α-boswellic acid, β-boswellic acid, triterpenoid, guggulsterone, and oleanolic acid potentially bound to the cavity of PI3K-α, PKC-η, H-Ras, and Ras with the highest binding energy. Particularly, the compounds silibinin and flavopiridol have been shown to have broad spectrum anticancer activity. Interestingly, flavopiridol was embedded in the pockets of PI3K-α and PKC-η as bound crystal inhibitors in two different conformations and showed significant interactions with ATP binding pocket residues. However, complex-based pharmacophore modeling achieved two vital pharmacophoric features namely, two H-bond acceptors for PI3K-α, while three are hydrophobic, one cat-donor and one H-bond donor and acceptor for PKC-η, respectively. The database screening with the ChemBridge core library explored potential hits on a valid pharmacophore query. Therefore, to optimize perspective lead compounds from the hits, which were subjected to various constraints such as docking, MM/GBVI, Lipinski rule of five, ADMET and toxicity properties. Henceforth, the top ligands were sorted out and examined for vital interactions with key residues, arguably the top three promising lead compounds for PI3K-α, while seven for PKC-η, exhibiting binding energy from - 11.5 to - 8.5 kcal mol-1. Therefore, these scaffolds could be helpful in the development of novel class of effective anticancer agents.
Collapse
Affiliation(s)
- Baki Vijaya Bhaskar
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China.
| | - Aluru Rammohan
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Ekaterinburg, 620002, Russia
| | | | - Gui Yu Zheng
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China
| | - Weibin Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China
| | - Wudayagiri Rajendra
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Ekaterinburg, 620002, Russia
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Xinling Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
13
|
Xu N, Wang L, Fu S, Jiang B. Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells. Arch Med Sci 2021; 17:166-176. [PMID: 33488869 PMCID: PMC7811305 DOI: 10.5114/aoms.2020.100777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Osteosarcoma is the most common primary malignancy of the bone. The existing adjuvant chemotherapy regimens, while improving the overall survival, have been limited by the significant systemic toxicity. Substantial clinical and research efforts are being invested to develop novel pharmaceutical agents. Resveratrol (Res) has been suggested to have a chemopreventive effect. However, the mechanism of Res in osteosarcoma remains to be elucidated. MATERIAL AND METHODS The MG-63 osteosarcoma cell culture model was used to investigate the chemotherapeutic effect of Res. MTT assay, wound healing assay, and Transwell migration assay were used to document the effect of Res on cell proliferation, migration, and invasion, respectively. Apoptosis in MG-63 cells was quantified with the TUNEL assay. Western blotting analysis was used to examine the molecular changes following Res treatment. Data processing and analysis were conducted using GraphPad Prism 5.0. P < 0.05 was considered statistically significant. RESULTS Our data suggested that Res blocks cell proliferation, migration, and invasion, and activates apoptotic cell death in osteosarcoma MG-63 cells. We found that Res potentially down-regulates nuclear factor κB (NF-κB) and Akt intracellular signaling transduction. Moreover, the combination of Res and pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, resulted in synergistic growth inhibition of osteosarcoma. CONCLUSIONS Our in vitro preclinical study in the MG-63 cell line model supports the translation of Res to the clinical management of patients with osteosarcoma.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Lili Wang
- Department of Oncology, Ninth People’s Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Shiping Fu
- Department of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Bin Jiang
- Department of Oncology, Ninth People’s Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
14
|
Naghshi S, Sadeghian M, Nasiri M, Mobarak S, Asadi M, Sadeghi O. Association of Total Nut, Tree Nut, Peanut, and Peanut Butter Consumption with Cancer Incidence and Mortality: A Comprehensive Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Adv Nutr 2020; 12:793-808. [PMID: 33307550 PMCID: PMC8166551 DOI: 10.1093/advances/nmaa152] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Data on the association of nut intake with risk of cancer and its mortality are conflicting. Although previous meta-analyses summarized available findings in this regard, some limitations may distort their findings. Moreover, none of these meta-analyses examined the dose-response associations of total nut intake with the risk of specific cancers as well as associations between specific types of nuts and cancer mortality. Therefore, this study aimed to summarize available findings on the associations of total nut (tree nuts and peanuts), tree nut (walnuts, pistachios, macadamia nuts, pecans, cashews, almonds, hazelnuts, and Brazil nuts), peanut (whole peanuts without considering peanut butter), and peanut butter consumption with risk of cancer and its mortality by considering the above-mentioned points. We searched the online databases until March 2020 to identify eligible articles. In total, 43 articles on cancer risk and 9 articles on cancer mortality were included in the current systematic review and meta-analysis. The summary effect size (ES) for risk of cancer, comparing the highest with lowest intakes of total nuts, was 0.86 (95% CI: 0.81, 0.92, P < 0.001, I2 = 58.1%; P < 0.01), indicating a significant inverse association. Such a significant inverse association was also seen for tree nut intake (pooled ES: 0.87, 95% CI: 0.78-0.96, P < 0.01, I2 = 15.8%; P = 0.28). Based on the dose-response analysis, a 5-g/d increase in total nut intake was associated with 3%, 6%, and 25% lower risks of overall, pancreatic, and colon cancers, respectively. In terms of cancer mortality, we found 13%, 18%, and 8% risk reductions with higher intakes of total nuts, tree nuts, and peanuts, respectively. In addition, a 5-g/d increase in total nut intake was associated with a 4% lower risk of cancer mortality. In conclusion, our findings support the protective association between total nut and tree nut intake and the risk of cancer and its mortality.
Collapse
Affiliation(s)
- Sina Naghshi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Nasiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Operating Room Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mobarak
- Department of Infectious and Tropical Diseases, Abadan Faculty of Medical Sciences, Abadan, Iran
| | | | | |
Collapse
|
15
|
Elucidating the Inhibitory Effect of Resveratrol and Its Structural Analogs on Selected Nucleotide-Related Enzymes. Biomolecules 2020; 10:biom10091223. [PMID: 32842666 PMCID: PMC7563984 DOI: 10.3390/biom10091223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Resveratrol, the most widely studied natural phytochemical, has been shown to interact with different target proteins. Previous studies show that resveratrol binds and inhibits DNA polymerases and some other enzymes; however, the binding and functioning mechanisms remain unknown. The elucidated knowledge of inhibitory mechanisms of resveratrol will assist us in new drug discovery. We utilized molecular docking and molecular dynamics (MD) simulation to reveal how resveratrol and structurally similar compounds bind to various nucleotide-dependent enzymes, specifically, DNA polymerases, HIV-1 reverse transcriptase, and ribonucleotide reductase. The results show that resveratrol and its analogs exert their inhibitory effects by competing with the substrate dNTPs in these enzymes and blocking elongation of chain polymerization. In addition, the results imply that resveratrol binds to a variety of other ATP-/NTP-binding proteins.
Collapse
|
16
|
Noel B, Singh SK, Lillard JW, Singh R. Role of natural compounds in preventing and treating breast cancer. Front Biosci (Schol Ed) 2020; 12:137-160. [PMID: 32114452 DOI: 10.2741/s544] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer (BrCa) is the most commonly diagnosed cancer and the second leading cause of cancer-related death in women. Alarming increases in the cases quests for more effective treatment of BrCa. As most chemotherapeutic drugs are associated with drug resistance, cancer relapse, and side effects, scientists are turning to agents with more efficacy, such as natural compounds for treatment and prevention of BrCa. Selected natural compounds, substances derived from living organisms, promote apoptosis and inhibit metastasis, preventing cancer growth. As a result, these compounds have the potential to suppress BrCa progression, thus increasing patient survival rates and decreasing the number of BrCa-related deaths. In this review, we summarize natural compounds that have displayed, anti-cancer effects on BrCa cells in various studies. These natural compounds inhibit the development of BrCa, suppress the growth of cancer cells, and promote cell death. We conclude that natural compounds are efficient, effective and promising agents for treating BrCa other than therapeutic methods.
Collapse
Affiliation(s)
- Brianna Noel
- Morehouse School of Medicine, 720 Westview Drive SW, Atlanta GA 30310
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology,Morehouse School of Medicine, 720 Westview drive, SW, Atlanta- 30310 USA
| | - James W Lillard
- Morehouse School of Medicine, 720 Westview Drive SW, Atlanta GA 30310
| | - Rajesh Singh
- Morehouse School of Medicine, 720 Westview Drive SW, Atlanta,
| |
Collapse
|
17
|
Wu H, Chen L, Zhu F, Han X, Sun L, Chen K. The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced Apoptosis of Breast Cancer 4T1 Cells. Toxins (Basel) 2019; 11:toxins11120731. [PMID: 31847250 PMCID: PMC6950385 DOI: 10.3390/toxins11120731] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Resveratrol, a natural polyterpenoid, can scavenge reactive oxygen species in vivo to carry out the functions of antioxidation and antiaging. Resveratrol’s anti-cancer capability has attracted widespread attention, but its molecular mechanism has not been systematically explained. In this study, by comparing the activity of normal cell lines and cancer cell lines after treating with resveratrol, it was found that resveratrol has more significant cytotoxicity in cancer cell lines. Resveratrol could play a toxic role through inducing apoptosis of the cancer cell in a time- and concentration-dependent manner. A total of 330 significantly differential genes were identified through large-scale transcriptome sequencing, among which 103 genes were upregulated and 227 genes were downregulated. Transcriptome and qRT-PCR data proved that a large number of genes related to cell cycle were differentially expressed after the treatment of resveratrol. The changes of cell cycle phases at different time points after treating with resveratrol were further detected, and it was found that the cells were arrested in the S phase because of the percentage of cells in S phase increased and cells in G1/G0 phase decreased. In conclusion, resveratrol can inhibit the proliferation of 4T1 cancer cells by inhibiting cell cycle and inducing apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Keping Chen
- Correspondence: ; Tel./Fax: +86-511-88791923
| |
Collapse
|
18
|
From bench to counter: Discovery and validation of a peony extract as tyrosinase inhibiting cosmeceutical. Eur J Med Chem 2019; 184:111738. [DOI: 10.1016/j.ejmech.2019.111738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
|
19
|
Liu YC, Yeh CT, Lin KH. Molecular Functions of Thyroid Hormone Signaling in Regulation of Cancer Progression and Anti-Apoptosis. Int J Mol Sci 2019; 20:ijms20204986. [PMID: 31600974 PMCID: PMC6834155 DOI: 10.3390/ijms20204986] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
Several physiological processes, including cellular growth, embryonic development, differentiation, metabolism and proliferation, are modulated by genomic and nongenomic actions of thyroid hormones (TH). Several intracellular and extracellular candidate proteins are regulated by THs. 3,3,5-Triiodo-L-thyronine (T3) can interact with nuclear thyroid hormone receptors (TR) to modulate transcriptional activities via thyroid hormone response elements (TRE) in the regulatory regions of target genes or bind receptor molecules showing no structural homology to TRs, such as the cell surface receptor site on integrin αvβ3. Additionally, L-thyroxine (T4) binding to integrin αvβ3 is reported to induce gene expression through initiating non-genomic actions, further influencing angiogenesis and cell proliferation. Notably, thyroid hormones not only regulate the physiological processes of normal cells but also stimulate cancer cell proliferation via dysregulation of molecular and signaling pathways. Clinical hypothyroidism is associated with delayed cancer growth. Conversely, hyperthyroidism is correlated with cancer prevalence in various tumor types, including breast, thyroid, lung, brain, liver and colorectal cancer. In specific types of cancer, both nuclear thyroid hormone receptor isoforms and those on the extracellular domain of integrin αvβ3 are high risk factors and considered potential therapeutic targets. In addition, thyroid hormone analogs showing substantial thyromimetic activity, including triiodothyroacetic acid (Triac), an acetic acid metabolite of T3, and tetraiodothyroacetic acid (Tetrac), a derivative of T4, have been shown to reduce risk of cancer progression, enhance therapeutic effects and suppress cancer recurrence. Here, we have reviewed recent studies focusing on the roles of THs and TRs in five cancer types and further discussed the potential therapeutic applications and underlying molecular mechanisms of THs.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
20
|
Ho Y, Wang SH, Chen YR, Li ZL, Chin YT, Yang YCSH, Wu YH, Su KW, Chu HR, Chiu HC, Crawford DR, Shih YJ, Grasso P, Tang HY, Lin HY, Davis PJ, Whang-Peng J, Wang K. Leptin-derived peptides block leptin-induced proliferation by reducing expression of pro-inflammatory genes in hepatocellular carcinoma cells. Food Chem Toxicol 2019; 133:110808. [PMID: 31499123 DOI: 10.1016/j.fct.2019.110808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023]
Abstract
The obesity-regulated gene, leptin, is essential for diet. Leptin resistance causes obesity and related diseases. Certain types of diet are able to decrease leptin resistance. However, leptin has been shown to be correlated with inflammation and stimulate proliferation of various cancers. Two synthetic leptin derivatives (mimetics), OB3 and [D-Leu-4]-OB3, show more effective than leptin in reducing obesity and diabetes in mouse models. OB3 inhibits leptin-induced proliferation in ovarian cancer cells. However, effects of these mimetics in hepatocellular carcinoma (HCC) have not been investigated. In the present study, we examined the effects of OB3 and [D-Leu-4]-OB3 on cell proliferation and gene expressions in human HCC cell cultures. In contrast to what was reported for leptin, OB3 and [D-Leu-4]-OB3 reduced cell proliferation in hepatomas. Both OB3 and [D-Leu-4]-OB3 stimulated expression of pro-apoptotic genes. Both compounds also inhibited expressions of pro-inflammatory, proliferative and metastatic genes and PD-L1 expression. In combination with leptin, OB3 inhibited leptin-induced cell proliferation and expressions of pro-inflammation-, and proliferation-related genes. Furthermore, the OB3 peptide inhibited phosphoinositide 3-kinase (PI3K) activation which is essential for leptin-induced proliferation in HCC. These results indicate that OB3 and [D-Leu-4]-OB3 may have the potential to reduce leptin-related inflammation and proliferation in HCC cells.
Collapse
Affiliation(s)
- Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shwu-Huey Wang
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Core Facility Center, Department of Research Development, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Ru Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Zi-Lin Li
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Tang Chin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yun-Hsuan Wu
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Wei Su
- Department of Dentistry, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Hung-Ru Chu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical, Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Dana R Crawford
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Ya-Jung Shih
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Patricia Grasso
- Department of Medicine, Division of Endocrinology and Metabolism, Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Hung-Yun Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Jacqueline Whang-Peng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuan Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
21
|
Zhang Y, Wang G, Wang T, Cao W, Zhang L, Chen X. Nrf2–Keap1 pathway–mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide–treated rheumatoid arthritis fibroblast‐like synoviocytes. Ann N Y Acad Sci 2019; 1457:166-178. [DOI: 10.1111/nyas.14196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Ye Zhang
- Department of Histology and EmbryologyAnhui Medical University Hefei Anhui P. R. China
- Microscopic Morphological Center LaboratoryAnhui Medical University Hefei Anhui P. R. China
| | - Gaoyuan Wang
- Department of Orthopaedicsthe First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Taorong Wang
- Department of Histology and EmbryologyAnhui Medical University Hefei Anhui P. R. China
- Microscopic Morphological Center LaboratoryAnhui Medical University Hefei Anhui P. R. China
| | - Wei Cao
- Department of Histology and EmbryologyAnhui Medical University Hefei Anhui P. R. China
- Microscopic Morphological Center LaboratoryAnhui Medical University Hefei Anhui P. R. China
| | - Lixia Zhang
- Department of Orthopaedicsthe First Affiliated Hospital of Anhui Medical University Hefei Anhui P. R. China
| | - Xiaoyu Chen
- Department of Histology and EmbryologyAnhui Medical University Hefei Anhui P. R. China
- Microscopic Morphological Center LaboratoryAnhui Medical University Hefei Anhui P. R. China
| |
Collapse
|
22
|
Zambrano A, Molt M, Uribe E, Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci 2019; 20:ijms20133374. [PMID: 31324056 PMCID: PMC6651361 DOI: 10.3390/ijms20133374] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.
Collapse
Affiliation(s)
- Angara Zambrano
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Matías Molt
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Mónica Salas
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile.
| |
Collapse
|
23
|
Poschner S, Maier-Salamon A, Thalhammer T, Jäger W. Resveratrol and other dietary polyphenols are inhibitors of estrogen metabolism in human breast cancer cells. J Steroid Biochem Mol Biol 2019; 190:11-18. [PMID: 30851384 DOI: 10.1016/j.jsbmb.2019.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/09/2023]
Abstract
Polyphenols in foods and dietary supplements are commonly used for the prevention and treatment of a variety of malignancies, including breast cancer. However, daily intake by patients with breast cancer is controversial, as these compounds may stimulate cancer growth. Estrogens serve key roles in breast cancer cell proliferation; therefore, understanding the interaction between endogenous steroid hormones and natural dietary polyphenols is essential. Currently, comprehensive knowledge regarding these effects remains limited. The current review summarizes the dose-dependent in vitro and in vivo interactions of resveratrol and other dietary polyphenols with estrogen precursors, active estrogens, catechol estrogens and their respective glucuronidated, sulfated, glutathionated or O-methylated metabolites in estrogen receptor alpha negative (ERα-) and positive (ERα+) breast cancer. Which estrogen-metabolizing enzymes are affected by polyphenols is also reviewed in detail. Furthermore, the impacts of dose and therapy duration on disease development and progression in patients with breast cancer are discussed. The present article is part of a Special Issue titled 'CSR 2018'.
Collapse
Affiliation(s)
- Stefan Poschner
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Maier-Salamon
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Austria.
| |
Collapse
|
24
|
Steroid Receptor Signallings as Targets for Resveratrol Actions in Breast and Prostate Cancer. Int J Mol Sci 2019; 20:ijms20051087. [PMID: 30832393 PMCID: PMC6429419 DOI: 10.3390/ijms20051087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Extensive research over the past 25 years in hormone-dependent cancers, such as breast cancer and prostate cancer, has identified the molecular mechanisms driven by steroid receptors, elucidating the interplay between genomic and non-genomic steroid receptors mechanism of action. Altogether, these mechanisms create the specific gene expression programs that contribute to endocrine therapy resistance and cancer progression. These findings, on the bidirectional molecular crosstalk between steroid and growth factor receptors pathways in endocrine resistance, suggest the use of multi-target inhibitors together with endocrine therapies, for treating resistant disease. In this review we will discuss the novel understanding on the chemopreventive and anti-cancer activities of Resveratrol (3,5,4′-trihydroxy-stilbene) (RSV), a phytoalexin found in grapes acting on a plethora of targets. We will highlight Resveratrol effect on steroid receptors signalling and its potential use in the treatment of hormone-dependent cancer. Understanding the molecular mechanisms by which the bioactive compound influences cancer cell behaviour, by interfering with steroid receptors functional activity, will help to advance the design of combination strategies to increase the rate of complete and durable clinical response in patients.
Collapse
|
25
|
LaFoya B, Munroe JA, Albig AR. A comparison of resveratrol and other polyphenolic compounds on Notch activation and endothelial cell activity. PLoS One 2019; 14:e0210607. [PMID: 30653610 PMCID: PMC6336259 DOI: 10.1371/journal.pone.0210607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/30/2018] [Indexed: 01/01/2023] Open
Abstract
Resveratrol is a polyphenolic compound produced by plants which makes its way into the human diet through plant-based foods. It has been shown to provide many health benefits, helping to ward of age-related diseases and promoting cardiovascular health. Additionally, resveratrol is a potent activator of the Notch signaling pathway. While resveratrol receives the most attention as a polyphenolic nutraceutical, other compounds with similar structures may be more potent regulators of specific cellular processes. Here, we compare resveratrol, apigenin, chrysin, genistein, luteolin, myricetin, piceatannol, pterostilbene, and quercetin for their ability to regulate Notch signaling. In addition, we compare the ability of these polyphenolic compounds to regulate endothelial cell viability, proliferation, and migration. Out of these compounds we found that resveratrol is the best activator of Notch signaling, however, other similar compounds are also capable of stimulating Notch. We also discovered that several of these polyphenols were able to inhibit endothelial cell proliferation. Finally, we found that many of these polyphenols are potent inhibitors of endothelial migration during wound healing assays. These findings provide the first side-by-side comparison of the regulation of Notch signaling, and endothelial cell proliferation and migration, by nine polyphenolic compounds.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, Idaho, United States of America
| | - Jordan A. Munroe
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Allan R. Albig
- Biomolecular Sciences PhD Program, Boise State University, Boise, Idaho, United States of America
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
- * E-mail:
| |
Collapse
|
26
|
Rehman A, Noreen A, Aftab S, Shakoori A. Antiproliferative effect of oxidative stress induced by tellurite in breast carcinoma cells. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_5_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Chin YT, He ZR, Chen CL, Chu HC, Ho Y, Su PY, Yang YCSH, Wang K, Shih YJ, Chen YR, Pedersen JZ, Incerpi S, Nana AW, Tang HY, Lin HY, Mousa SA, Davis PJ, Whang-Peng J. Tetrac and NDAT Induce Anti-proliferation via Integrin αvβ3 in Colorectal Cancers With Different K-RAS Status. Front Endocrinol (Lausanne) 2019; 10:130. [PMID: 30915033 PMCID: PMC6422911 DOI: 10.3389/fendo.2019.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is a serious medical problem in Taiwan. New, effective therapeutic approaches are needed. The selection of promising anticancer drugs and the transition from pre-clinical investigations to clinical trials are often challenging. The deaminated thyroid hormone analog (tetraiodothyroacetic acid, tetrac) and its nanoparticulate analog (NDAT) have been shown to have anti-proliferative activity in vitro and in xenograft model of different neoplasms, including colorectal cancers. However, mechanisms involved in tetrac- and NDAT-induced anti-proliferation in colorectal cancers are incompletely understood. We have investigated possible mechanisms of tetrac and NDAT action in colorectal cancer cells, using a perfusion bellows cell culture system that allows efficient, large-scale screening for mechanisms of drug actions on tumor cells. Although integrin αvβ3 in K-RAS wild type colorectal cancer HT-29 cells was far less than that in K-RAS mutant HCT116 cells, HT-29 was more sensitive to both tetrac and NDAT. Results also indicate that both tetrac and NDAT bind to tumor cell surface integrin αvβ3, and the agents may have different mechanisms of anti-proliferation in colorectal cancer cells. K-RAS status appears to play an important role in drug resistance that may be encountered in treatment with this drug combination.
Collapse
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Zong-Rong He
- Department of Pediatrics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Long Chen
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Ching Chu
- Division of Medical Imaging, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yih Ho
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Yu Su
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Kuan Wang
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, Roma Tre University, Rome, Italy
| | - André Wendindondé Nana
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Hung-Yun Lin
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Jacqueline Whang-Peng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Jacqueline Whang-Peng
| |
Collapse
|
28
|
Huminiecki L, Horbańczuk J. The functional genomic studies of resveratrol in respect to its anti-cancer effects. Biotechnol Adv 2018; 36:1699-1708. [DOI: 10.1016/j.biotechadv.2018.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/25/2018] [Accepted: 02/20/2018] [Indexed: 12/24/2022]
|
29
|
Dong Q, Yuan HL, Qian JJ, Zhang CY, Chen WD. Preparation and in vitro-in vivo characterization of trans-resveratrol nanosuspensions. Biomed Mater Eng 2018; 29:333-345. [PMID: 29578462 DOI: 10.3233/bme-181729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nanosuspensions technique is an important tool to enhance the saturation solubility and dissolution velocity of poorly soluble drugs. Trans-resveratrol (t-Res) with extensive pharmacological effects was severely restricted by poor solubility and short biological half-life. In this study, anti-solvent precipitation was employed to development trans-resveratrol nanosuspensions (t-Res NS) with PVPK30 as stabilizer. The physicochemical properties, in vitro release and in vivo pharmacokinetics of t-Res NS were investigated. The mean particle size, zeta potential, encapsulation efficiency and drug loading of t-Res NS prepared by the optimal prescription were 96.9 nm, -20.4mV, 78% and 28.1%, respectively. The morphology of t-Res nanoparticles was spherical indicated by SEM with amorphous phase verified by XRD and DSC. The t-Res NS present a good physical stability as well as enhanced chemical stability. Compared to crude drug, the in vitro dissolution rate of t-Res NS was increased with fitting Higuchi equation (Q=0.3215t1/2+0.0070). The in vivo pharmacokinetic test in rats showed that the AUC0∼t of t-Res NS (559.4 μg/mL·min) was about 3.6-fold higher than that of t-Res solution. Meanwhile, the MRT of t-Res nanosuspensions was longer than that of t-Res solution. These results suggested that NS may be a potentially nanocarrier for clinical delivery of t-Res.
Collapse
Affiliation(s)
- Qiannian Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230038, P.R. China
| | - Hui-Ling Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230038, P.R. China
| | - Jia-Jia Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230038, P.R. China
| | - Cai-Yun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230038, P.R. China
| | - Wei-Dong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230038, P.R. China
| |
Collapse
|
30
|
Ho Y, Sh Yang YC, Chin YT, Chou SY, Chen YR, Shih YJ, Whang-Peng J, Changou CA, Liu HL, Lin SJ, Tang HY, Lin HY, Davis PJ. Resveratrol inhibits human leiomyoma cell proliferation via crosstalk between integrin αvβ3 and IGF-1R. Food Chem Toxicol 2018; 120:346-355. [PMID: 30026090 DOI: 10.1016/j.fct.2018.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Leiomyomas (myomas) are the most common benign smooth muscle cell tumor of the myometrium. Resveratrol, a stilbene, has been used as an anti-inflammatory and antitumor agent. In the current study, we investigated the inhibitory effect of resveratrol on the proliferation of primary human myoma cell cultures. Resveratrol arrested cell proliferation via integrin αvβ3. It also inhibited integrin αvβ3 expression and protein accumulation. Concurrently, constitutive AKT phosphorylation in myoma cells was inhibited by resveratrol. Expressions of proapoptotic genes, such as cyclooxygenase (COX)-2, p21 and CDKN2, were induced by resveratrol in myoma cells. On the other hand, expressions of proliferative (anti-apoptotic) genes were either inhibited, as in BCL2, or unchanged, as in cyclin D1 and proliferating cell nuclear antigen (PCNA). The accumulation of insulin-like growth factor (IGF)-1 receptor (IGF-1R) was inhibited by resveratrol in primary myoma cells. IGF-1-induced cell proliferation was inhibited by co-incubation with resveratrol. Therefore, growth modulation of myoma cells occurs via mechanisms dependent on cross-talk between integrin αvβ3 and IGF-1R. Our findings suggest that resveratrol can be considered an alternative therapeutic agent for myomas.
Collapse
Affiliation(s)
- Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Szu-Yi Chou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| | | | - Chun A Changou
- Integrated Laboratory, Center of Translational Medicine and Core Facility, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Hsuan-Liang Liu
- Department of Chemical Engineering and Biotechnology, Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Shwu-Jiuan Lin
- School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA.
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA; Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
31
|
Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM. Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food Chem Toxicol 2018; 120:183-195. [PMID: 29981370 DOI: 10.1016/j.fct.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Numerous chemicals, such as phenolic compounds are strong radical scavengers, capable of alleviating oxidative stress induced neurodegeneration. Dietary antioxidants, especially flavonoids, are being considered as a promising approach to prevent or slow the pathological development of neurological illness and aging. One of the major advantage of natural products is that of their anti-amyloid effects over synthetic counterpart, however a healthy diet provides these beneficial natural substances as nutraceuticals. The extracellular-signal-regulated kinase (ERK) is one of the main pharmacological target of natural phenolic compounds, participating in several therapeutic effects. Mounting evidence revealed that numerous bioflavonoids, obtained from a variety of dietary fruits or plants as well as medicinal herbal sources, exhibit protective or therapeutic functions versus development of neurodegenerative diseases mainly through modulation of different compartments of ERK signaling pathway. Currently, there is remarkable interest in the beneficial effects of natural flavonoids to improve neural performance and prevent the onset and development of major neurodegenerative diseases. Natural products originated from medicinal plants, in particular antioxidants, have gained a great deal of attention due to their safe and non-toxic natures. Here, we summarized the effect of natural bioflavonoids on ERK signaling pathway and their molecular mechanism.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, Neri LM. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018; 9:17181-17198. [PMID: 29682215 PMCID: PMC5908316 DOI: 10.18632/oncotarget.24729] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
Physical exercise is considered to be one of the beneficial factors of a proper lifestyle and is nowadays seen as an indispensable element for good health, able to lower the risk of disorders of the cardiovascular, endocrine and osteomuscular apparatus, immune system diseases and the onset of potential neoplasms. A moderate and programmed physical exercise has often been reported to be therapeutic both in the adulthood and in aging, since capable to promote fitness. Regular exercise alleviates the negative effects caused by free radicals and offers many health benefits, including reduced risk of all-cause mortality, sarcopenia in the skeletal muscle, chronic disease, and premature death in elderly people. However, physical performance is also known to induce oxidative stress, inflammation, and muscle fatigue. Many efforts have been carried out to identify micronutrients and natural compounds, also known as nutraceuticals, able to prevent or attenuate the exercise-induced oxidative stress and inflammation. The aim of this review is to discuss the benefits deriving from a constant physical activity and by the intake of antioxidant compounds to protect the body from oxidative stress. The attention will be focused mainly on three natural antioxidants, which are quercetin, resveratrol and curcumin. Their properties and activity will be described, as well as their benefits on physical activity and on aging, which is expected to increase through the years and can get favorable benefits from a constant exercise activity.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, Pharmaceutical Biology Laboratory, University of Ferrara, Ferrara, Italy
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Fei X, Wang A, Wang D, Meng X, Ma J, Hong L, Qin R, Wang A, Dong J, Huang Q, Wang Z. Establishment of malignantly transformed dendritic cell line SU3-ihDCTC induced by Glioma stem cells and study on its sensitivity to resveratrol. BMC Immunol 2018; 19:7. [PMID: 29390972 PMCID: PMC5796576 DOI: 10.1186/s12865-018-0246-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As a factor contributing to the tumor cell drug resistance, tumor microenvironment (TME) is being paid increasingly attention. However, the drug resistance of malignantly transformed cells in TME has rarely been revealed. This paper is designed to investigate the sensitivity of malignantly transformed cell line (ihDCTC) induced by glioma stem cells (GSCs) in TME to chemotherapeutic drugs. METHODS (1) Establishment of ihDCTC cell line,The bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic nude mice were employed to culture the dendritic cells (DCs) in vitro, which were then co-cultured with red fluorescence protein (RFP) transgenic GSCs (SU3) to obtain ihDCTC (2) Res and Cis were used to intervene in the growth of abovemetioned cell lines in vitro and Res treated in bearing ihDCTC tumor mice, followed by evaluating their drug sensitivity and changes in key signaling proteins via half maximal inhibitory concentration (IC50), tumor mass and immunostaining method. RESULTS (1) ihDCTC could express CD11c and CD80 as well as possessed immortalized potential, heteroploid chromosomes and high tumorigenicity in nude mice in vivo. (2) At 24 h, 48 h and 72 h, the IC50 value of ihDCTC treated with Cis was 3.62, 3.25 and 2.10 times higher than that of SU3, while the IC50 value of ihDCTC treated with Res was 0.03, 0.47 and 1.19 times as much as that of SU3; (3) The xenograft mass (g) in vivo in the control, Res, Cis and Res + Cis groups were 1.44 ± 0.19, 0.45 ± 0.12, 0.94 ± 0.80 and 0.68 ± 0.35(x ± s) respectively. The expression levels of IL-6, p-STAT3 and NF-κB proteins in the xenograft tissue were significantly reduced only in the Res treatment group. CONCLUSION In vitro co-culture with GSC can induce the malignant transformation of bone marrow derived dendritic cells, on the one hand, ihDCTC shows higher drug resistance to the traditional chemotherapeutic drug Cis than GSCs, but, on the other hand, appears to be more sensitive to Res than GSCs. Therefore, our findings provide a broader vision not only for the further study on the correlation between TME and tumor drug resistance but also for the exploration of Res anti-cancer value.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China
| | - Anqi Wang
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China
| | - Delin Wang
- Department of the Soochow University, Suzhou, 215004, China
| | - Xan Meng
- Department of the Soochow University, Suzhou, 215004, China
| | - Jiawei Ma
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lei Hong
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ruwei Qin
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China
| | - Aidong Wang
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jun Dong
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qiang Huang
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhimin Wang
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China.
| |
Collapse
|
34
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
35
|
Fei X, Wang A, Wang D, Meng X, Ma J, Hong L, Qin R, Wang A, Dong J, Huang Q, Wang Z. Establishment of malignantly transformed dendritic cell line SU3-ihDCTC induced by Glioma stem cells and study on its sensitivity to resveratrol. BMC Immunol 2018. [PMID: 29390972 DOI: 10.1186/s12865-018-0246-z.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a factor contributing to the tumor cell drug resistance, tumor microenvironment (TME) is being paid increasingly attention. However, the drug resistance of malignantly transformed cells in TME has rarely been revealed. This paper is designed to investigate the sensitivity of malignantly transformed cell line (ihDCTC) induced by glioma stem cells (GSCs) in TME to chemotherapeutic drugs. METHODS (1) Establishment of ihDCTC cell line,The bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic nude mice were employed to culture the dendritic cells (DCs) in vitro, which were then co-cultured with red fluorescence protein (RFP) transgenic GSCs (SU3) to obtain ihDCTC (2) Res and Cis were used to intervene in the growth of abovemetioned cell lines in vitro and Res treated in bearing ihDCTC tumor mice, followed by evaluating their drug sensitivity and changes in key signaling proteins via half maximal inhibitory concentration (IC50), tumor mass and immunostaining method. RESULTS (1) ihDCTC could express CD11c and CD80 as well as possessed immortalized potential, heteroploid chromosomes and high tumorigenicity in nude mice in vivo. (2) At 24 h, 48 h and 72 h, the IC50 value of ihDCTC treated with Cis was 3.62, 3.25 and 2.10 times higher than that of SU3, while the IC50 value of ihDCTC treated with Res was 0.03, 0.47 and 1.19 times as much as that of SU3; (3) The xenograft mass (g) in vivo in the control, Res, Cis and Res + Cis groups were 1.44 ± 0.19, 0.45 ± 0.12, 0.94 ± 0.80 and 0.68 ± 0.35(x ± s) respectively. The expression levels of IL-6, p-STAT3 and NF-κB proteins in the xenograft tissue were significantly reduced only in the Res treatment group. CONCLUSION In vitro co-culture with GSC can induce the malignant transformation of bone marrow derived dendritic cells, on the one hand, ihDCTC shows higher drug resistance to the traditional chemotherapeutic drug Cis than GSCs, but, on the other hand, appears to be more sensitive to Res than GSCs. Therefore, our findings provide a broader vision not only for the further study on the correlation between TME and tumor drug resistance but also for the exploration of Res anti-cancer value.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China
| | - Anqi Wang
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China
| | - Delin Wang
- Department of the Soochow University, Suzhou, 215004, China
| | - Xan Meng
- Department of the Soochow University, Suzhou, 215004, China
| | - Jiawei Ma
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lei Hong
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ruwei Qin
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China
| | - Aidong Wang
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jun Dong
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qiang Huang
- Department of the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhimin Wang
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Wan'sheng Road 118, Suzhou, 215006, China.
| |
Collapse
|
36
|
The in vitro radiosensitizer potential of resveratrol on MCF-7 breast cancer cells. Chem Biol Interact 2018; 282:85-92. [DOI: 10.1016/j.cbi.2018.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/11/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
|
37
|
Chin YT, Cheng GY, Shih YJ, Lin CY, Lin SJ, Lai HY, Whang-Peng J, Chiu HC, Lee SY, Fu E, Tang HY, Lin HY, Liu LF. Therapeutic applications of resveratrol and its derivatives on periodontitis. Ann N Y Acad Sci 2017; 1403:101-108. [DOI: 10.1111/nyas.13433] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- Department of Dentistry, Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
| | - Guei-Yun Cheng
- Graduate Institute of Immunology, College of Medicine; National Taiwan University; Taipei Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - Shan-Jen Lin
- Department of Dentistry; Hsinchu MacKay Memorial Hospital; Hsinchu City Taiwan
| | - Hsuan-Yu Lai
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | | | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - Sheng-Yang Lee
- Department of Dentistry, Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - Earl Fu
- Department of Dentistry; Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; New Taipei City Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute; Albany College of Pharmacy and Health Sciences; Albany New York
| | - Hung-Yun Lin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Leroy F Liu
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
38
|
Lin HY, Hsieh MT, Cheng GY, Lai HY, Chin YT, Shih YJ, Nana AW, Lin SY, Yang YCSH, Tang HY, Chiang IJ, Wang K. Mechanisms of action of nonpeptide hormones on resveratrol-induced antiproliferation of cancer cells. Ann N Y Acad Sci 2017; 1403:92-100. [PMID: 28759712 DOI: 10.1111/nyas.13423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin αv β3 for nonpeptide hormones. Interaction between hormones and integrin αv β3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin αv β3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin αv β3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. .
Collapse
Affiliation(s)
- Hung-Yun Lin
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ti Hsieh
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guei-Yun Cheng
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Lai
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - André Wendindondé Nana
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin-Ying Lin
- PhD program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | | | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Abstract
Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein), and therapeutic perspectives with an emphasis on clinical trial results to date.
Collapse
|
40
|
Zeng YH, Zhou LY, Chen QZ, Li Y, Shao Y, Ren WY, Liao YP, Wang H, Zhu JH, Huang M, He F, Wang J, Wu K, He BC. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncol Rep 2017; 38:456-464. [DOI: 10.3892/or.2017.5662] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
|
41
|
Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. ASIAN PAC J TROP MED 2017; 10:400-408. [PMID: 28552110 DOI: 10.1016/j.apjtm.2017.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To test the anticancer potential activity of the combination of thymoquinone (TQ) and resveratrol (RES) against breast cancer in mice. METHODS The antiproliferative activity of TQ, RES and their combination was assessed against three breast cancer cell lines and one normal cells using MTT assay. The combination index was calculated using isobolographic method. Balb/C mice were inoculated with EMT6/P cells and in vivo antitumor activity was evaluated. RESULTS The combination therapy also caused significant decrease in tumor size with a percentage cure of 60%. The combination therapy induced geographic necrosis, enhanced apoptosis, and decreased VEGF expression. Serum levels of IFN-γ were elevated in mice treated with combination therapy with no liver or kidney toxicity. CONCLUSIONS The combination of TQ and RES against breast cancer in mice can work synergistically. The anticancer effect of this combination is mediated by apoptosis induction, angiogenesis inhibition and immune modulation.
Collapse
|
42
|
Implications of Resveratrol on Glucose Uptake and Metabolism. Molecules 2017; 22:molecules22030398. [PMID: 28272357 PMCID: PMC6155386 DOI: 10.3390/molecules22030398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
Resveratrol—a polyphenol of natural origin—has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.
Collapse
|
43
|
Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis. Exp Mol Med 2017; 49:e296. [PMID: 28232662 PMCID: PMC5336560 DOI: 10.1038/emm.2016.151] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022] Open
Abstract
Hippo/YAP signaling is implicated in tumorigenesis and progression of various cancers. By inhibiting a plethora signaling cascades, resveratrol has strong anti-tumorigenic and anti-metastatic activity. In the present study, we demonstrate that resveratrol decreases the expression of YAP target genes. In addition, our data showed that resveratrol attenuates breast cancer cell invasion through the activation of Lats1 and consequent inactivation of YAP. Strikingly, we also demonstrate that resveratrol inactivates RhoA, leading to the activation of Lats1 and induction of YAP phosphorylation. Further, resveratrol in combination with other agents that inactivate RhoA or YAP showed more marked suppression of breast cancer cell invasion compared with single treatment. Collectively, these findings indicate the beneficial effects of resveratrol on breast cancer patients by suppressing the RhoA/Lats1/YAP signaling axis and subsequently inhibiting breast cancer cell invasion.
Collapse
|
44
|
Izquierdo-Torres E, Rodríguez G, Meneses-Morales I, Zarain-Herzberg A. ATP2A3 gene as an important player for resveratrol anticancer activity in breast cancer cells. Mol Carcinog 2017; 56:1703-1711. [PMID: 28150875 DOI: 10.1002/mc.22625] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
The Ca2+ -ATPases from the Sarco/endoplasmic reticulum (SERCA) are fundamental for maintaining intracellular [Ca2+ ] homeostasis by pumping Ca2+ into the endoplasmic reticulum (ER) of eukaryotic cells. SERCA enzymes are encoded by three different genes (ATP2A1-3), whose expression occurs in a tissue and development stage-specific manner. It has been reported alterations in the expression of SERCA2 and SERCA3 pumps in different types of cancer: oral, lung, colon, stomach, central nervous system, thyroid, breast, and prostate. Resveratrol (RSV), a phytoalexin produced by a wide variety of plants in response to stress situations can modulate cellular processes involved in all stages of carcinogenesis. In this work, we used breast cancer cell lines (MCF-7 and MDA-MB-231) to evaluate mRNA levels of ATP2A2 and ATP2A3 genes in response to RSV treatment. Our results demonstrate that RSV treatment induced the expression of ATP2A3 gene in both cell lines in a time and concentration-dependent manner, while the expression of ATP2A2 gene remained unaffected. The RSV-induced expression of SERCA3 in these breast cancer cell lines produced decreased cell viability, triggered apoptosis and changes in cytosolic Ca2+ levels, as well as changes in the capacity for Ca2+ release by the ER. These data suggest an important participation of SERCA3 genes in RSV-mediated anti-tumor effect in breast cancer cell lines. Nevertheless, further research is needed to elucidate the molecular mechanisms underlying this effect.
Collapse
Affiliation(s)
- Eduardo Izquierdo-Torres
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriela Rodríguez
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Iván Meneses-Morales
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angel Zarain-Herzberg
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
45
|
Preparation and in-vitro/in-vivo characterization of trans-resveratrol nanocrystals for oral administration. Drug Deliv Transl Res 2017; 7:395-407. [DOI: 10.1007/s13346-017-0362-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Mechanisms of dihydrotestosterone action on resveratrol-induced anti-proliferation in breast cancer cells with different ERα status. Oncotarget 2016; 6:35866-79. [PMID: 26456774 PMCID: PMC4742147 DOI: 10.18632/oncotarget.5482] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023] Open
Abstract
Dihydrotestosterone (DHT) has been shown to promote breast cancer growth via different mechanisms. In addition to binding to ERα, the DHT membrane receptor exists on integrin αvβ3. Resveratrol induces p53-dependent apoptosis via plasma membrane integrin αvβ3. Resveratrol and DHT signals are both transduced by activated ERK1/2; however, DHT promotes cell proliferation in cancer cells, whereas resveratrol is pro-apoptotic. In this study, we examined the mechanism by which DHT inhibits resveratrol-induced apoptosis in human ERα positive (MCF-7) and negative (MDA-MB-231) breast cancer cells. DHT inhibited resveratrol-stimulated phosphorylation of Ser-15 of p53 in a concentration-dependent manner. These effects of DHT on resveratrol action were blocked by an ERα antagonist, ICI 182,780, in MCF-7 breast cancer cells. DHT inhibited resveratrol-induced nuclear complex of p53-COX-2 formation which is required p53-dependent apoptosis. ChIP studies of COX-2/p53 binding to DNA and expression of p53-responsive genes indicated that DHT inhibited resveratrol-induced p53-directed transcriptional activity. In addition, DHT did inhibit resveratrol-induced COX-2/p53-dependent gene expression. These results suggest that DHT inhibits p53-dependent apoptosis in breast cancer cells by interfering with nuclear COX-2 accumulation which is essential for stimulation of apoptotic pathways. Thus, the surface receptor sites for resveratrol and DHT are discrete and activate ERK1/2-dependent downstream effects on apoptosis that are distinctive. These studies provide new insights into the antagonizing effects of resveratrol versus DHT, an important step toward better understanding and eventually treating breast cancer. It also indicates the complex pathways by which apoptosis is induced by resveratrol in DHT-depleted and -repleted environments.
Collapse
|
47
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
48
|
Gillespie ZE, Pickering J, Eskiw CH. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan. Front Genet 2016; 7:142. [PMID: 27588026 PMCID: PMC4988992 DOI: 10.3389/fgene.2016.00142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Joshua Pickering
- Department of Biochemistry, University of Saskatchewan Saskatoon, SK, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of SaskatchewanSaskatoon, SK, Canada; Department of Biochemistry, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
49
|
2,3,5,4'-Tetrahydroxystilbene-2-O-β-glucoside Isolated from Polygoni Multiflori Ameliorates the Development of Periodontitis. Mediators Inflamm 2016; 2016:6953459. [PMID: 27504055 PMCID: PMC4967694 DOI: 10.1155/2016/6953459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
Periodontitis, a chronic infection by periodontopathic bacteria, induces uncontrolled inflammation, which leads to periodontal tissue destruction. 2,3,5,4'-Tetrahydroxystilbene-2-O-beta-glucoside (THSG), a polyphenol extracted from Polygoni Multiflori, reportedly has anti-inflammatory properties. In this study, we investigated the mechanisms of THSG on the Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. Human gingival fibroblast cells were treated with lipopolysaccharide (LPS) extracted from P. gingivalis in the presence of resveratrol or THSG to analyze the expression of TNF-α, IL-1β, and IL-6 genes. Increased AMP-activated protein kinase (AMPK) activation and SirT1 expression were induced by THSG. Treatment of THSG decreased the expression of LPS-induced inflammatory cytokines, enhanced AMPK activation, and increased the expression of SirT1. In addition, it suppressed the activation of NF-κB when cells were stimulated with P. gingivalis LPS. The anti-inflammatory effect of THSG and P. Multiflori crude extracts was reproduced in ligature-induced periodontitis animal modeling. In conclusion, THSG inhibited the inflammatory responses of P. gingivalis-stimulated human gingival fibroblasts and ameliorated ligature-induced periodontitis in animal model.
Collapse
|
50
|
Azimi A, Hagh MF, Talebi M, Yousefi B, Hossein pour feizi AA, Baradaran B, Movassaghpour AA, Shamsasenjan K, Khanzedeh T, Ghaderi AH, Heydarabad MZ. Time--and Concentration--Dependent Effects of Resveratrol on miR 15a and miR16-1 Expression and Apoptosis in the CCRF-CEM Acute Lymphoblastic Leukemia Cell Line. Asian Pac J Cancer Prev 2016; 16:6463-8. [PMID: 26434860 DOI: 10.7314/apjcp.2015.16.15.6463] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemotherapy is one of the common approaches in treatment of cancers, especially leukemia. However, drug resistance phenomena reduce the likelihood of treatment success. Resveratrol is a herbal compound which through complicated processes makes some selected cells sensitive to treatment and induction of apoptosis. In the present study, the effects of resveratrol on the expression of miR 15a and miR16-1 and apoptosis in the CCRF-CEM cell line were investigated. MATERIALS AND METHODS The CCRF-CEM cell line was cultured under standard conditions and changes in miR 15a and miR 16-1 expression were analyzed by real time-PCR technique, with attention to reveratrol dose and time dependence. Also, apoptosis is evaluated by flow cytometry using annexin V and PI. RESULTS CCRF-CEM cells underwent dose-dependent apoptotic cell death in response to resveratrol. MiR 15a and miR 16-1 expression was up-regulated after 24 and 48 hours resveratrol treatment (p<0.05). CONCLUSIONS The results of our study indicate that resveratrol induces apoptosis in a time and dose- dependent manner in CCRF-CEM cells. Also, increased expression level of miR 16-1 and miR 15a by means of resveratrol in CCRF-CEM cells might have a role in apoptosis induction and predisposition. According to our results resveratrol can be regarded as a dietary supplement to improve efficacy of anti-leukemia therapies.
Collapse
Affiliation(s)
- Ako Azimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|