1
|
Ma L, Li Y, Sakamoto Y, Xie L, Suzuki S, Yoshida Y, Sui L, Guo G, Wen J, Ren W, Kakimi K, Osada K, Takahashi A, Shimokawa T. Optimal radiation dose to induce an abscopal effect by combining carbon-ion radiotherapy and anti-CTLA4 antibody. Neoplasia 2024; 60:101099. [PMID: 39674115 PMCID: PMC11699741 DOI: 10.1016/j.neo.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND PURPOSE Although carbon-ion radiotherapy (CIRT) has led to good outcomes, controlling metastasis is still crucial for improving overall survival. This study aimed to evaluate the effectiveness of by two combinations, one of CIRT and anti-CTLA4 antibody, the other of CIRT and anti-PD-1 antibody, applied at different radiation doses for distal tumour and metastasis suppression. MATERIALS AND METHODS Murine cancer cells (colon carcinoma Colon-26 cells for experiments and osteosarcoma LM8 cells for verification) were grafted into both sides of the hind legs of syngeneic mice. Right-side tumours were irradiated with 3 Gy or 10 Gy CIRT while the left-side tumours were not irradiated, followed by the administration of the anti-CTLA4 antibody or anti-PD-1 antibody. The diameter of the tumours in both legs was measured 3 times per week after irradiation. The number of pulmonary metastases was evaluated within 3 weeks after irradiation. RESULTS Compared with the control group, the high-dose group showed promising anti-cancer benefits in terms of both irradiated tumours and lung metastasis, but neither 10 Gy CIRT combined with the anti-CTLA4 antibody nor 10 Gy CIRT combined with the anti-PD-1 antibody suppressed the growth of distant unirradiated tumours. In the low-dose group, the effect on primary tumour control was slightly weaker than that in the high-dose treatment group, but significant suppressive effects on both distant unirradiated tumours and metastases were observed following 3 Gy CIRT combined with anti-CTLA4 antibody treatment. Specifically, the volume of distant unirradiated tumours decreased by 40 % compared with that of the control group, and no lung metastasis was observed. CONCLUSION Our findings suggest that there is an optimal dose range for the abscopal effect generated with the CIRT combined with anti-CTLA4 antibody, and it highlights a new opportunity for increased induction efficiency of the abscopal effect of combination therapy.
Collapse
Affiliation(s)
- Liqiu Ma
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan; Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China.
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan
| | - Yoshimitsu Sakamoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Lin Xie
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Saaya Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Gunma 371-8511, Japan
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Gang Guo
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Jialing Wen
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Wangcai Ren
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
| | - Kazuhiro Kakimi
- Department of Immunology, Kindai University Faculty of Medicine, Osaka 589-0014, Japan
| | - Kensuke Osada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | | | - Takashi Shimokawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan.
| |
Collapse
|
2
|
Takeshima T, Hirayama R, Hasegawa S. Experimental evidence that carbon-ion radiotherapy utilizes cytotoxic T lymphocyte-mediated anti-tumor immunity for shrinking tumors compared to X-ray therapy. Biochem Biophys Res Commun 2024; 718:150058. [PMID: 38729076 DOI: 10.1016/j.bbrc.2024.150058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors. We irradiated mouse intradermal tumors of B16F10-ovalbumin (OVA) mouse melanoma cells and 3LL-OVA mouse lung cancer cells with carbon-ion beams or X-rays in the presence or absence of CTLs. CTL removal was performed by administration of anti-CD8 monoclonal antibody (mAb) in mice. Based on tumor growth delay, we determined the tumor growth and regression curves. The enhancement ratio (ER) of the slope of regression lines in the presence of CTLs, relative to the absence of CTLs, indicates the dependency of RT on CTLs for shrinking mouse tumors, and the biological effectiveness (RBE) of CIRT relative to XRT were calculated. Tumor growth curves revealed that the elimination of CD8+ CTLs by administrating anti-CD8 mAb accelerated tumor growth compared to the presence of CTLs in both RTs. The ERs were larger in CIRT compared to XRT in the B16F10-OVA tumor models, but not in the 3LL-OVA models, suggesting a greater contribution of CTL-mediated anti-tumor immunity to tumor reduction in CIRT compared to XRT in the B16F10-OVA tumor model. In addition, the RBE values for both models were larger in the presence of CTLs compared to models without CTLs, suggesting that CIRT may utilize CTL-mediated anti-tumor immunity more than X-ray. The findings from this study suggest that although immunological contribution to therapeutic efficacy may vary depending on the type of tumor cell, CIRT utilizes CTL-mediated immunity to a greater extent compared to XRT.
Collapse
Affiliation(s)
- Tsuguhide Takeshima
- Department of Charged Particle Therapy Research, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Sumitaka Hasegawa
- Department of Charged Particle Therapy Research, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| |
Collapse
|
3
|
Yu B, Gao Y, Li J, Gao F, Zhang J, Li L, Feng X, Zuo D, Jin X, Chen W, Li Q. Killing two birds with one stone: Abscopal effect mechanism and its application prospect in radiotherapy. Crit Rev Oncol Hematol 2024; 196:104325. [PMID: 38462151 DOI: 10.1016/j.critrevonc.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Abscopal effects are characterized by the emergence of neoplasms in regions unrelated to the primary radiation therapy site, displaying a gradual attenuation or regression throughout the progression of radiation therapy, which have been of interest to scientists since Mole's proposal in 1953. The incidence of abscopal effects in radiation therapy is intricately linked to the immune system, with both innate and adaptive immune responses playing crucial roles. Biological factors impacting abscopal effects ultimately exert their influence on the intricate workings of the immune system. Although abscopal effects are rarely observed in clinical cases, the underlying mechanism remains uncertain. This article examines the biological and physical factors influencing abscopal effects of radiotherapy. Through a review of preclinical and clinical studies, this article aims to offer a comprehensive understanding of abscopal effects and proposes new avenues for future research in this field. The findings presented in this article serve as a valuable reference for researchers seeking to explore this topic in greater depth.
Collapse
Affiliation(s)
- Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou 730070, China
| | - Jiaxin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Public Health, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Feng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashan Zuo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. Int J Mol Sci 2024; 25:2830. [PMID: 38474078 DOI: 10.3390/ijms25052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| |
Collapse
|
5
|
Liu R, Geng Y, Luo H, Zhang Q, Yang Z, Li S, Sun S, Liu Z, Dong M, Du T, Che T, Wang X. Carbon ion irradiation combined with PD-1 inhibitor trigger abscopal effect in Lewis lung cancer via a threshold dose. J Cancer 2024; 15:2245-2259. [PMID: 38495488 PMCID: PMC10937268 DOI: 10.7150/jca.91559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024] Open
Abstract
Background and goal: Carbon ion beam is radio-biologically more efficient than photons and is beneficial for treating radio-resistant tumors. Several animal experiments with tumor-bearing suggest that carbon ion beam irradiation in combination with immunotherapy yields better results, especially in controlling distant metastases. This implies that carbon ion induces a different anti-tumor immune response than photon beam. More complex molecular mechanisms need to be uncovered. This in vivo and in vitro experiment was carried out in order to examine the radio-immune effects and the mechanism of action of carbon ion beam versus X-ray in combination with PD-1 inhibitors. Methods and Materials: Lewis lung adenocarcinoma cells and C57BL/6 mice were used to create a tumor-bearing mouse model, with the non-irradiated tumor growing on the right hind leg and the irradiated tumor on the left rear. 10Gy carbon ion beam or X-ray radiation, either alone or in combination with PD-1 inhibitor, were used to treat the left back tumor. The expression of molecules linked to immunogenicity and the infiltration of CD8+ T lymphocytes into tumor tissues were both identified using immunohistochemistry. IFN-β in mouse serum was measured using an ELISA, while CD8+ T cells in mouse peripheral blood were measured using flow cytometry. Lewis cells were exposed to different dose of X-ray and carbon ion. TREX1, PD-L1, and IFN-β alterations in mRNA and protein levels were identified using Western blot or RT-PCR, respectively. TREX1 knockdown was created by siRNA transfection and exposed to various radiations. Using the CCK8 test, EdU assay, and flow cytometry, changes in cell viability, proliferation, and apoptosis rate were discovered. Results: Bilateral tumors were significantly inhibited by the use of carbon ion or X-ray in combination with PD-1, particularly to non-irradiated tumor(p<0.05). The percentage of infiltrating CD8+ T cells and the level of IFN-β expression were both raised by 10Gy carbon ion irradiation in the irradiated side tumor, although PD-L1 and TREX1 expression levels were also elevated. Lewis cell in vitro experiment further demonstrated that both X-ray and carbon ion irradiation can up-regulate the expression levels of PD-L1 and TREX1 with dose-dependent in tumors, particularly the trend of up-regulation TREX1 is more apparent at a higher dose in carbon ion, i.e. 8 or 10Gy, while the level of IFN-β is decreased. IFN-β levels were considerably raised under hypofractionated doses of carbon ion radiation by gene silencing TREX1. Conclusions: By enhancing tumor immunogenicity and increasing CD8+T infiltration in TME through a threshold dosage, X-ray or carbon ion radiation and PD-1 inhibitors improve anti-tumor activity and cause abscopal effect in Lewis lung adenocarcinoma-bearing mice. TREX1 is a possible therapeutic target and prognostic marker.
Collapse
Affiliation(s)
- Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Heavy Ion Medicine Center, Hospital of economic and Technological Development Zone, Wuhan Renmin Hospital of University, Wuhan, China
| | - Yichao Geng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhen Yang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shan Li
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meng Dong
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Tianqi Du
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Tuanjie Che
- Key Laboratory of Functional Genomics and Molecular Diagnostics of Gansu Province, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory of Functional Genomics and Molecular Diagnostics of Gansu Province, Lanzhou, China
| |
Collapse
|
6
|
Ronchi S, Cicchetti A, Bonora M, Ingargiola R, Camarda AM, Russo S, Imparato S, Castelnuovo P, Pasquini E, Nicolai P, Ansarin M, Del Vecchio M, Benazzo M, Orlandi E, Vischioni B. Curative carbon ion radiotherapy in a head and neck mucosal melanoma series: Facing the future within multidisciplinarity. Radiother Oncol 2024; 190:110003. [PMID: 37956889 DOI: 10.1016/j.radonc.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE To evaluate efficacy and toxicity of carbon ion radiotherapy (CIRT) in locally advanced head and neck mucosal melanoma (HNMM) patients treated at our Institute. MATERIALS AND METHODS Between June 2013 and June 2020, 40 HNMM patients were treated with CIRT. Prescription dose was 65.6-68.8 Gy relative biological effectiveness [RBE] in 16 fractions. Twelve (30%) patients received only biopsy, 28 (70%) surgical resection before CIRT. Immunotherapy was administered before and/or after CIRT in 45% of patients, mainly for distant progression (89%). RESULTS Median follow-up was 18 months. 2-year Local Relapse Free Survival (LRFS), Overall Survival (OS), Progression Free Survival (PFS) and Distant Metastasis Free Survival (DMFS) were 84.5%, 58.6%, 33.2% and 37.3%, respectively. At univariate analysis, LRFS was significantly better for non-recurrent status, < 2 surgeries before CIRT and treatment started < 9 months from the initial diagnosis, with no significant differences for operated versus unresected patients. After relapse, immunotherapy provided longer median OS (17 months vs 3.6, p-value<0.001). Late toxicity ≥ G3 (graded with CTCAE 5.0 scale) was reported in 10% of patients. CONCLUSION CIRT in advanced HNMM patients is safe and locally effective. Prospective trials are warranted to assess the role of targeted/immune- systemic therapy to improve OS.
Collapse
Affiliation(s)
- Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefania Russo
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Imparato
- Radiology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Paolo Castelnuovo
- Department of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Head and Neck Surgery & Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Ernesto Pasquini
- Azienda USL di Bologna, ENT Department, Bellaria Hospital, Bologna, Italy
| | - Piero Nicolai
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padua - "Azienda Ospedaliera di Padova", Padua, Italy
| | - Mohssen Ansarin
- Division of Otolaryngology and Head and Neck Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Del Vecchio
- Unit of Melanoma Medical Oncology, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan 20133, Italy
| | - Marco Benazzo
- Department of Otolaryngology Head Neck Surgery, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
7
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
8
|
Huang Q, Hu J, Chen L, Lin W, Yang J, Hu W, Gao J, Zhang H, Lu JJ, Kong L. Carbon ion radiotherapy combined with immunotherapy: synergistic anti-tumor efficacy and preliminary investigation of ferroptosis. Cancer Immunol Immunother 2023; 72:4077-4088. [PMID: 37777634 PMCID: PMC10700413 DOI: 10.1007/s00262-023-03544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Carbon ion radiotherapy (CIRT) may yield satisfactory clinical outcomes for patients who are resistant to radiotherapy. However, the therapeutic impact of carbon ions is still limited in certain recurring or refractory tumors. Therefore, we aimed to evaluate the synergistic anti-tumor effects of immune checkpoint inhibitors (ICIs) in combination with CIRT. We then explored the involvement of ferroptosis in a preliminary investigation. A tumor-bearing mouse model was established, and mice were inoculated subcutaneously with B16-OVA cells into the flanks of both hind legs. Mice were assigned to four groups to receive CIRT, ICIs, or combined treatment. Thereafter, we conducted transcriptome sequencing (RNA-seq), bioinformatics analysis, and various immune-related experiments on the available tumor tissues to investigate differences in the synergistic anticancer effects and potential mechanisms across the groups. The combination therapies significantly improved the survival of mice and inhibited tumor growth, both at local and distant sites. Based on bioinformatics and RNA-seq data, immune-related pathways and genes, immune cell infiltration, and the production of cytokines and chemokines were the most enhanced in the combined treatment group compared to other groups. Finally, we identified a potential role for ferroptosis in the development of local anti-tumor synergy during CIRT combination treatment. In conclusion, this study showed that CIRT and ICIs can enhance the anti-tumor immune effects. We also proposed that ferroptosis may induce anti-tumor effects in CIRT combination therapy, offering a unique perspective on its ability to enhance immunotherapy responses.
Collapse
Affiliation(s)
- Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Li Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Haojiong Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Proton and Heavy Ion Center, Heyou International Hospital, Foshan, 528000, China.
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China.
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
| |
Collapse
|
9
|
Tubin S, Vozenin M, Prezado Y, Durante M, Prise K, Lara P, Greco C, Massaccesi M, Guha C, Wu X, Mohiuddin M, Vestergaard A, Bassler N, Gupta S, Stock M, Timmerman R. Novel unconventional radiotherapy techniques: Current status and future perspectives - Report from the 2nd international radiation oncology online seminar. Clin Transl Radiat Oncol 2023; 40:100605. [PMID: 36910025 PMCID: PMC9996385 DOI: 10.1016/j.ctro.2023.100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
•Improvement of therapeutic ratio by novel unconventional radiotherapy approaches.•Immunomodulation using high-dose spatially fractionated radiotherapy.•Boosting radiation anti-tumor effects by adding an immune-mediated cell killing.
Collapse
Affiliation(s)
- S. Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - M.C. Vozenin
- Radiation Oncology Laboratory, Radiation Oncology Service, Oncology Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Y. Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
| | - M. Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt 64291, Germany
- Technsiche Universität Darmstadt, Institute for Condensed Matter Physics, Darmstadt, Germany
| | - K.M. Prise
- Patrick G Johnston Centre for Cancer Research Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - P.C. Lara
- Canarian Comprehensive Cancer Center, San Roque University Hospital & Fernando Pessoa Canarias University, C/Dolores de la Rocha 9, Las Palmas GC 35001, Spain
| | - C. Greco
- Department of Radiation Oncology Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - M. Massaccesi
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C. Guha
- Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States
| | - X. Wu
- Executive Medical Physics Associates, 19470 NE 22nd Road, Miami, FL 33179, United States
| | - M.M. Mohiuddin
- Northwestern Medicine Cancer Center Warrenville and Northwestern Medicine Proton Center, 4455 Weaver Pkwy, Warrenville, IL 60555, United States
| | - A. Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - N. Bassler
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - S. Gupta
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - M. Stock
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
- Karl Landsteiner University of Health Sciences, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - R. Timmerman
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Inwood Road Dallas, TX 2280, United States
| |
Collapse
|
10
|
Musha A, Kubo N, Kawamura H, Okano N, Sato H, Okada K, Tomizawa K, Ota N, Adachi A, Shino M, Nikkuni O, Ida S, Shirai K, Saitoh JI, Yokoo S, Chikamatsu K, Ohno T. Efficacy of immune checkpoint inhibitor treatment for head and neck mucosal melanoma recurrence in patients treated with carbon-ion radiotherapy. Cancer Rep (Hoboken) 2023:e1825. [PMID: 37115713 PMCID: PMC10363791 DOI: 10.1002/cnr2.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (C-ion RT) is effective for head and neck mucosal melanoma (HN-MM), including radioresistant mucosal melanoma. Melanoma also responds effectively to immune checkpoint inhibitors (ICIs). Data on the efficacy and safety of ICIs for HN-MM are insufficient. AIMS To analyze the efficacy and safety of ICI salvage therapy in patients with HN-MM recurrence after C-ion RT. METHODS AND RESULTS This retrospective study analyzed the medical records of 52 patients with HN-MM treated with C-ion RT between 2012 and 2020. A dose of 57.6 or 64.0 Gy (relative biological effectiveness) was provided in 16 fractions. The primary endpoint was 3-year overall survival (OS) rate. The median follow-up time was 26.8 months for all patients. A total of 29 patients had local recurrence or distant metastasis, and 16 patients who received ICI therapy. The 3-year OS rate in the ICI group (n = 16) and best supportive care group (n = 13) were 53.8% and 0.0%, respectively (p = 0.837); the difference was not statistically significant. There were no deaths after 1 year among patients who underwent ICI therapy. No adverse events associated with C-ion RT were related to or exacerbated by ICI. CONCLUSION ICI salvage therapy is effective and safe for patients with HN-MM recurrence after C-ion RT.
Collapse
Affiliation(s)
- Atsushi Musha
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Maebashi, Japan
| | - Nobuteru Kubo
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | | - Naoko Okano
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Hiro Sato
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Kohei Okada
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Kento Tomizawa
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Norichika Ota
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Akiko Adachi
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Masato Shino
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Nikkuni
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shota Ida
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Katsuyuki Shirai
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
- Department of Radiology, Jichi Medical University Hospital, Tochigi, Japan
| | - Jun-Ichi Saitoh
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Maebashi, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| |
Collapse
|
11
|
Penninckx S, Thariat J, Mirjolet C. Radiation therapy-activated nanoparticle and immunotherapy: The next milestone in oncology? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:157-200. [PMID: 37438017 DOI: 10.1016/bs.ircmb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Juliette Thariat
- Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| |
Collapse
|
12
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. On target methods to induce abscopal phenomenon for Off-Target effects: From happenstance to happenings. Cancer Med 2023; 12:6451-6465. [PMID: 36411943 PMCID: PMC10067075 DOI: 10.1002/cam4.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although the "abscopal phenomenon" has been described several decades ago, this phenomenon lately has been obtaining momentous traction with the dawn of immune-based therapies. There has been increased cross talk among radiation oncologists, oncologists and immunologists and consequently a surge in the number of prospective clinical trials. This must be coupled with translation work from these clinical trials to aid in eventual identification of patients who may benefit. Abscopal effects may be induced by local and systemic methods, conventional radiotherapy, particle radiation, radionucleotide methods, cryoablation and brachytherapy. These approaches have all been reported to be stimulate abscopal effect. Immune induction by immune checkpoint therapy, immune adjuvants, cellular therapy including CAR and NK cell therapies may generate systemic abscopal response. With increasing recognition of this effect, there remains a lot of work to explore the modalities of inducing abscopal responses and ultimate prediction or prognostication on stratifying who may benefit. Ultimately, there is an urgent need for prospective studies and data to tease apart which one of these modalities can be applied to the appropriate candidate, to the appropriate cancer at the appropriate setting. This review seeks to elucidate readers on the different modalities of radiation, systemic therapies and other techniques rarely explored to potentiate the abscopal effect from a mere coincidence to a finite occurrence.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jacob J. Adashek
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimoreMarylandUSA
| | - Steven H. Lin
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
13
|
Sai S, Koto M, Yamada S. Basic and translational research on carbon-ion radiobiology. Am J Cancer Res 2023; 13:1-24. [PMID: 36777517 PMCID: PMC9906076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/16/2022] [Indexed: 02/14/2023] Open
Abstract
Carbon-ion beam irradiation (IR) has evident advantages over the conventional photon beams in treating tumors. It releases enormous amount of energy in a well-defined range with insignificant scatter in surrounding tissues based on well-localized energy deposition. Over the past 28 years, more than 14,000 patients with various types of cancer have been treated by carbon ion radiotherapy (CIRT) with promising results at QST. I have provided an overview of the basic and translational research on carbon-ion radiobiology including mechanisms underlying high linear energy transfer (LET) carbon-ion IR-induced cell death (apoptosis, autophagy, senescence, mitotic catastrophe etc.) and high radiocurability produced by carbon-ion beams in combination with DNA damaging drugs or with molecular-targeted drugs, micro-RNA therapeutics and immunotherapy. Additionally, I have focused on the application of these treatment in human cancer cells, especially cancer stem cells (CSCs). Finally, I have summarized the current studies on the application of basic carbon-ion beam IR according to the cancer types and clinical outcomes.
Collapse
Affiliation(s)
- Sei Sai
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| | - Masashi Koto
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST)Chiba, Japan,QST Hospital, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| |
Collapse
|
14
|
Cavalieri S, Vitolo V, Barcellini A, Ronchi S, Facoetti A, Campo C, Klersy C, Molinelli S, Agustoni F, Ferretti VV, Silvestri AD, Platania M, Del Vecchio M, Durante M, Helm A, Fournier C, Braud FD, Pedrazzoli P, Orlandi E, Licitra L. Immune checkpoint inhibitors and Carbon iON radiotherapy In solid Cancers with stable disease (ICONIC). Future Oncol 2023; 19:193-203. [PMID: 36974574 DOI: 10.2217/fon-2022-0503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
ICONIC is a multicenter, open-label, nonrandomized phase II clinical trial aiming to assess the feasibility and clinical activity of the addition of carbon ion radiotherapy to immune checkpoint inhibitors in cancer patients who have obtained disease stability with pembrolizumab administered as per standard-of-care. The primary end point is objective response rate, and the secondary end points are safety, survival and disease control rate. Translational research is an exploratory aim. The planned sample size is 27 patients. The study combination will be considered worth investigating if at least four objective responses are observed. If the null hypothesis is rejected, ICONIC will be the first proof of concept of the feasibility and clinical activity of the addition of carbon ion radiotherapy to immune checkpoint inhibitors in oncology.
Collapse
Affiliation(s)
- Stefano Cavalieri
- Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Via Santa Sofia 9/1, Milan, 20122, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
- Department of Internal Medicine & Medical Therapy, University of Pavia, Via Aselli 43/45, Pavia, 27100, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
| | - Chiara Campo
- Scientific Direction, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
| | - Catherine Klersy
- SSD Biostatistica & Clinical Trial Center Service of Biometry and Statistics, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, 27100, Italy
| | - Silvia Molinelli
- Medical Physics, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
| | - Francesco Agustoni
- Department of Internal Medicine & Medical Therapy, University of Pavia, Via Aselli 43/45, Pavia, 27100, Italy
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, 27100, Italy
| | - Virginia Valeria Ferretti
- SSD Biostatistica & Clinical Trial Center Service of Biometry and Statistics, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, 27100, Italy
| | - Annalisa De Silvestri
- SSD Biostatistica & Clinical Trial Center Service of Biometry and Statistics, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, 27100, Italy
| | - Marco Platania
- Department of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Michele Del Vecchio
- Department of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Marco Durante
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, 64291, Germany
| | - Alexander Helm
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, 64291, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, 64291, Germany
| | - Filippo de Braud
- Department of Oncology & Hemato-Oncology, University of Milan, Via Santa Sofia 9/1, Milan, 20122, Italy
- Department of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine & Medical Therapy, University of Pavia, Via Aselli 43/45, Pavia, 27100, Italy
- Department of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, 27100, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
| | - Lisa Licitra
- Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, Via Santa Sofia 9/1, Milan, 20122, Italy
- Scientific Direction, CNAO National Center for Oncological Hadrontherapy, Via E. Borloni 1, Pavia, 27100, Italy
| |
Collapse
|
15
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
16
|
Ovarian Cancer Radiosensitivity: What Have We Understood So Far? LIFE (BASEL, SWITZERLAND) 2022; 13:life13010006. [PMID: 36675955 PMCID: PMC9861683 DOI: 10.3390/life13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Radiotherapy has been increasingly considered as an active treatment to combine with other approaches (i.e., surgery, chemotherapy, and novel target-based drugs) in ovarian cancers to palliate symptoms and/or to prolong chemotherapy-free intervals. This narrative review aimed to summarize the current knowledge of the radiosensitivity/radioresistance of ovarian cancer which remains the most lethal gynecological cancer worldwide. Indeed, considering the high rate of recurrence in and out of the radiotherapy fields, in the era of patient-tailored oncology, elucidating the mechanisms of radiosensitivity and identifying potential radioresistance biomarkers could be crucial in guiding clinical decision-making.
Collapse
|
17
|
Hartmann L, Osen W, Eichmüller OL, Kordaß T, Furkel J, Dickes E, Reid C, Debus J, Brons S, Abdollahi A, Moustafa M, Rieken S, Eichmüller SB. Carbon ion irradiation plus CTLA4 blockade elicits therapeutic immune responses in a murine tumor model. Cancer Lett 2022; 550:215928. [DOI: 10.1016/j.canlet.2022.215928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
18
|
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547:215887. [PMID: 35995141 DOI: 10.1016/j.canlet.2022.215887] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yang Wen
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
19
|
Katsuki S, Takahashi Y, Tamari K, Minami K, Takenaka W, Ibuki Y, Yamamoto J, Tatekawa S, Hayashi K, Seo Y, Isohashi F, Ogawa K, Koizumi M. Radiation therapy enhances systemic antitumor efficacy in PD-L1 therapy regardless of sequence of radiation in murine osteosarcoma. PLoS One 2022; 17:e0271205. [PMID: 35816501 PMCID: PMC9273087 DOI: 10.1371/journal.pone.0271205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/25/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies demonstrate that immune checkpoint blockade (ICB) increases the chances of the abscopal effect, an anti-tumor effect outside the radiation field in radiation therapy. However, the optimal sequence between radiation and ICB remains unclear. To investigate the impact of sequence of radiation in anti-PD-L1 antibody (P1) therapy on immune microenvironments and antitumor efficacies in local and abscopal tumors, metastatic LM8 osteosarcoma cells were inoculated into both legs of C3H mice. For irradiation, only one side leg was irradiated at 10 Gy. Then mice were divided into four groups: administrated anti-PD-L1 antibody three times (P1 monotherapy), receiving radiation 3 days prior to P1 therapy (P1+pre-Rad), and receiving concurrent radiation with P1 therapy (P1+conc-Rad). Thereafter, tumor immune microenvironment and tumor volume changes were analyzed in irradiated and unirradiated tumors. The P1+pre-Rad regimen increased the proportion of CD8+ programmed cell death 1 (PD-1)+ granzyme B (GzmB)+ reinvigorated T cells and decreased the proportion of CD8+ PD-1+ GzmB- exhausted T cells than P1+conc-Rad regimen in unirradiated tumors. Combination regimens suppressed tumor growth in irradiated tumors compared with that in P1 monotherapy. In both irradiated and unirradiated tumors, significant tumor growth suppression and prolonged overall survival were observed under both combination treatment regimens compared with P1 monotherapy. However, no distinct differences in unirradiated tumor volume and survival were observed between P1+pre-Rad and P1+conc-Rad groups. These results suggest that local irradiation is necessary to improve systemic treatment efficacy in P1 therapy regardless of sequence of local irradiation.
Collapse
Affiliation(s)
- Shohei Katsuki
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yutaka Takahashi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Wataru Takenaka
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoriko Ibuki
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Junya Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiko Hayashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
20
|
Utilizing Carbon Ions to Treat Medulloblastomas that Exhibit Chromothripsis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Novel radiation therapies with accelerated charged particles such as protons and carbon ions have shown encouraging results in oncology. We present recent applications as well as benefits and risks associated with their use.
Recent Findings
We discuss the use of carbon ion radiotherapy to treat a specific type of aggressive pediatric brain tumors, namely medulloblastomas with chromothripsis. Potential reasons for the resistance to conventional treatment, such as the presence of cancer stem cells with unique properties, are highlighted. Finally, advantages of particle radiation alone and in combination with other therapies to overcome resistance are featured.
Summary
Provided that future preclinical studies confirm the evidence of high effectiveness, favorable toxicity profiles, and no increased risk of secondary malignancy, carbon ion therapy may offer a promising tool in pediatric (neuro)oncology and beyond.
Collapse
|
21
|
Tinganelli W, Weber U, Puspitasari A, Simoniello P, Abdollahi A, Oppermann J, Schuy C, Horst F, Helm A, Fournier C, Durante M. FLASH with carbon ions: tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiother Oncol 2022; 175:185-190. [DOI: 10.1016/j.radonc.2022.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
|
22
|
Yamamoto J, Takahashi Y, Minami K, Tamari K, Katsuki S, Takenaka W, Tatekawa S, Hayashi K, Seo Y, Isohashi F, Ogawa K, Koizumi M. High Dose Local Photon Irradiation Is Crucial in Anti-CTLA-4 Antibody Therapy to Enhance the Abscopal Response in a Murine Pancreatic Carcinoma Model. Cancers (Basel) 2022; 14:cancers14092087. [PMID: 35565217 PMCID: PMC9101709 DOI: 10.3390/cancers14092087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is an extremely treatment-resistant neoplasm to chemotherapy and immunotherapy. The combination of photon beam irradiation and anti-CTLA-4 antibody (C4) for the anti-tumor effect enhancement at local and distant tumors (abscopal tumors) was investigated using the pancreatic ductal adenocarcinoma (PDAC) mouse model. Pan02 cells were bilaterally inoculated to both legs of C57BL/6 mice. High dose photon beams in a hypofractionation or a single fraction were delivered to the tumors on one leg. Monotherapy with C4 via i.p. was not effective for PDAC. The high dose irradiation to the local tumors produced significant shrinkage of irradiated tumors but did not induce the abscopal responses. In contrast, the combination therapy of high dose photon beam irradiation in both hypofractionation and a single fraction with C4 enhanced the anti-tumor effect for abscopal tumors with significantly prolonged overall survival. The flow cytometric analysis revealed that the combination therapy dramatically decreased the regulatory T cell (Treg) proportion while increasing the cytotoxic T lymphocytes in both local and abscopal tumors. These results suggest that high dose photon beam irradiation plays an important role in C4 therapy to enhance the abscopal response with immune microenvironment changes in PDAC, regardless of the fractionation in radiation therapy.
Collapse
Affiliation(s)
- Junya Yamamoto
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Yutaka Takahashi
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
- Correspondence: ; Tel.: +81-6-6879-2564; Fax: +81-6-6879-2565
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Keisuke Tamari
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Shohei Katsuki
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Wataru Takenaka
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Kazuhiko Hayashi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Yuji Seo
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (K.T.); (S.T.); (K.H.); (Y.S.); (F.I.); (K.O.)
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (J.Y.); (K.M.); (S.K.); (W.T.); (M.K.)
| |
Collapse
|
23
|
Ma L. From Photon Beam to Accelerated Particle Beam: Antimetastasis Effect of Combining Radiotherapy With Immunotherapy. Front Public Health 2022; 10:847119. [PMID: 35425754 PMCID: PMC9002008 DOI: 10.3389/fpubh.2022.847119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is one of the major diseases that seriously threaten the human health. Radiotherapy is a common treatment for cancer. It is noninvasive and retains the functions of the organ where the tumor is located. Radiotherapy includes photon beam radiotherapy, which uses X-rays or gamma rays, and particle beam radiotherapy, using beams of protons and heavy ions. Compared with photon beam radiotherapy, particle beam radiotherapy has excellent dose distribution, which enables it to kill the primary tumor cells more effectively and simultaneously minimize the radiation-induced damage to normal tissues and organs surrounding the tumor. Despite the excellent therapeutic effect of particle beam radiotherapy on the irradiated tumors, it is not an effective treatment for metastatic cancers. Therefore, developing novel and effective treatment strategies for cancer is urgently needed to save patients with distant cancer metastasis. Immunotherapy enhances the body's own immune system to fight cancer by activating the immune cells, and consequently, to achieve the systemic anticancer effects, and it is considered to be an adjuvant therapy that can enhance the efficacy of particle beam radiotherapy. This review highlights the research progress of the antimetastasis effect and the mechanism of the photon beam or particle beam radiotherapy combined with immunotherapy and predicts the development prospects of this research area.
Collapse
Affiliation(s)
- Liqiu Ma
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China.,National Innovation Center of Radiation Application, Beijing, China
| |
Collapse
|
24
|
A Consistent Protocol Reveals a Large Heterogeneity in the Biological Effectiveness of Proton and Carbon-Ion Beams for Various Sarcoma and Normal-Tissue-Derived Cell Lines. Cancers (Basel) 2022; 14:cancers14082009. [PMID: 35454915 PMCID: PMC9029457 DOI: 10.3390/cancers14082009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Using a consistent experimental protocol, we found a large heterogeneity in the relative biological effectiveness (RBE) values of both proton and carbon-ion beams in various sarcomas and normal-tissue-derived cell lines. Our data suggest that proton beam therapy may be more beneficial for some types of tumors. In carbon-ion therapy, for some types of tumors, large heterogeneity in RBE should prompt consideration of dose reduction or an increased dose per fraction. In particular, a higher RBE value in normal tissues requires caution. Specific dose evaluations for tumor and normal tissues are needed for both proton and carbon-ion therapies. Abstract This study investigated variations in the relative biological effectiveness (RBE) values among various sarcoma and normal-tissue-derived cell lines (normal cell line) in proton beam and carbon-ion irradiations. We used a consistent protocol that specified the timing of irradiation after plating cells and detailed the colony formation assay. We examined the cell type dependence of RBE for proton beam and carbon-ion irradiations using four human sarcoma cell lines (MG63 osteosarcoma, HT1080 fibrosarcoma, SW872 liposarcoma, and SW1353 chondrosarcoma) and three normal cell lines (HDF human dermal fibroblast, hTERT-HME1 mammary gland, and NuLi-1 bronchus epithelium). The cells were irradiated with gamma rays, proton beams at the center of the spread-out Bragg peak, or carbon-ion beams at 54.4 keV/μm linear energy transfer. In all sarcoma and normal cell lines, the average RBE values in proton beam and carbon-ion irradiations were 1.08 ± 0.11 and 2.08 ± 0.36, which were consistent with the values of 1.1 and 2.13 used in current treatment planning systems, respectively. Up to 34% difference in the RBE of the proton beam was observed between MG63 and HT1080. Similarly, a 32% difference in the RBE of the carbon-ion beam was observed between SW872 and the other sarcoma cell lines. In proton beam irradiation, normal cell lines had less variation in RBE values (within 10%), whereas in carbon-ion irradiation, RBE values differed by up to 48% between hTERT-HME1 and NuLi-1. Our results suggest that specific dose evaluations for tumor and normal tissues are necessary for treatment planning in both proton and carbon-ion therapies.
Collapse
|
25
|
Ogasawara S, Koroki K, Makishima H, Wakatsuki M, Takahashi A, Yumita S, Nakagawa M, Ishino T, Ogawa K, Fujiwara K, Iwanaga T, Sakuma T, Fujita N, Kojima R, Kanzaki H, Kobayashi K, Kiyono S, Nakamura M, Kanogawa N, Saito T, Kondo T, Nakagawa R, Nakamoto S, Muroyama R, Chiba T, Ozawa Y, Kawasaki Y, Kurokawa T, Hanaoka H, Tsuji H, Kato N. Durvalumab with or without tremelimumab combined with particle therapy for advanced hepatocellular carcinoma with macrovascular invasion: protocol for the DEPARTURE phase Ib trial. BMJ Open 2022; 12:e059779. [PMID: 35396315 PMCID: PMC8995959 DOI: 10.1136/bmjopen-2021-059779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Advanced hepatocellular carcinoma (HCC) with macrovascular invasion (MVI) has the worst prognosis among all phenotypes. This trial aims to evaluate whether treatment with durvalumab, alone or in combination with tremelimumab, plus particle therapy is a safe and synergistically effective treatment in patients with advanced HCC and MVI. METHODS AND ANALYSIS This phase Ib, multicentre (two sites in Japan), open-label, single-arm, investigator-initiated clinical trial will assess durvalumab monotherapy in combination with particle therapy (cohort A) and that of durvalumab plus tremelimumab in combination with particle therapy (cohort B) for patients with advanced HCC with MVI. Cohort A will receive 1500 mg durvalumab every 4 weeks. Cohort B will receive 1500 mg durvalumab every 4 weeks in principle and 300 mg tremelimumab only on day 1 of the first cycle. Carbon-ion radiotherapy will be administered after day 8 of the first cycle. The primary endpoints are rates of any and severe adverse events, including dose-limiting toxicities (DLTs); secondary endpoints are overall survival, 6-month survival, objective response, 6-month progression-free survival and time to progression. Patients are initially enrolled into cohort A. If cohort A treatment is confirmed to be tolerated (ie, no DLT in three patients or one DLT in six patients), the trial proceeds to enrol more patients into cohort B. Similarly, if cohort B treatment is confirmed to be tolerated (ie, no DLT in three patients or one DLT in six patients), a total of 15 patients will be enrolled into cohort B. ETHICS AND DISSEMINATION This study was approved by the ethics committees of the two participating institutions (Chiba University Hospital and National Institutes for Quantum (approval number: 2020040) and Radiological Science and Technology, QST Hospital (approval number: C20-001)). Participants will be required to provide written informed consent. Trial results will be reported in a peer-reviewed journal publication. TRIAL REGISTRATION NUMBER jRCT2031210046.
Collapse
Affiliation(s)
- Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Makishima
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masaru Wakatsuki
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Asahi Takahashi
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Sae Yumita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyuki Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takamasa Ishino
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kisako Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takafumi Sakuma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoto Fujita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Translational Research and Development Center, Chiba University Hospital, Chiba, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihito Ozawa
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Tomoya Kurokawa
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hideki Hanaoka
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hiroshi Tsuji
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
26
|
Liang S, Zhou G, Hu W. Research Progress of Heavy Ion Radiotherapy for Non-Small-Cell Lung Cancer. Int J Mol Sci 2022; 23:2316. [PMID: 35216430 PMCID: PMC8876478 DOI: 10.3390/ijms23042316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) has a high incidence and poses a serious threat to human health. However, the treatment outcomes of concurrent chemoradiotherapy for non-small-cell lung cancer are still unsatisfactory, especially for high grade lesions. As a new cancer treatment, heavy ion radiotherapy has shown promising efficacy and safety in the treatment of non-small-cell lung cancer. This article discusses the clinical progress of heavy ion radiotherapy in the treatment of non-small-cell lung cancer mainly from the different cancer stages, the different doses of heavy ion beams, and the patient's individual factors, and explores the deficiency of heavy ion radiotherapy in the treatment of non-small-cell lung cancer and the directions of future research, in order to provide reference for the wider and better application of heavy ion radiotherapy in the future.
Collapse
Affiliation(s)
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| |
Collapse
|
27
|
Particle radiotherapy and molecular therapies: mechanisms and strategies towards clinical applications. Expert Rev Mol Med 2022; 24:e8. [PMID: 35101155 DOI: 10.1017/erm.2022.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy and targeted therapy are now commonly used in clinical trials in combination with radiotherapy for several cancers. While results are promising and encouraging, the molecular mechanisms of the interaction between the drugs and radiation remain largely unknown. This is especially important when switching from conventional photon therapy to particle therapy using protons or heavier ions. Different dose deposition patterns and molecular radiobiology can in fact modify the interaction with drugs and their effectiveness. We will show here that whilst the main molecular players are the same after low and high linear energy transfer radiation exposure, significant differences are observed in post-exposure signalling pathways that may lead to different effects of the drugs. We will also emphasise that the problem of the timing between drug administration and radiation and the fractionation regime are critical issues that need to be addressed urgently to achieve optimal results in combined treatments with particle therapy.
Collapse
|
28
|
Okamoto M, Sato H, GAO X, Ohno T. Pembrolizumab following carbon ion radiotherapy for alveolar soft part sarcoma shows a remarkable abscopal effect: A case report. Adv Radiat Oncol 2022; 7:100893. [PMID: 35198839 PMCID: PMC8841365 DOI: 10.1016/j.adro.2021.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
|
29
|
Loap P, Vischioni B, Bonora M, Ingargiola R, Ronchi S, Vitolo V, Barcellini A, Goanta L, De Marzi L, Dendale R, Pacelli R, Locati L, Calugaru V, Mammar H, Cavalieri S, Kirova Y, Orlandi E. Biological Rationale and Clinical Evidence of Carbon Ion Radiation Therapy for Adenoid Cystic Carcinoma: A Narrative Review. Front Oncol 2021; 11:789079. [PMID: 34917512 PMCID: PMC8668942 DOI: 10.3389/fonc.2021.789079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare, basaloid, epithelial tumor, arising mostly from salivary glands. Radiation therapy can be employed as a single modality for unresectable tumors, in an adjuvant setting after uncomplete resection, in case of high-risk pathological features, or for recurrent tumors. Due to ACC intrinsic radioresistance, high linear energy transfer (LET) radiotherapy techniques have been evaluated for ACC irradiation: while fast neutron therapy has now been abandoned due to toxicity concerns, charged particle beams such as protons and carbon ions are at present the beams used for hadron therapy. Carbon ion radiation therapy (CIRT) is currently increasingly used for ACC irradiation. The aim of this review is to describe the immunological, molecular and clinicopathological bases that support ACC treatment with CIRT, as well as to expose the current clinical evidence that reveal the advantages of using CIRT for treating ACC.
Collapse
Affiliation(s)
- Pierre Loap
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.,Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lucia Goanta
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli, Italy
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France.,Institut Curie, PSL Research University, University Paris Saclay, INSERM LITO, Orsay, France
| | - Remi Dendale
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Napoli, Italy
| | - Laura Locati
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentin Calugaru
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Hamid Mammar
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Stefano Cavalieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France.,Proton Therapy Center, Institut Curie, Orsay, France
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
30
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Permata TBM, Sato H, Gu W, Kakoti S, Uchihara Y, Yoshimatsu Y, Sato I, Kato R, Yamauchi M, Suzuki K, Oike T, Tsushima Y, Gondhowiardjo S, Ohno T, Yasuhara T, Shibata A. High linear energy transfer carbon-ion irradiation upregulates PD-L1 expression more significantly than X-rays in human osteosarcoma U2OS cells. JOURNAL OF RADIATION RESEARCH 2021; 62:773-781. [PMID: 34196706 PMCID: PMC8438258 DOI: 10.1093/jrr/rrab050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Uchihara
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Yukihiko Yoshimatsu
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Itaru Sato
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Reona Kato
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Science, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Yoshito Tsushima
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Soehartati Gondhowiardjo
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia – Dr. Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, 371-8511, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Shibata
- Corresponding author. Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan. Tel.: +81-27-220-7977; Fax: +81-27-220-7909; E-mail:
| |
Collapse
|
32
|
Cavalieri S, Ronchi S, Barcellini A, Bonora M, Vischioni B, Vitolo V, Villa R, Del Vecchio M, Licitra L, Orlandi E. Toxicity of carbon ion radiotherapy and immune checkpoint inhibitors in advanced melanoma. Radiother Oncol 2021; 164:1-5. [PMID: 34506831 DOI: 10.1016/j.radonc.2021.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/04/2023]
Abstract
We analyzed CTCAE adverse events of sequential Carbon Ion radiotherapy (CIRT) and immune checkpoint inhibitors (ICIs) in advanced melanoma patients. The frequencies of early and late adverse events (AEs) were 100% and 82% of patients, respectively. The frequency of G3+ AEs was in line with the literature.
Collapse
Affiliation(s)
- Stefano Cavalieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Ronchi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy.
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Riccardo Villa
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Michele Del Vecchio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
33
|
Wang J, Dai Z, Miao Y, Zhao T, Gan J, Zhao C, Ran J, Guan Q. Carbon ion ( 12C 6+) irradiation induces the expression of Klrk1 in lung cancer and optimizes the tumor microenvironment based on the NKG2D/NKG2D-Ls pathway. Cancer Lett 2021; 521:178-195. [PMID: 34492331 DOI: 10.1016/j.canlet.2021.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
With the identification of "negative immune regulation" defects in the immune system and the continuous improvement of immunotherapy, natural killer cells (NK) have received more attention, especially as tools in combined immunotherapy. Carbon ions (12C6+) have become the ideal radiation for combined immunotherapy due to their significant radiobiological advantages and synergistic effects. The purpose of this study was to explore the NK cell-mediated cytotoxicity pathway and related mechanisms in lung cancer induced by carbon ion irradiation. KLRK1, which specifically encodes the NKG2D receptor, was significantly correlated with the prognosis, clinical stage, functional status of NK cells, and the immune microenvironment of lung cancer, as shown by bioinformatics analysis. Based on RNA-seq data of Lewis lung cancer in C57BL/6 mice, carbon ion irradiation was found to significantly induce Klrk1 gene expression and activate the NKG2D/NKG2D-Ls pathway. The Treg inhibition pathway combined with carbon ion radiotherapy could significantly increase the infiltration and function of NK cells in the tumor microenvironment of lung cancer and prolong the survival time of C57BL/6 mice. In conclusion, carbon ions have significant radiobiological advantages, especially under conditions of combined immunotherapy. Carbon ions combined with Treg inhibitors can significantly improve the infiltration and functional status of NK cells.
Collapse
Affiliation(s)
- Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ziying Dai
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ting Zhao
- Medical Physics Room, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, PR China
| | - Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Chengpeng Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Juntao Ran
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China; Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
34
|
Ding LH, Yu Y, Edmondson EF, Weil MM, Pop LM, McCarthy M, Ullrich RL, Story MD. Transcriptomic analysis links hepatocellular carcinoma (HCC) in HZE ion irradiated mice to a human HCC subtype with favorable outcomes. Sci Rep 2021; 11:14052. [PMID: 34234215 PMCID: PMC8263559 DOI: 10.1038/s41598-021-93467-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
High-charge, high-energy ion particle (HZE) radiations are extraterrestrial in origin and characterized by high linear energy transfer (high-LET), which causes more severe cell damage than low-LET radiations like γ-rays or photons. High-LET radiation poses potential cancer risks for astronauts on deep space missions, but the studies of its carcinogenic effects have relied heavily on animal models. It remains uncertain whether such data are applicable to human disease. Here, we used genomics approaches to directly compare high-LET radiation-induced, low-LET radiation-induced and spontaneous hepatocellular carcinoma (HCC) in mice with a human HCC cohort from The Cancer Genome Atlas (TCGA). We identified common molecular pathways between mouse and human HCC and discovered a subset of orthologous genes (mR-HCC) that associated high-LET radiation-induced mouse HCC with a subgroup (mrHCC2) of the TCGA cohort. The mrHCC2 TCGA cohort was more enriched with tumor-suppressing immune cells and showed a better prognostic outcome than other patient subgroups.
Collapse
Affiliation(s)
- Liang-Hao Ding
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yongjia Yu
- Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Elijah F Edmondson
- Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Laurentiu M Pop
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Michael D Story
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
35
|
Durante M. Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiat Res 2021; 195:403-411. [PMID: 33979440 DOI: 10.1667/rade-21-00029.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Heavy ions are riveting in radiation biophysics, particularly in the areas of radiotherapy and space radiation protection. Accelerated charged particles can indeed penetrate deeply in the human body to sterilize tumors, exploiting the favorable depth-dose distribution of ions compared to conventional X rays. Conversely, the high biological effectiveness in inducing late effects presents a hazard for manned space exploration. Even after half a century of accelerator-based experiments, clinical applications and flight research, these two topics remain both fascinating and baffling. Heavy-ion therapy is very expensive, and despite the clinical success it remains controversial. Research on late radiation morbidity in spaceflight led to a reduction in uncertainty, but also pointed to new risks previously underestimated, such as possible damage to the central nervous system. Recently, heavy ions have also been used in other, unanticipated biomedical fields, such as treatment of heart arrhythmia or inactivation of viruses for vaccine development. Heavy-ion science nicely merges physics and biology and remains an extraordinary research field for the 21st century.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; and Technische Universität Darmstadt, Institute of Condensed Matter Physics, 64289 Darmstadt, Germany
| |
Collapse
|
36
|
Ran J, Wang J, Dai Z, Miao Y, Gan J, Zhao C, Guan Q. Irradiation-Induced Changes in the Immunogenicity of Lung Cancer Cell Lines: Based on Comparison of X-rays and Carbon Ions. Front Public Health 2021; 9:666282. [PMID: 33968889 PMCID: PMC8101633 DOI: 10.3389/fpubh.2021.666282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing the immunogenicity of tumors is considered to be an effective means to improve the synergistic immune effect of radiotherapy. Carbon ions have become ideal radiation for combined immunotherapy due to their particular radiobiological advantages. However, the difference in time and dose of immunogenic changes induced by Carbon ions and X-rays has not yet been fully clarified. To further explore the immunogenicity differences between carbon ions and X-rays induced by radiation in different "time windows" and "dose windows." In this study, we used principal component analysis (PCA) to screen out the marker genes from the single-cell RNA-sequencing (scRNA-seq) of CD8+ T cells and constructed a protein-protein interaction (PPI) network. Also, ELISA was used to test the exposure levels of HMGB1, IL-10, and TGF-β under different "time windows" and "dose windows" of irradiation with X-rays and carbon ions for A549, H520, and Lewis Lung Carcinoma (LLC) cell lines. The results demonstrated that different marker genes were involved in different processes of immune effect. HMGB1 was significantly enriched in the activated state, while the immunosuppressive factors TGF-β and IL-10 were mainly enriched in the non-functional state. Both X-rays and Carbon ions promoted the exposure of HMGB1, IL-10, and TGF-β in a time-dependent manner. X-rays but not Carbon ions increased the HMGB1 exposure level in a dose-dependent manner. Besides, compared with X-rays, carbon ions increased the exposure of HMGB1 while relatively reduced the exposure levels of immunosuppressive factors IL-10 and TGF-β. Therefore, we speculate that Carbon ions may be more advantageous than conventional X-rays in inducing immune effects.
Collapse
Affiliation(s)
- Juntao Ran
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ziying Dai
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chengpeng Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Helm A, Tinganelli W, Fournier C, Simoniello P, Kurosawa F, Shimokawa T, Durante M. In Reply to Elmali et al. Int J Radiat Oncol Biol Phys 2021; 109:1658-1659. [PMID: 33714530 DOI: 10.1016/j.ijrobp.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Alexander Helm
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy
| | - Fuki Kurosawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| |
Collapse
|
38
|
In Regard to Helm et al. Int J Radiat Oncol Biol Phys 2021; 109:1658. [PMID: 33714531 DOI: 10.1016/j.ijrobp.2020.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
|
39
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
40
|
Friedrich T, Henthorn N, Durante M. Modeling Radioimmune Response-Current Status and Perspectives. Front Oncol 2021; 11:647272. [PMID: 33796470 PMCID: PMC8008061 DOI: 10.3389/fonc.2021.647272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The combination of immune therapy with radiation offers an exciting and promising treatment modality in cancer therapy. It has been hypothesized that radiation induces damage signals within the tumor, making it more detectable for the immune system. In combination with inhibiting immune checkpoints an effective anti-tumor immune response may be established. This inversion from tumor immune evasion raises numerous questions to be solved to support an effective clinical implementation: These include the optimum immune drug and radiation dose time courses, the amount of damage and associated doses required to stimulate an immune response, and the impact of lymphocyte status and dynamics. Biophysical modeling can offer unique insights, providing quantitative information addressing these factors and highlighting mechanisms of action. In this work we review the existing modeling approaches of combined ‘radioimmune’ response, as well as associated fields of study. We propose modeling attempts that appear relevant for an effective and predictive model. We emphasize the importance of the time course of drug and dose delivery in view to the time course of the triggered biological processes. Special attention is also paid to the dose distribution to circulating blood lymphocytes and the effect this has on immune competence.
Collapse
Affiliation(s)
- Thomas Friedrich
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Nicholas Henthorn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marco Durante
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.,Institute for Solid State Physics, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
41
|
Ibuki Y, Takahashi Y, Tamari K, Minami K, Seo Y, Isohashi F, Koizumi M, Ogawa K. Local hyperthermia combined with CTLA-4 blockade induces both local and abscopal effects in a murine breast cancer model. Int J Hyperthermia 2021; 38:363-371. [PMID: 33657951 DOI: 10.1080/02656736.2021.1875059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To evaluate the antitumor efficacy in local and distant tumors induced by local hyperthermia with CTLA-4 blockade. METHODS A mouse breast cancer cell line was inoculated into both sides of the legs of mice. The mice were treated with three administrations of CTLA-4 blockade, a single application of local hyperthermia (42.5 °C for 20 min) to the tumor on one side of the leg, or the combination of the two. Tumor growth in locally heated tumors (HT tumors) and unheated distant tumors (UnHT tumors) and overall survival were evaluated. RESULTS In the combination group, tumor volume significantly decreased for both HT and UnHT tumors compared with the tumors in the untreated and local hyperthermia monotherapy groups. Remarkable efficacy was only observed in the combination therapy group, in which 7 of 18 mice responded to HT and UnHT tumors, with significant prolonged overall survival. CONCLUSIONS Combination therapy enhanced the antitumor response not only in HT tumors but also in UnHT tumors and prolonged overall survival.
Collapse
Affiliation(s)
- Yoriko Ibuki
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Takahashi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
42
|
Hartmann L, Schröter P, Osen W, Baumann D, Offringa R, Moustafa M, Will R, Debus J, Brons S, Rieken S, Eichmüller SB. Photon versus carbon ion irradiation: immunomodulatory effects exerted on murine tumor cell lines. Sci Rep 2020; 10:21517. [PMID: 33299018 PMCID: PMC7726046 DOI: 10.1038/s41598-020-78577-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
While for photon radiation hypofractionation has been reported to induce enhanced immunomodulatory effects, little is known about the immunomodulatory potential of carbon ion radiotherapy (CIRT). We thus compared the radio-immunogenic effects of photon and carbon ion irradiation on two murine cancer cell lines of different tumor entities. We first calculated the biological equivalent doses of carbon ions corresponding to photon doses of 1, 3, 5, and 10 Gy of the murine breast cancer cell line EO771 and the OVA-expressing pancreatic cancer cell line PDA30364/OVA by clonogenic survival assays. We compared the potential of photon and carbon ion radiation to induce cell cycle arrest, altered surface expression of immunomodulatory molecules and changes in the susceptibility of cancer cells to cytotoxic T cell (CTL) mediated killing. Irradiation induced a dose-dependent G2/M arrest in both cell lines irrespective from the irradiation source applied. Likewise, surface expression of the immunomodulatory molecules PD-L1, CD73, H2-Db and H2-Kb was increased in a dose-dependent manner. Both radiation modalities enhanced the susceptibility of tumor cells to CTL lysis, which was more pronounced in EO771/Luci/OVA cells than in PDA30364/OVA cells. Overall, compared to photon radiation, the effects of carbon ion radiation appeared to be enhanced at higher dose range for EO771 cells and extenuated at lower dose range for PDA30364/OVA cells. Our data show for the first time that equivalent doses of carbon ion and photon irradiation exert similar immunomodulating effects on the cell lines of both tumor entities, highlighted by an enhanced susceptibility to CTL mediated cytolysis in vitro.
Collapse
Affiliation(s)
- Laura Hartmann
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Philipp Schröter
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Wolfram Osen
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany
| | - Daniel Baumann
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Heidelberg, Germany
- Department of Surgery, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Heidelberg, Germany
- Department of Surgery, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Mahmoud Moustafa
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Faculty of Medicine Heidelberg (MFHD), Division of Molecular and Translational Radiation Oncology, Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Rainer Will
- German Cancer Research Center (DKFZ), Genomics and Proteomics Core Facility, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Faculty of Medicine Heidelberg (MFHD), Division of Molecular and Translational Radiation Oncology, Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital (UKHD), Heidelberg, Germany.
- Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
| | - Stefan B Eichmüller
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Heidelberg, Germany.
| |
Collapse
|
43
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
44
|
Helm A, Tinganelli W, Simoniello P, Kurosawa F, Fournier C, Shimokawa T, Durante M. Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors. Int J Radiat Oncol Biol Phys 2020; 109:594-602. [PMID: 32980497 DOI: 10.1016/j.ijrobp.2020.09.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/12/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The combination of radiation therapy and immunotherapy is recognized as a very promising strategy for metastatic cancer treatment. The purpose of this work is to compare the effectiveness of x-ray and high-energy carbon ion therapy in combination with checkpoint inhibitors in a murine model. METHODS AND MATERIALS We used an osteosarcoma mouse model irradiated with either carbon ions or x-rays in combination with 2 immune checkpoint inhibitors (anti-PD-1 and anti-CTLA-4). LM8 osteosarcoma cells were injected in both hind limbs of female C3H/He mice 7 days before exposure to carbon ions or x-rays. In experimental groups receiving irradiation, only the tumor on the left limb was exposed, whereas the tumor on the right limb served as an abscopal mimic. Checkpoint inhibitors were injected intraperitoneally 1 day before exposure as well as concomitant to and after exposure. Tumor growth was measured regularly up to day 21 after exposure, when mice were sacrificed. Both tumors as well as lungs were extracted. RESULTS A reduced growth of the abscopal tumor was most pronounced after the combined protocol of carbon ions and the immune checkpoint inhibitors administered sequentially. Radiation or checkpoint inhibitors alone were not sufficient to reduce the growth of the abscopal tumors. Carbon ions alone reduced the number of lung metastases more efficiently than x-rays, and in combination with immunotherapy both radiation types essentially suppressed the metastasis, with carbon ions being again more efficient. Investigation of the infiltration of immune cells in the abscopal tumors of animals treated with combination revealed an increase in CD8+ cells. CONCLUSIONS Combination of checkpoint inhibitors with high-energy carbon ion radiation therapy can be an effective strategy for the treatment of advanced tumors.
Collapse
Affiliation(s)
- Alexander Helm
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy
| | - Fuki Kurosawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany.
| |
Collapse
|
45
|
Keam S, Gill S, Ebert MA, Nowak AK, Cook AM. Enhancing the efficacy of immunotherapy using radiotherapy. Clin Transl Immunology 2020; 9:e1169. [PMID: 32994997 PMCID: PMC7507442 DOI: 10.1002/cti2.1169] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/04/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical breakthroughs in cancer immunotherapy, especially with immune checkpoint blockade, offer great hope for cancer sufferers - and have greatly changed the landscape of cancer treatment. However, whilst many patients achieve clinical responses, others experience minimal benefit or do not respond to immune checkpoint blockade at all. Researchers are therefore exploring multimodal approaches by combining immune checkpoint blockade with conventional cancer therapies to enhance the efficacy of treatment. A growing body of evidence from both preclinical studies and clinical observations indicates that radiotherapy could be a powerful driver to augment the efficacy of immune checkpoint blockade, because of its ability to activate the antitumor immune response and potentially overcome resistance. In this review, we describe how radiotherapy induces DNA damage and apoptosis, generates immunogenic cell death and alters the characteristics of key immune cells in the tumor microenvironment. We also discuss recent preclinical work and clinical trials combining radiotherapy and immune checkpoint blockade in thoracic and other cancers. Finally, we discuss the scheduling of immune checkpoint blockade and radiotherapy, biomarkers predicting responses to combination therapy, and how these novel data may be translated into the clinic.
Collapse
Affiliation(s)
- Synat Keam
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
| | - Suki Gill
- Department of Radiation OncologySir Charles Gairdner HospitalPerthWAAustralia
| | - Martin A Ebert
- Department of Radiation OncologySir Charles Gairdner HospitalPerthWAAustralia
- School of Physics, Mathematics and ComputingThe University of Western AustraliaPerthWAAustralia
| | - Anna K Nowak
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
- Department of Medical OncologySir Charles Gairdner HospitalNedlands, PerthWAAustralia
| | - Alistair M Cook
- National Centre for Asbestos Related DiseasesPerthWAAustralia
- School of MedicineThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
46
|
Fu P, Shi Y, Chen G, Fan Y, Gu Y, Gao Z. Prognostic Factors in Patients With Osteosarcoma With the Surveillance, Epidemiology, and End Results Database. Technol Cancer Res Treat 2020; 19:1533033820947701. [PMID: 32787692 PMCID: PMC7427153 DOI: 10.1177/1533033820947701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Osteosarcoma is a rare type of bone tumor, and this study aimed to assess the clinicopathologic features and prognoses of osteosarcoma patients. Methods: Clinicopathologic and survival data of 1025 patients between 2010 and 2016, 230 between 2008 and 2009 were downloaded and analyzed from the SEER database. Patients’ survival was analyzed using the Kaplan-Meier analysis; prognostic factors were assessed using the Cox regression hazards model. The 1-, 3-, and 5-year survival rates were estimated with nomogram. Competitive risk models were used to identify prognostic risk factors related to endpoint events of osteosarcoma patients. Results: Overall, 722 samples were obtained from the extremities, 134 from the axial bones, and 119 from the cranial and mandible in SEER (2010-2016 cohort). After the preliminary diagnosis, the median survival time of patients with osteosarcoma was 39 months, and the 1-, 3-, and 5-year survival rates were 87.3%, 67.2%, and 58.0%, respectively (P < 0.001). The competitive risk model revealed no competitive risks of the endpoint event. Conclusion: Our study found out the prognostic factors in patients with Osteosarcoma by Cox regression hazards model, after that, nomogram was established to predict the 1-, 3-, and 5-year survival rates, which may help oncologists to understand the highly malignant tumor.
Collapse
Affiliation(s)
- Peng Fu
- Department of Orthopedic, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Shi
- Department of Radiotherapy, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Chen
- Department of Orthopedic, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yaohua Fan
- Department of Clinical Oncology, 569220The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yanhong Gu
- Department of Clinical Oncology, 74734The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Gao
- Department of Clinical Oncology, 569220The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
47
|
Takenaka W, Takahashi Y, Tamari K, Minami K, Katsuki S, Seo Y, Isohashi F, Koizumi M, Ogawa K. Radiation Dose Escalation is Crucial in Anti-CTLA-4 Antibody Therapy to Enhance Local and Distant Antitumor Effect in Murine Osteosarcoma. Cancers (Basel) 2020; 12:E1546. [PMID: 32545427 PMCID: PMC7352693 DOI: 10.3390/cancers12061546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
We previously reported that a combination of 10 Gy of X-ray irradiation and dual immune checkpoint blockade with anti-CTLA-4 (C4) and anti-PD-L1 antibodies produced a significant shrinkage of irradiated and unirradiated tumors (abscopal effect) and prolonged overall survival. However, the optimal radiation delivery regimen combined with single immune checkpoint blockade of C4 for inducing a maximum systemic antitumor response still remains unclear, particularly for patients with osteosarcoma. We used syngeneic C3H mice that were subcutaneously injected with LM8 osteosarcoma cells into both legs. C4 was administered three times, and one side of the tumor was irradiated by X-ray beams. The optimal radiation dose required to induce the abscopal effect was explored with a focus on the induction of the type-I interferon pathway. Radiation delivered in a single fraction of 10 Gy, 4.5 Gy × 3 fractions (fx), and 2 Gy × 8 fx with C4 failed to produce significant inhibition of unirradiated tumor growth compared with monotherapy with C4. Dose escalation to 16 Gy in a single fraction, or the equivalent hypofractionated dose of 8 Gy × 3 fx, which significantly increased secretion of IFN-β in vitro, produced a dramatic regression of both irradiated and unirradiated tumors and prolonged overall survival in combination with C4. Furthermore, irradiation at 16 Gy in both a single fraction and 8 Gy × 3 fx diminished regulatory T cells in the unirradiated tumor microenvironment. These results suggest that total dose escalation of radiation is crucial in C4 therapy to enhance the antitumor response in both local and distant tumors and prolonged overall survival regardless of fractionation for osteosarcoma.
Collapse
Affiliation(s)
- Wataru Takenaka
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (W.T.); (S.K.); (M.K.)
| | - Yutaka Takahashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Shohei Katsuki
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (W.T.); (S.K.); (M.K.)
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (W.T.); (S.K.); (M.K.)
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; (K.T.); (K.M.); (Y.S.); (F.I.); (K.O.)
| |
Collapse
|
48
|
Tubin S, Yan W, Mourad WF, Fossati P, Khan MK. The future of radiation-induced abscopal response: beyond conventional radiotherapy approaches. Future Oncol 2020; 16:1137-1151. [PMID: 32338046 DOI: 10.2217/fon-2020-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in the immunological pharmaceuticals, such as checkpoint inhibitors and agonists, have positive implications for the future of the radiotherapy abscopal response. A once rare phenomenon, whereby distant nonirradiated tumor sites regressed after radiotherapy alone, may become more common when combined with the immune modulating agents. Radiotherapy can increase neoantigen expression, increased tumor PD-L1 expression, increase MHC class I expression, reverse exhausted CD8 T cells and increase tumor-infiltrating tumors within the tumor microenvironment. These changes in the tumor and the tumor microenvironment after radiotherapy could potentiate responses to anti-CTL-4, anti-PD-L1/PD-1 and other immunotherapy agents. Thus, advances in checkpoint inhibitors have increased interest in re-evaluation of the role of conventional radiotherapy approaches on the immune system. We reviewed newer nonconventional approaches such as SBRT-PATHY, GRID, FLASH, carbon ion and proton therapy and their role in eliciting immune responses. We believe that combining these novel radiation methods may enhance the outcome with the newly US FDA approved immune modulating agents.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson University, 11th St, Philadelphia, PA 19107, USA
| | - Waleed F Mourad
- Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, Medical Center, MN 150 - Lexington, KY 40536-0298, USA
| | - Piero Fossati
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365-C Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol 2020; 25:801-809. [PMID: 32246277 PMCID: PMC7192886 DOI: 10.1007/s10147-020-01666-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Significant technological advances in radiotherapy have been made in the past few decades. High-precision radiotherapy has recently become popular and is contributing to improvements in the local control of the irradiated target lesions and the reduction of adverse effects. Accordingly, for long-term survival, the importance of systemic cancer control, including at non-irradiated sites, is growing. Toward this challenge, the treatment methods in which anti-PD-1/PD-L1 antibodies that exert systemic effects by restoring anti-tumour immunity are combined with radiotherapy has attracted attention in recent years. Previous studies have reported the activation of anti-tumour immunity by radiotherapy, which simultaneously elevates PD-L1 expression, suggesting a potential for combination therapy. Radiotherapy induces so-called ‘immunogenic cell death’, which involves cell surface translocation of calreticulin and extracellular release of high-mobility group protein box 1 (HMGB-1) and adenosine-5′-triphosphate (ATP). Furthermore, radiotherapy causes immune activation via MHC class I upregulation and cGAS–STING pathway. In contrast, induction of immunosuppressive lymphocytes and the release of immunosuppressive cytokines and chemokines by radiotherapy contribute to immunosuppressive reactions. In this article, we review immune responses induced by radiotherapy as well as previous reports to support the rationale of combination of radiotherapy and anti-PD-1/PD-L1 antibodies. A number of preclinical and clinical studies have shown the efficacy of radiotherapy combined with immune checkpoint inhibition, hence combination therapy is considered to be an important future strategy for cancer treatment.
Collapse
Affiliation(s)
- Hiro Sato
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan.
| | - Noriyuki Okonogi
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage, Chiba, 263-8555, Japan
| | - Takashi Nakano
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
50
|
Thariat J, Valable S, Laurent C, Haghdoost S, Pérès EA, Bernaudin M, Sichel F, Lesueur P, Césaire M, Petit E, Ferré AE, Saintigny Y, Skog S, Tudor M, Gérard M, Thureau S, Habrand JL, Balosso J, Chevalier F. Hadrontherapy Interactions in Molecular and Cellular Biology. Int J Mol Sci 2019; 21:E133. [PMID: 31878191 PMCID: PMC6981652 DOI: 10.3390/ijms21010133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Samuel Valable
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Carine Laurent
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Siamak Haghdoost
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Elodie A. Pérès
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Myriam Bernaudin
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - François Sichel
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Paul Lesueur
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Mathieu Césaire
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Edwige Petit
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Aurélie E. Ferré
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Yannick Saintigny
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Sven Skog
- Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen 518057, China;
| | - Mihaela Tudor
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-63, 077125 Magurele, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania
| | - Michael Gérard
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Sebastien Thureau
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- Department of Radiation Oncology, Centre Henri Becquerel, 76000 Rouen, France
| | - Jean-Louis Habrand
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - François Chevalier
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| |
Collapse
|