1
|
Liu Y, Qi L, Ye B, Wang A, Lu J, Qu L, Luo P, Wang L, Jiang A. MOICS, a novel classier deciphering immune heterogeneity and aid precise management of clear cell renal cell carcinoma at multiomics level. Cancer Biol Ther 2024; 25:2345977. [PMID: 38659199 PMCID: PMC11057626 DOI: 10.1080/15384047.2024.2345977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Recent studies have indicated that the tumor immune microenvironment plays a pivotal role in the initiation and progression of clear cell renal cell carcinoma (ccRCC). However, the characteristics and heterogeneity of tumor immunity in ccRCC, particularly at the multiomics level, remain poorly understood. We analyzed immune multiomics datasets to perform a consensus cluster analysis and validate the clustering results across multiple internal and external ccRCC datasets; and identified two distinctive immune phenotypes of ccRCC, which we named multiomics immune-based cancer subtype 1 (MOICS1) and subtype 2 (MOICS2). The former, MOICS1, is characterized by an immune-hot phenotype with poor clinical outcomes, marked by significant proliferation of CD4+ and CD8+ T cells, fibroblasts, and high levels of immune inhibitory signatures; the latter, MOICS2, exhibits an immune-cold phenotype with favorable clinical characteristics, characterized by robust immune activity and high infiltration of endothelial cells and immune stimulatory signatures. Besides, a significant negative correlation between immune infiltration and angiogenesis were identified. We further explored the mechanisms underlying these differences, revealing that negatively regulated endopeptidase activity, activated cornification, and neutrophil degranulation may promote an immune-deficient phenotype, whereas enhanced monocyte recruitment could ameliorate this deficiency. Additionally, significant differences were observed in the genomic landscapes between the subtypes: MOICS1 exhibited mutations in TTN, BAP1, SETD2, MTOR, MUC16, CSMD3, and AKAP9, while MOICS2 was characterized by notable alterations in the TGF-β pathway. Overall, our work demonstrates that multi-immune omics remodeling analysis enhances the understanding of the immune heterogeneity in ccRCC and supports precise patient management.
Collapse
Affiliation(s)
- Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Bicheng Ye
- School of Clinical Medicine, Medical College of Yangzhou Polytechnic College, Yangzhou, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Juan Lu
- Vocational Education Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
2
|
Larrea Murillo L, Sugden CJ, Ozsvari B, Moftakhar Z, Hassan GS, Sotgia F, Lisanti MP. ALDH High Breast Cancer Stem Cells Exhibit a Mesenchymal-Senescent Hybrid Phenotype, with Elevated Metabolic and Migratory Activities. Cells 2024; 13:2059. [PMID: 39768151 PMCID: PMC11674378 DOI: 10.3390/cells13242059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential. Cells that undergo an EMT process have shown to be more resistant to conventional chemo/radiotherapies. In this context, aldehyde dehydrogenase (ALDH) enzymes, known for their role in the cellular detoxification of aldehydes and enhancement of cell survival, are often upregulated in cancer cells, promoting their resistance to conventional cancer treatments. Indeed, high ALDH levels have become a hallmark biomarker of CSCs and are often used to isolate this sub-population from the more abundant cancer cell populations. Herein, we isolated human breast cancer epithelial cells with higher ALDH abundance (ALDHHigh) and compared them to those with low ALDH abundance (ALDHLow). ALDHHigh sub-populations exhibited more characteristic EMT biomarkers by adopting a more mesenchymal phenotype with increased stemness and enhanced migratory potential. Furthermore, ALDHHigh sub-populations displayed elevated senescent markers. Moreover, these cells also demonstrated higher levels of mitochondria DNA/mass, as well as greater mitochondrial and glycolytic metabolic function. Conversely, ALDHLow sub-populations showed a higher efficiency of mammosphere/colony formation and an increased proliferative capacity. Therefore, we demonstrated that these ALDH sub-populations have distinct characteristics, underscoring their role in EMT, the formation of tumors and the mechanisms of metastasis.
Collapse
Affiliation(s)
- Luis Larrea Murillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Conor J. Sugden
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Bela Ozsvari
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Zahra Moftakhar
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Ghada S. Hassan
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
3
|
Zatorski N, Sun Y, Elmas A, Dallago C, Karl T, Stein D, Rost B, Huang KL, Walsh M, Schlessinger A. Structural analysis of genomic and proteomic signatures reveal dynamic expression of intrinsically disordered regions in breast cancer. iScience 2024; 27:110640. [PMID: 39310778 PMCID: PMC11416222 DOI: 10.1016/j.isci.2024.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
Structural features of proteins capture underlying information about protein evolution and function, which enhances the analysis of proteomic and transcriptomic data. Here, we develop Structural Analysis of Gene and protein Expression Signatures (SAGES), a method that describes expression data using features calculated from sequence-based prediction methods and 3D structural models. We used SAGES, along with machine learning, to characterize tissues from healthy individuals and those with breast cancer. We analyzed gene expression data from 23 breast cancer patients and genetic mutation data from the Catalog of Somatic Mutations In Cancer database as well as 17 breast tumor protein expression profiles. We identified prominent expression of intrinsically disordered regions in breast cancer proteins as well as relationships between drug perturbation signatures and breast cancer disease signatures. Our results suggest that SAGES is generally applicable to describe diverse biological phenomena including disease states and drug effects.
Collapse
Affiliation(s)
- Nicole Zatorski
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Abdulkadir Elmas
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Christian Dallago
- NVIDIA DE GmbH, Einsteinstraße 172, 81677 München, Germany
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - Timothy Karl
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Burkhard Rost
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - Kuan-Lin Huang
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl, New York, NY 10029, USA
| |
Collapse
|
4
|
Mocan LP, Grapa C, Crăciun R, Pralea IE, Uifălean A, Soporan AM, Mureșan XM, Iacobescu M, Al Hajjar N, Mihu CM, Spârchez Z, Mocan T, Iuga CA. Unveiling novel serum biomarkers in intrahepatic cholangiocarcinoma: a pilot proteomic exploration. Front Pharmacol 2024; 15:1440985. [PMID: 39286634 PMCID: PMC11403330 DOI: 10.3389/fphar.2024.1440985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Recent advancements in proteomics have shown promise in identifying biomarkers for various cancers. Our study is the first to compare the serum proteomes of intrahepatic cholangiocarcinoma (iCCA) with cirrhosis (CIR), primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC), aiming to identify a proteomic signature that can effectively distinguish among these conditions. Utilizing high-throughput mass spectrometry on serum samples, we identified 845 proteins, of which 646 were suitable for further analysis. Unique clustering patterns were observed among the five groups, with significant proteomic differences. Our key findings include: S100 calcium-binding protein A9 (S100A9) and haptoglobin (HP) were more abundant in iCCA, while intercellular adhesion molecule 2 (ICAM2) was higher in HCC. Serum amyloid A1 (SAA1) and A4 (SAA4) emerged as potential biomarkers, with SAA1 significantly different in the iCCA vs healthy controls (HC) comparison, and SAA4 in the HCC vs HC comparison. Elevated levels of vascular cell adhesion molecule 1 (VCAM-1) in HCC suggested its potential as a differentiation and diagnostic marker. Angiopoietin-1 receptor (TEK) also showed discriminatory and diagnostic potential in HCC. ELISA validation corroborated mass spectrometry findings. Our study underscores the potential of proteomic profiling in distinguishing iCCA from other liver conditions and highlights the need for further validation to establish robust diagnostic biomarkers.
Collapse
Affiliation(s)
- Lavinia Patricia Mocan
- Department of Histology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristiana Grapa
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Gastroenterology and Hepatology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rareș Crăciun
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Gastroenterology and Hepatology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Ecaterina Pralea
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Maria Soporan
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ximena Maria Mureșan
- Department of Translational Medicine, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Surgery, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Zeno Spârchez
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Gastroenterology and Hepatology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor Mocan
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- UBBMed Department, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Olivier DW, Eksteen C, Plessis MD, de Jager L, Engelbrecht L, McGregor NW, Shridas P, de Beer FC, de Villiers WJS, Pretorius E, Engelbrecht AM. Inflammation and Tumor Progression: The Differential Impact of SAA in Breast Cancer Models. BIOLOGY 2024; 13:654. [PMID: 39336082 PMCID: PMC11429026 DOI: 10.3390/biology13090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024]
Abstract
Background: Previous research has shown that the Serum Amyloid A (SAA) protein family is intricately involved in inflammatory signaling and various disease pathologies. We have previously demonstrated that SAA is associated with increased colitis disease severity and the promotion of tumorigenesis. However, the specific role of SAA proteins in breast cancer pathology remains unclear. Therefore, we investigated the role of systemic SAA1 and SAA2 (SAA1/2) in a triple-negative breast cancer mouse model. Methods: Syngeneic breast tumors were established in wild-type mice, and mice lacking the SAA1/2 (SAADKO). Subsequently, tumor volume was monitored, species survival determined, the inflammatory profiles of mice assessed with a multiplex assay, and tumor molecular biology and histology characterized with Western blotting and H&E histological staining. Results: WT tumor-bearing mice had increased levels of plasma SAA compared to wild-type control mice, while SAADKO control and tumor-bearing mice presented with lower levels of SAA in their plasma. SAADKO tumor-bearing mice also displayed significantly lower concentrations of systemic inflammatory markers. Tumors from SAADKO mice overall had lower levels of SAA compared to tumors from wild-type mice, decreased apoptosis and inflammasome signaling, and little to no tumor necrosis. Conclusions: We demonstrated that systemic SAA1/2 stimulates the activation of the NLRP3 inflammasome in breast tumors, leading to the production of pro-inflammatory cytokines. This, in turn, promoted apoptosis and tumor necrosis but did not significantly impact tumor growth or histological grading.
Collapse
Affiliation(s)
- Daniel Wilhelm Olivier
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
| | - Carla Eksteen
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
| | - Manisha du Plessis
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
| | - Louis de Jager
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, Western Cape, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Fluorescence Microscopy Unit, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
| | - Nathaniel Wade McGregor
- Department of Genetics, Faculty of Agrisciences, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, Western Cape, South Africa
| | - Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick C de Beer
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Willem J S de Villiers
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, Western Cape, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, Western Cape, South Africa
- Department of Global Health, African Cancer Institute (ACI), Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7505, Western Cape, South Africa
| |
Collapse
|
6
|
Santana MDFM, Sawada MIBAC, Junior DRS, Giacaglia MB, Reis M, Xavier J, Côrrea-Giannella ML, Soriano FG, Gebrim LH, Ronsein GE, Passarelli M. Proteomic Profiling of HDL in Newly Diagnosed Breast Cancer Based on Tumor Molecular Classification and Clinical Stage of Disease. Cells 2024; 13:1327. [PMID: 39195217 DOI: 10.3390/cells13161327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The association between high-density lipoprotein (HDL) cholesterol and breast cancer (BC) remains controversial due to the high complexity of the HDL particle and its functionality. The HDL proteome was determined in newly diagnosed BC classified according to the molecular type [luminal A or B (LA or LB), HER2, and triple-negative (TN)] and clinical stage of the disease. Women (n = 141) aged between 18 and 80 years with BC, treatment-naïve, and healthy women [n = 103; control group (CT)], matched by age and body mass index, were included. Data-independent acquisition (DIA) proteomics was performed in isolated HDL (D = 1.063-1.21 g/mL). Results: Paraoxonase1, carnosine dipeptidase1, immunoglobulin mMu heavy chain constant region (IGHM), apoA-4, and transthyretin were reduced, and serum amyloid A2 and tetranectin were higher in BC compared to CT. In TNBC, apoA-1, apoA-2, apoC-2, and apoC-4 were reduced compared to LA, LB, and HER2, and apoA-4 compared to LA and HER2. ComplementC3, lambda immunoglobulin2/3, serpin3, IGHM, complement9, alpha2 lysine rich-glycoprotein1, and complement4B were higher in TNBC in comparison to all other types; complement factor B and vitamin D-binding protein were in contrast to LA and HER2, and plasminogen compared to LA and LB. In grouped stages III + IV, tetranectin and alpha2-macroglobulin were reduced, and haptoglobin-related protein; lecithin cholesterol acyltransferase, serum amyloid A1, and IGHM were increased compared to stages I + II. Conclusions: A differential proteomic profile of HDL in BC based on tumor molecular classification and the clinical stage of the disease may contribute to a better understanding of the association of HDL with BC pathophysiology, treatment, and outcomes.
Collapse
Affiliation(s)
- Monique de Fatima Mello Santana
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Maria Isabela Bloise Alves Caldas Sawada
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, Sao Paulo 01525-000, Brazil
- Grupo de Saúde de Curitiba (GSAU-CT), CINDACTA II, Brazilian Air Force, Curitiba 82510-901, Brazil
| | - Douglas Ricardo Souza Junior
- Laboratório de Proteômica Aplicada à Processos Inflamatórios, Instituto de Química, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | | | - Mozania Reis
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, Sao Paulo 01525-000, Brazil
- Unidade Básica de Saúde Dra. Ilza Weltman Hutzler, Sao Paulo 02472-180, Brazil
| | - Jacira Xavier
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, Sao Paulo 01525-000, Brazil
- Unidade Básica de Saúde Dra. Ilza Weltman Hutzler, Sao Paulo 02472-180, Brazil
| | - Maria Lucia Côrrea-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM18), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Francisco Garcia Soriano
- Laboratório de Emergências Clínicas (LIM51), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Luiz Henrique Gebrim
- Centro de Referência da Saúde, Mulher-Hospital Pérola Byington, Sao Paulo 01215-000, Brazil
| | - Graziella Eliza Ronsein
- Laboratório de Proteômica Aplicada à Processos Inflamatórios, Instituto de Química, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, Sao Paulo 01525-000, Brazil
| |
Collapse
|
7
|
Son DS, Done KA, Son J, Izban MG, Virgous C, Lee ES, Adunyah SE. Intermittent Fasting Attenuates Obesity-Induced Triple-Negative Breast Cancer Progression by Disrupting Cell Cycle, Epithelial-Mesenchymal Transition, Immune Contexture, and Proinflammatory Signature. Nutrients 2024; 16:2101. [PMID: 38999849 PMCID: PMC11243652 DOI: 10.3390/nu16132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is associated with one-fifth of cancer deaths, and breast cancer is one of the obesity-related cancers. Triple-negative breast cancer (TNBC) lacks estrogen and progesterone receptors and human epidermal growth factor receptor 2, leading to the absence of these therapeutic targets, followed by poor overall survival. We investigated if obesity could hasten TNBC progression and intermittent fasting (IF) could attenuate the progression of obesity-related TNBC. Our meta-analysis of the TNBC outcomes literature showed that obesity led to poorer overall survival in TNBC patients. Fasting-mimicking media reduced cell proliferation disrupted the cell cycle, and decreased cell migration and invasion. IF decreased body weight in obese mice but no change in normal mice. Obese mice exhibited elevated plasma glucose and cholesterol levels, increased tumor volume and weight, and enhanced macrophage accumulation in tumors. The obesity-exacerbated TNBC progression was attenuated after IF, which decreased cyclin B1 and vimentin levels and reduced the proinflammatory signature in the obesity-associated tumor microenvironment. IF attenuated obesity-induced TNBC progression through reduced obesity and tumor burdens in cell and animal experiments, supporting the potential of a cost-effective adjuvant IF therapy for TNBC through lifestyle change. Further evidence is needed of these IF benefits in TNBC, including from human clinical trials.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Kaitlyn A. Done
- Biochemistry Program, College of Arts and Sciences, Spelman College, Atlanta, GA 30314, USA
| | - Jubin Son
- Neuroscience Program, College of Arts and Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | - Michael G. Izban
- Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Carlos Virgous
- Animal Core Facility, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
8
|
Zhou J, Zhang L, Liu S, DeRubeis D, Zhang D. Toll-like receptors in breast cancer immunity and immunotherapy. Front Immunol 2024; 15:1418025. [PMID: 38903515 PMCID: PMC11187004 DOI: 10.3389/fimmu.2024.1418025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Toll-like receptors (TLRs) are a key family of pattern recognition receptors (PRRs) in the innate immune system. The activation of TLRs will not only prevent pathogen infection but also respond to damage-induced danger signaling. Increasing evidence suggests that TLRs play a critical role in breast cancer development and treatment. However, the activation of TLRs is a double-edged sword that can induce either pro-tumor activity or anti-tumor effect. The underlying mechanisms of these opposite effects of TLR signaling in cancer are not fully understood. Targeting TLRs is a promising strategy for improving breast cancer treatment, either as monotherapies or by improving other current therapies. Here we provide an update on the role of TLRs in breast cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Joseph Zhou
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Lin Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - David DeRubeis
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| |
Collapse
|
9
|
Rybinska I, Mangano N, Romero-Cordoba SL, Regondi V, Ciravolo V, De Cecco L, Maffioli E, Paolini B, Bianchi F, Sfondrini L, Tedeschi G, Agresti R, Tagliabue E, Triulzi T. SAA1-dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. Int J Cancer 2024; 154:1842-1856. [PMID: 38289016 DOI: 10.1002/ijc.34859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Triple negative breast cancers (TNBC) are characterized by a poor prognosis and a lack of targeted treatments. Their progression depends on tumor cell intrinsic factors, the tumor microenvironment and host characteristics. Although adipocytes, the primary stromal cells of the breast, have been determined to be plastic in physiology and cancer, the tumor-derived molecular mediators of tumor-adipocyte crosstalk have not been identified yet. In this study, we report that the crosstalk between TNBC cells and adipocytes in vitro beyond adipocyte dedifferentiation, induces a unique transcriptional profile that is characterized by inflammation and pathways that are related to interaction with the tumor microenvironment. Accordingly, increased cancer stem-like features and recruitment of pro-tumorigenic immune cells are induced by this crosstalk through CXCL5 and IL-8 production. We identified serum amyloid A1 (SAA1) as a regulator of the adipocyte reprogramming through CD36 and P2XR7 signaling. In human TNBC, SAA1 expression was associated with cancer-associated adipocyte infiltration, inflammation, stimulated lipolysis, stem-like properties, and a distinct tumor immune microenvironment. Our findings constitute evidence that the interaction between tumor cells and adipocytes through the release of SAA1 is relevant to the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Ilona Rybinska
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nunzia Mangano
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sandra L Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Viola Regondi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Ciravolo
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisa Maffioli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Biagio Paolini
- Anatomic Pathology A Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Francesca Bianchi
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Lucia Sfondrini
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Roberto Agresti
- Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elda Tagliabue
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Tiziana Triulzi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
10
|
Sala-Hamrick KE, Tapaswi A, Polemi KM, Nguyen VK, Colacino JA. High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47002. [PMID: 38568856 PMCID: PMC10990114 DOI: 10.1289/ehp12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND There is a suite of chemicals, including metals, pesticides, and personal care product compounds, which are commonly detected at high levels in US Center for Disease Control's National Health and Nutrition Examination Survey (NHANES) chemical biomarker screens. Whether these chemicals influence development of breast cancer is not well understood. OBJECTIVES The objectives were to perform an unbiased concentration-dependent assessment of these chemicals, to quantify differences in cancer-specific genes and pathways, to describe if these differences occur at human population-relevant concentrations, and to specifically test for differences in markers of stemness and cellular plasticity. METHODS We treated nontumorigenic mammary epithelial cells, MCF10A, with 21 chemicals at four concentrations (25 nM , 250 nM , 2.5 μ M , and 25 μ M ) for 48 h. We conducted RNA-sequencing for these 408 samples, adapting the plexWell plate-based RNA-sequencing method to analyze differences in gene expression. We calculated gene and biological pathway-specific benchmark concentrations (BMCs) using BMDExpress3, identifying differentially expressed genes and generating the best fit benchmark concentration models for each chemical across all genes. We identified enriched biological processes and pathways for each chemical and tested whether chemical exposures change predicted cell type distributions. We contextualized benchmark concentrations relative to human population biomarker concentrations in NHANES. RESULTS We detected chemical concentration-dependent differences in gene expression for thousands of genes. Enrichment and cell type distribution analyses showed benchmark concentration responses correlated with differences in breast cancer-related pathways, including induction of basal-like characteristics for some chemicals, including arsenic, lead, copper, and methyl paraben. Comparison of benchmark data to NHANES chemical biomarker (urine or blood) concentrations indicated an overlap between exposure levels and levels sufficient to cause a gene expression response. DISCUSSION These analyses revealed that many of these 21 chemicals resulted in differences in genes and pathways involved in breast cancer in vitro at human exposure-relevant concentrations. https://doi.org/10.1289/EHP12886.
Collapse
Affiliation(s)
| | - Anagha Tapaswi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M. Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Vy K. Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Program in the Environment, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Wang X, Wen S, Du X, Zhang Y, Yang X, Zou R, Feng B, Fu X, Jiang F, Zhou G, Liu Z, Zhu W, Ma R, Feng J, Shen B. SAA suppresses α-PD-1 induced anti-tumor immunity by driving T H2 polarization in lung adenocarcinoma. Cell Death Dis 2023; 14:718. [PMID: 37925492 PMCID: PMC10625560 DOI: 10.1038/s41419-023-06198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to be crucial in the initiation, progression, and recurrence of cancer. CSCs are also known to be more resistant to cancer treatments. However, the interaction between CSCs and the immune microenvironment is complex and not fully understood. In current study we used single cell RNA sequence (scRNA-Seq, public dataset) technology to identify the characteristic of CSCs. We found that the lung adenocarcinoma cancer stem population is highly inflammatory and remodels the tumor microenvironment by secreting inflammatory factors, specifically the acute phase protein serum amyloid A (SAA). Next, we developed an ex-vivo autologous patient-derived organoids (PDOs) and peripheral blood mononuclear cells (PBMCs) co-culture model to evaluate the immune biological impact of SAA. We found that SAA not only promotes chemoresistance by inducing cancer stem transformation, but also restricts anti-tumor immunity and promotes tumor fibrosis by driving type 2 immunity, and α-SAA neutralization antibody could restrict treatment resistant and tumor fibrosis. Mechanically, we found that the malignant phenotype induced by SAA is dependent on P2X7 receptor. Our data indicate that cancer stem cells secreted SAA have significant biological impact to promote treatment resistant and tumor fibrosis by driving cancer stemness transformation and type 2 immunity polarization via P2X7 receptor. Notably, α-SAA neutralization antibody shows therapeutic potential by restricting these malignant phenotypes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaodi Wen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yihan Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiao Yang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Renrui Zou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bing Feng
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiao Fu
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China
- Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zi Liu
- Nanjing Advanced Analysis Tech. (NAAT) Co., LTD, Nanjing, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
12
|
Robinson TP, Hamidi T, Counts B, Guttridge DC, Ostrowski MC, Zimmers TA, Koniaris LG. The impact of inflammation and acute phase activation in cancer cachexia. Front Immunol 2023; 14:1207746. [PMID: 38022578 PMCID: PMC10644737 DOI: 10.3389/fimmu.2023.1207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
Collapse
Affiliation(s)
- Tyler P. Robinson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tewfik Hamidi
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Brittany Counts
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Denis C. Guttridge
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Michael C. Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Leonidas G. Koniaris
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| |
Collapse
|
13
|
Lin YC, Hou YC, Wang HC, Shan YS. New insights into the role of adipocytes in pancreatic cancer progression: paving the way towards novel therapeutic targets. Theranostics 2023; 13:3925-3942. [PMID: 37554282 PMCID: PMC10405844 DOI: 10.7150/thno.82911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies across the world, which is due to delayed diagnosis and resistance to current therapies. The interactions between pancreatic tumor cells and their tumor microenvironment (TME) allow cancer cells to escape from anti-cancer therapies, leading to difficulties in treating PC. With endocrine function and lipid storage capacity, adipose tissue can maintain energy homeostasis. Direct or indirect interaction between adipocytes and PC cells leads to adipocyte dysfunction characterized by morphological change, fat loss, abnormal adipokine secretion, and fibroblast-like transformation. Various adipokines released from dysfunctional adipocytes have been reported to promote proliferation, invasion, metastasis, stemness, and chemoresistance of PC cells via different mechanisms. Additional lipid outflow from adipocytes can be taken into the TME and thus alter the metabolism in PC cells and surrounding stromal cells. Besides, the trans-differentiation potential enables adipocytes to turn into various cell types, which may give rise to an inflammatory response as well as extracellular matrix reorganization to modulate tumor burden. Understanding the molecular basis behind the protumor functions of adipocytes in PC may offer new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Imaging Center, Innovation Headquarter, National Cheng Kung University; Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
14
|
Hough JT, Zhao L, Lequio M, Heslin AJ, Xiao H, Lewis CC, Zhang J, Bai Q, Wakefield MR, Fang Y. IL-32 and its Paradoxical Role in Neoplasia. Crit Rev Oncol Hematol 2023; 186:104011. [PMID: 37105370 DOI: 10.1016/j.critrevonc.2023.104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Interleukin-32 (IL-32) is an interleukin cytokine usually linked to inflammation. In recent years, it has been found that IL-32 exhibits both pro- and anti-tumor effects. Although most of those effects from IL-32 appear to favor tumor growth, some isoforms have shown to favor tumor suppression. This suggests that the role of IL-32 in neoplasia is very complex. Thus, the role of IL-32 in these various cancers and protein pathways makes it a very crucial component to consider when looking at potential therapeutic options in tumor treatment. In this review, we will explore what is currently known about IL-32, including its relationship with tumorigenesis and the potential for IL-32 to enhance local and systemic anti-tumor immune responses. Such a study might be helpful to accelerate the development of IL-32-based immunotherapies.
Collapse
Affiliation(s)
- Jacob T Hough
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Lei Zhao
- The Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Marco Lequio
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Aidan J Heslin
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902
| | - Cade C Lewis
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Justin Zhang
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212.
| |
Collapse
|
15
|
Dialog beyond the Grave: Necrosis in the Tumor Microenvironment and Its Contribution to Tumor Growth. Int J Mol Sci 2023; 24:ijms24065278. [PMID: 36982351 PMCID: PMC10049335 DOI: 10.3390/ijms24065278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released from the necrotic cells dying after exposure to various stressors. After binding to their receptors, they can stimulate various signaling pathways in target cells. DAMPs are especially abundant in the microenvironment of malignant tumors and are suspected to influence the behavior of malignant and stromal cells in multiple ways often resulting in promotion of cell proliferation, migration, invasion, and metastasis, as well as increased immune evasion. This review will start with a reminder of the main features of cell necrosis, which will be compared to other forms of cell death. Then we will summarize the various methods used to assess tumor necrosis in clinical practice including medical imaging, histopathological examination, and/or biological assays. We will also consider the importance of necrosis as a prognostic factor. Then the focus will be on the DAMPs and their role in the tumor microenvironment (TME). We will address not only their interactions with the malignant cells, frequently leading to cancer progression, but also with the immune cells and their contribution to immunosuppression. Finally, we will emphasize the role of DAMPs released by necrotic cells in the activation of Toll-like receptors (TLRs) and the possible contributions of TLRs to tumor development. This last point is very important for the future of cancer therapeutics since there are attempts to use TLR artificial ligands for cancer therapeutics.
Collapse
|
16
|
Zatorski N, Sun Y, Elmas A, Dallago C, Karl T, Stein D, Rost B, Huang KL, Walsh M, Schlessinger A. Structural Analysis of Genomic and Proteomic Signatures Reveal Dynamic Expression of Intrinsically Disordered Regions in Breast Cancer and Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529755. [PMID: 36865220 PMCID: PMC9980136 DOI: 10.1101/2023.02.23.529755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Structural features of proteins capture underlying information about protein evolution and function, which enhances the analysis of proteomic and transcriptomic data. Here we develop Structural Analysis of Gene and protein Expression Signatures (SAGES), a method that describes expression data using features calculated from sequence-based prediction methods and 3D structural models. We used SAGES, along with machine learning, to characterize tissues from healthy individuals and those with breast cancer. We analyzed gene expression data from 23 breast cancer patients and genetic mutation data from the COSMIC database as well as 17 breast tumor protein expression profiles. We identified prominent expression of intrinsically disordered regions in breast cancer proteins as well as relationships between drug perturbation signatures and breast cancer disease signatures. Our results suggest that SAGES is generally applicable to describe diverse biological phenomena including disease states and drug effects.
Collapse
Affiliation(s)
- Nicole Zatorski
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl NY, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl NY, NY 10029, USA
| | - Abdulkadir Elmas
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl NY, NY 10029, USA
| | - Christian Dallago
- NVIDIA DE GmbH, Einsteinstraße 172, 81677 München, Germany
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - Timothy Karl
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl NY, NY 10029, USA
| | - Burkhard Rost
- Faculty of Informatics, Bioinformatics & Computational Biology, Technical University Munich (TUM), 85748 Garching, Germany
| | - Kuan-Lin Huang
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl NY, NY 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl NY, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levey Pl NY, NY 10029, USA
| |
Collapse
|
17
|
Dai J, Zhang X, Zhou J, Pan W, Yu F. Clinical performance evaluation of serum amyloid A module of Mindray BC-7500CS automated hematology analyzer. Transl Pediatr 2023; 12:20-30. [PMID: 36798927 PMCID: PMC9926133 DOI: 10.21037/tp-22-661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Laboratory detection of high values of serum amyloid A (SAA) is impaired by the hook effect. In response to this problem, Mindray has launched the new generation BC-7500CS automated hematology analyzer with an SAA autodilution (SAA-D) function. The present study aimed to verify the performance of the SAA module. METHODS Venous whole-blood specimens anticoagulated with EDTA-K2 were randomly collected from outpatients and inpatient of the Children's Hospital of Nanjing Medical University (CH). Background, repeatability, precision, linear range, intermode comparison, and interference of the SAA module of the Mindray BC-7500CS were evaluated, and the performance of the SAA-D function was verified. RESULTS The Mindray BC-7500CS showed an SAA background of 0.14 mg/L, well below that claimed by the manufacturer. Repeatability of SAA with standard deviation (SD) <0.6 mg/L and coefficient of variation (CV) <6%, the quality control (QC) precision was less than 8%. The measured value of the linear range was essentially consistent with the theoretical value, and the maximum measured values could reach 1932.38 mg/L. The deviation between whole-blood mode and micro-whole-blood mode was small (r=0.999), and the SAA module displayed high anti-interference ability. In addition, the measured results of specimens with high SAA concentration diluted by SAA-D were close to those after manual dilution (r=0.993). CONCLUSIONS The SAA module of the Mindray BC-7500CS had excellent performance, and the SAA-D function was highly accurate at measuring specimens with high SAA concentration, enabling reliable SAA detection in the laboratory and clinical practice.
Collapse
Affiliation(s)
- Jincheng Dai
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhang
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Pan
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Obesity Influences the Expression of Key Immunomodulators in Normal Human Breast Tissue, Basal-like Breast Cancer Patients, and Cell Lines. Cancers (Basel) 2022; 14:cancers14225599. [PMID: 36428692 PMCID: PMC9688037 DOI: 10.3390/cancers14225599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Among the different components of the breast cancer microenvironment are adipocytes, which are mainly composed of differentiated adipocytes and adipose progenitors. The role of obesity in tumor progression has become a key topic in clinical studies, but the mechanics of this are still misunderstood. There is significant evidence of serum amyloid (SAA1), an acute-phase protein, being heavily expressed in inflamed, septic conditions. VTCN1 and VSIR, members of the immunoglobulin family, are key players in T-cell regulation. The present study investigates the differentially expressed genes caused by adipose-conditioned media on the novel triple-negative breast cancer cell lines MDA MB 231 and MDA MB 468. RNA sequencing of adipocyte-conditioned media (ACM)-treated MDA MB 231 and MDA MB 468 cells were analyzed and compared using the gene sequencing enrichment analysis database (GSEA). GSEA was also done on microarray data from obese, non-tumorous breast tissue patients (GSE:33526) to show significantly upregulated immunomodulators. Obesity was also shown to influence gene expression related to immune sensing and evasion in a dataset analysis of basal-like obese patients (GSE:79858). We showed obesity significantly upregulated immunomodulators related to immune suppression in non-tumorous, basal-like patients, as well as in novel basal-like TNBC cell lines.
Collapse
|
19
|
du Plessis M, Davis TA, Olivier DW, de Villiers WJS, Engelbrecht AM. A functional role for Serum Amyloid A in the molecular regulation of autophagy in breast cancer. Front Oncol 2022; 12:1000925. [PMID: 36248994 PMCID: PMC9562844 DOI: 10.3389/fonc.2022.1000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
It has been established that the acute phase protein, Serum amyloid A (SAA), which is usually synthesized by the liver, is also synthesized by cancer cells and cancer-associated cells in the tumor microenvironment. SAA also activates modulators of autophagy, such as the PI3K/Akt and MAPK signaling pathways. However, the role of SAA in autophagy in breast cancer still remains to be elucidated. The aim of this study was to investigate the role of SAA in the regulation of signaling pathways and autophagy in in vitro and in vivo models of breast cancer. The MDA-MB-231 and MCF7 cell lines were transiently transfected to overexpress SAA1. A tumor-bearing SAA1/2 knockout mouse model was also utilized in this study. SAA1 overexpression activated ERK signaling in the MDA-MB-231 cells, downregulated the PI3K pathway protein, PKB/Akt, in the MCF7 cell line, while SAA1/2 knockout also inhibited Akt. Furthermore, SAA1 overexpression in vitro downregulated autophagy, while the expression of SQSTM1/p62 was increased in the MCF7 cells, and SAA1/2 knockout induced autophagy in vivo. SAA overexpression in the MDA-MB-231 and MCF7 cells resulted in an increase in cell viability and increased the expression of the proliferation marker, MCM2, in the MCF7 cells. Furthermore, knockout of SAA1/2 resulted in an altered inflammatory profile, evident in the decrease of plasma IL-1β, IL-6 and IL-10, while increasing the plasma levels of MCP-1 and TNF-α. Lastly, SAA1/2 knockout promoted resistance to apoptosis and necrosis through the regulation of autophagy. SAA thus regulates autophagy in breast cancer cells to promote tumorigenesis.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Manisha du Plessis,
| | - Tanja Andrea Davis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Wilhelm Olivier
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Willem Johan Simon de Villiers
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
20
|
Cao JF, Xingyu Yang, Li Xiong, Wu M, Chen S, Xu H, Gong Y, Zhang L, Zhang Q, Zhang X. Exploring the mechanism of action of dapansutrile in the treatment of gouty arthritis based on molecular docking and molecular dynamics. Front Physiol 2022; 13:990469. [PMID: 36105284 PMCID: PMC9465377 DOI: 10.3389/fphys.2022.990469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/12/2022] [Indexed: 01/02/2023] Open
Abstract
Purpose: Dapansutrile is an orally active β-sulfonyl nitrile compound that selectively inhibits the NLRP3 inflammasome. Clinical studies have shown that dapansutrile is active in vivo and limits the severity of endotoxin-induced inflammation and joint arthritis. However, there is currently a lack of more in-depth research on the effect of dapansutrile on protein targets such as NLRP3 in gouty arthritis. Therefore, we used molecular docking and molecular dynamics to explore the mechanism of dapansutrile on NLRP3 and other related protein targets. Methods: We use bioinformatics to screen active pharmaceutical ingredients and potential disease targets. The disease-core gene target-drug network was established and molecular docking was used for verification. Molecular dynamics simulations were utilized to verify and analyze the binding stability of small molecule drugs to target proteins. The supercomputer platform was used to measure and analyze the binding free energy, the number of hydrogen bonds, the stability of the protein target at the residue level, the radius of gyration and the solvent accessible surface area. Results: The protein interaction network screened out the core protein targets (such as: NLRP3, TNF, IL1B) of gouty arthritis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that gouty arthritis mainly played a vital role by the signaling pathways of inflammation and immune response. Molecular docking showed that dapansutrile play a role in treating gouty arthritis by acting on the related protein targets such as NLRP3, IL1B, IL6, etc. Molecular dynamics was used to prove and analyze the binding stability of active ingredients and protein targets, the simulation results found that dapansutrile forms a very stable complex with IL1B. Conclusion: We used bioinformatics analysis and computer simulation system to comprehensively explore the mechanism of dapansutrile acting on NLRP3 and other protein targets in gouty arthritis. This study found that dapansutrile may not only directly inhibit NLRP3 to reduce the inflammatory response and pyroptosis, but also hinder the chemotaxis and activation of inflammatory cells by regulating IL1B, IL6, IL17A, IL18, MMP3, CXCL8, and TNF. Therefore, dapansutrile treats gouty arthritis by attenuating inflammatory response, inflammatory cell chemotaxis and extracellular matrix degradation by acting on multiple targets.
Collapse
|
21
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
22
|
Guo X, Zhang W, Du J, Tao R, Dong W, Huang J, Zhang J, Pan Z, Zhou W, Zhu X, Liu H, Liu F. Acute-Phase Serum Amyloid A May Predict Microvascular Invasion and Early Tumor Recurrence in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma Undergoing Liver Resection. J INVEST SURG 2022; 35:1368-1376. [PMID: 35143736 DOI: 10.1080/08941939.2022.2035858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To elucidate the impact of acute-phase protein serum amyloid A (aSAA) on microvascular invasion (MVI) and early recurrence in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS HBV-related HCC patients (n = 192) undergoing liver resection were included in the study. The protein levels of aSAA were analyzed by immunohistochemical staining in 172 tumor specimens, and further detected via western blotting in HCC and their corresponding portal vein tumor thrombus (PVTT) (n = 20). Cox and logit regression analysis was performed. Exploratory subgroup analysis was used to balance the potential confounders. RESULTS HBV-related HCC patients with high aSAA levels tended to have high HBV-DNA loads. Logit and Cox regression analyses revealed high expression of aSAA is an independent risk factor not only for MVI (OR 5.384, 95% CI 2.286-13.301, P < 0.001) but also for early recurrence (HR 6.040, 95% CI 1.970-18.540, P = 0.002), overall recurrence (HR 3.720, 95% CI 2.140-6.450, P < 0.001), and overall survival (HR 4.15, 95% CI 2.380-7.230, P < 0.001). Subgroup analysis showed that the effects of aSAA were consistent across all subgroups examined. Additionally, the aSAA protein level was significantly higher in PVTT than that in its corresponding tumor specimen. A high HBV-DNA level and large tumor size were the independent risk factors for early HCC recurrence in patients with high levels of aSAA. CONCLUSIONS High expression of aSAA was an independent risk factor for MVI and early tumor recurrence in HBV-related HCC patients after liver resection. The aSAA protein level could thus be a promising biomarker for predicting MVI and early recurrence in these patients.
Collapse
Affiliation(s)
- Xinggang Guo
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Wenli Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Jin Du
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Rongsuo Tao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Jian Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Jinmin Zhang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zeya Pan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Xiuli Zhu
- Department of Gastroenterology, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Niu X, Yin L, Yang X, Yang Y, Gu Y, Sun Y, Yang M, Wang Y, Zhang Q, Ji H. SAA induces suppressive neutrophils via the TLR2-mediated signaling pathway to promote progression of breast cancer. Cancer Sci 2022; 113:1140-1153. [PMID: 35102665 PMCID: PMC8990718 DOI: 10.1111/cas.15287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Immune inflammation plays a key role in breast cancer development, progression, and therapeutic efficacy. Neutrophils are crucial for the regulation of the suppressive tumor microenvironment and are associated with poor clinical survival. However, the mechanisms underlying the activation of suppressive neutrophils in breast cancer are poorly understood. Here, we report that breast cancer cells secrete abundant serum amyloid A 1 (SAA1), which is associated with the accumulation of suppressive neutrophils. High expression of SAA1 in breast cancer induces neutrophil immunosuppressive cytokine production through the activation of toll like receptor 2 (TLR2)-mediated signaling pathways. These include the TLR2/myeloid differentiation primary response 88 (MYD88)-mediated phosphatidylinositol 3-kinase (PI3K)/nuclear factor κB (NF-κB) signaling pathway and p38 mitogen-activated protein kinase (MAPK)-associated apoptosis resistance pathway, which eventually promote the progression of breast cancer. Our study demonstrates a mechanistic link between breast cancer cell secretion of SAA1 and suppressive neutrophils that potentiate tumor progression. These findings provide potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin Heilongjiang, 150081, PR China
| | - Lei Yin
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin Heilongjiang, 150081, PR China.,Heilongjiang Academy of Medical Sciences, Harbin Heilongjiang, 150081, PR China
| | - Xudong Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin Heilongjiang, 150081, PR China.,Heilongjiang Academy of Medical Sciences, Harbin Heilongjiang, 150081, PR China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin Heilongjiang, 150081, PR China.,Heilongjiang Academy of Medical Sciences, Harbin Heilongjiang, 150081, PR China
| | - Yucui Gu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin Heilongjiang, 150081, PR China
| | - Yutian Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin Heilongjiang, 150081, PR China
| | - Ming Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin Heilongjiang, 150081, PR China
| | - Yiran Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin Heilongjiang, 150081, PR China.,Heilongjiang Academy of Medical Sciences, Harbin Heilongjiang, 150081, PR China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin Heilongjiang, 150081, PR China.,Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin Heilongjiang, 150081, PR China.,Heilongjiang Academy of Medical Sciences, Harbin Heilongjiang, 150081, PR China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin Heilongjiang, 150081, PR China.,Heilongjiang Academy of Medical Sciences, Harbin Heilongjiang, 150081, PR China
| |
Collapse
|
24
|
Substance P Antagonism as a Novel Therapeutic Option to Enhance Efficacy of Cisplatin in Triple Negative Breast Cancer and Protect PC12 Cells against Cisplatin-Induced Oxidative Stress and Apoptosis. Cancers (Basel) 2021; 13:cancers13153871. [PMID: 34359773 PMCID: PMC8345440 DOI: 10.3390/cancers13153871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022] Open
Abstract
Although cisplatin is very effective as a treatment strategy in triple-negative breast cancer (TNBC), it has unwarranted outcomes owing to recurrence, chemoresistance and neurotoxicity. There is critically important to find new, effective and safe therapeutics for TNBC. We determined if SP-receptor antagonism in combination with cisplatin may serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC. We used a neuronal cell line (PC12) and two TNBC cell lines (Sum 185 and Sum 159) for these studies. We determined that the levels of cells expressing the high-affinity SP-receptor (neurokinin 1 receptor (NK1R)), as determined by flow-cytometry was significantly elevated in response to cisplatin in all three cells. We determined that treatment with aprepitant, an SP-receptor antagonist decreased cisplatin-induced, loss of viability (studied by MTT assay), production of reactive oxygen species (by DCFDA assay) and apoptosis (by flow-cytometry) in PC12 cells while it was increased in the two TNBC cells. Furthermore, we demonstrated that important genes associated with metastases, inflammation, chemoresistance and cell cycle progression are attenuated by SP-receptor antagonism in the TNBC cell line, Sum 185. These studies implicate that SP-receptor antagonism in combination with cisplatin may possibly serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC.
Collapse
|
25
|
Sudo G, Aoki H, Yamamoto E, Takasawa A, Niinuma T, Yoshido A, Kitajima H, Yorozu A, Kubo T, Harada T, Ishiguro K, Kai M, Katanuma A, Yamano HO, Osanai M, Nakase H, Suzuki H. Activated macrophages promote invasion by early colorectal cancer via an interleukin 1β-serum amyloid A1 axis. Cancer Sci 2021; 112:4151-4165. [PMID: 34293235 PMCID: PMC8486202 DOI: 10.1111/cas.15080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Submucosal invasion and lymph node metastasis are important issues affecting treatment options for early colorectal cancer (CRC). In this study, we aimed to unravel the molecular mechanism underlying the invasiveness of early CRCs. We performed RNA‐sequencing (RNA‐seq) with poorly differentiated components (PORs) and their normal counterparts isolated from T1 CRC tissues and detected significant upregulation of serum amyloid A1 (SAA1) in PORs. Immunohistochemical analysis revealed that SAA1 was specifically expressed in PORs at the invasive front of T1b CRCs. Upregulation of SAA1 in CRC cells promoted cell migration and invasion. Coculture experiments using CRC cell lines and THP‐1 cells suggested that interleukin 1β (IL‐1β) produced by macrophages induces SAA1 expression in CRC cells. Induction of SAA1 and promotion of CRC cell migration and invasion by macrophages were inhibited by blocking IL‐1β. These findings were supported by immunohistochemical analysis of primary T1 CRCs showing accumulation of M1‐like/M2‐like macrophages at SAA1‐positive invasive front regions. Moreover, SAA1 produced by CRC cells stimulated upregulation of matrix metalloproteinase‐9 in macrophages. Our data suggest that tumor‐associated macrophages at the invasive front of early CRCs promote cancer cell migration and invasion through induction of SAA1 and that SAA1 may be a predictive biomarker and a useful therapeutic target.
Collapse
Affiliation(s)
- Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayano Yoshido
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
26
|
Yasukawa Y, Hattori N, Iida N, Takeshima H, Maeda M, Kiyono T, Sekine S, Seto Y, Ushijima T. SAA1 is upregulated in gastric cancer-associated fibroblasts possibly by its enhancer activation. Carcinogenesis 2021; 42:180-189. [PMID: 33284950 DOI: 10.1093/carcin/bgaa131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) tend to have tumor-promoting capacity, and can provide therapeutic targets. Even without cancer cells, CAF phenotypes are stably maintained, and DNA methylation and H3K27me3 changes have been shown to be involved. Here, we searched for a potential therapeutic target in primary CAFs from gastric cancer and a mechanism for its dysregulation. Expression microarray using eight CAFs and seven non-CAFs (NCAFs) revealed that serum amyloid A1 (SAA1), which encodes an acute phase secreted protein, was second most upregulated in CAFs, following IGF2. Conditioned medium (CM) derived from SAA1-overexpressing NCAFs was shown to increase migration of gastric cancer cells compared with that from control NCAFs, and its tumor-promoting effect was comparable to that of CM from CAFs. In addition, increased migration of cancer cells by CM from CAFs was mostly canceled with CM from CAFs with SAA1 knockdown. Chromatin immunoprecipitation (ChIP)-quantitative PCR showed that CAFs had higher levels of H3K27ac, an active enhancer mark, in the promoter and the two far upstream regions of SAA1 than NCAFs. Also, BET bromodomain inhibitors, JQ1 and mivebresib, decreased SAA1 expression and tumor-promoting effects in CAFs, suggesting SAA1 upregulation by enhancer activation in CAFs. Our present data showed that SAA1 is a candidate therapeutic target from gastric CAFs and indicated that increased enhancer acetylation is important for its overexpression.
Collapse
Affiliation(s)
- Yoshimi Yasukawa
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Iida
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Maeda
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Kiyono
- Division of Cell Culture Technology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigeki Sekine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
27
|
Yi M, Peng C, Xia B, Gan L. CXCL8 Facilitates the Survival and Paclitaxel-Resistance of Triple-Negative Breast Cancers. Clin Breast Cancer 2021; 22:e191-e198. [PMID: 34284965 DOI: 10.1016/j.clbc.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study aimed to demonstrate CXCL8 expression in TNBC tissues and cells, and elucidate the functional mechanism of CXCL8 in paclitaxel (PTX)-resistant TNBC. METHODS Bioinformatics analysis was performed to identify differentially expressed genes (DEGs) in PTX-resistant TNBC using publicly available data from the GEO, TCGA and METABRIC databases. STRING was used to identify the interacting partners of CXCL8. Kaplan-Meier software was used to analyze the relationship between CXCL8 expression and patient survival rate. The protein expression and distribution of CXCL8 were examined by immunohistochemistry, MTT assay and colony formation assay were performed to determine cell viability of TNBC cells treated with PTX. Western blotting was used to assess the levels of drug resistance and apoptosis-related proteins. GO-KEGG analysis was conducted on the DEGs to identify enriched signaling pathways. RESULTS The results of bioinformatics analysis demonstrated a high expression of CXCL8 in TNBC tissues and cells. Kaplan-Meier analysis revealed that the expression of CXCL8 is associated with poor prognosis. CXCL8 was upregulated in PTX-resistant TNBC cells. Knockdown of CXCL8 increased the sensitivity of TNBC cells to PTX. Mechanically, CXCL8 deficiency regulated PTX resistance in TNBC cells via cell apoptosis signaling pathway. CONCLUSION Our work demonstrated that CXCL8 may be a potential molecule to be targeted for the treatment of PTX-resistant TNBC.
Collapse
Affiliation(s)
- Maolin Yi
- Department of Breast and Thyroid Surgery, Huanggang Central Hospital of Hubei Province, Huanggang City, Hubei Province, China
| | - Chengcheng Peng
- Department of Breast and Thyroid Surgery, Huanggang Central Hospital of Hubei Province, Huanggang City, Hubei Province, China
| | - Bingxiang Xia
- Department of Breast and Thyroid Surgery, Huanggang Central Hospital of Hubei Province, Huanggang City, Hubei Province, China
| | - Lin Gan
- Department of Breast and Thyroid Surgery,Chongqing Hospital of Traditional Chinese Medicine, Chongqing City, China.
| |
Collapse
|
28
|
du Plessis M, Davis T, Loos B, Pretorius E, de Villiers WJS, Engelbrecht AM. Molecular regulation of autophagy in a pro-inflammatory tumour microenvironment: New insight into the role of serum amyloid A. Cytokine Growth Factor Rev 2021; 59:71-83. [PMID: 33727011 DOI: 10.1016/j.cytogfr.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Chronic inflammation, systemic or local, plays a vital role in tumour progression and metastasis. Dysregulation of key physiological processes such as autophagy elicit unfavourable immune responses to induce chronic inflammation. Cytokines, growth factors and acute phase proteins present in the tumour microenvironment regulate inflammatory responses and alter crosstalk between various signalling pathways involved in the progression of cancer. Serum amyloid A (SAA) is a key acute phase protein secreted by the liver during the acute phase response (APR) following infection or injury. However, cancer and cancer-associated cells produce SAA, which when present in high levels in the tumour microenvironment contributes to cancer initiation, progression and metastasis. SAA can activate several signalling pathways such as the PI3K and MAPK pathways, which are also known modulators of the intracellular degradation process, autophagy. Autophagy can be regarded as having a double edged sword effect in cancer. Its dysregulation can induce malignant transformation through metabolic stress which manifests as oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. On the other hand, autophagy can promote cancer survival during metabolic stress, hypoxia and senescence. Autophagy has been utilised to promote the efficiency of chemotherapeutic agents and can either be inhibited or induced to improve treatment outcomes. This review aims to address the known mechanisms that regulate autophagy as well as illustrating the role of SAA in modulating these pathways and its clinical implications for cancer therapy.
Collapse
Affiliation(s)
- M du Plessis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa.
| | - T Davis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - E Pretorius
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - W J S de Villiers
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| | - A M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
29
|
Schumacher N, Yan K, Gandraß M, Müller M, Krisp C, Häsler R, Carambia A, Nofer JR, Bernardes JP, Khouja M, Thomsen I, Chalupsky K, Bolik J, Hölscher C, Wunderlich T, Herkel J, Rosenstiel P, Schramm C, Schlüter H, Renné T, Mittrücker HW, Rose-John S, Schmidt-Arras D. Cell-autonomous hepatocyte-specific GP130 signaling is sufficient to trigger a robust innate immune response in mice. J Hepatol 2021; 74:407-418. [PMID: 32987028 DOI: 10.1016/j.jhep.2020.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)-6 cytokine family members contribute to inflammatory and regenerative processes. Engagement of the signaling receptor subunit gp130 is common to almost all members of the family. In the liver, all major cell types respond to IL-6-type cytokines, making it difficult to delineate cell type-specific effects. We therefore generated mouse models for liver cell type-specific analysis of IL-6 signaling. METHODS We produced mice with a Cre-inducible expression cassette encoding a designed pre-dimerized constitutive active gp130 variant. We bred these mice to different Cre-drivers to induce transgenic gp130 signaling in distinct liver cell types: hepatic stellate cells, cholangiocytes/liver progenitor cells or hepatocytes. We phenotyped these mice using multi-omics approaches, immunophenotyping and a bacterial infection model. RESULTS Hepatocyte-specific gp130 activation led to the upregulation of innate immune system components, including acute-phase proteins. Consequently, we observed peripheral mobilization and recruitment of myeloid cells to the liver. Hepatic myeloid cells, including liver-resident Kupffer cells were instructed to adopt a bactericidal phenotype which ultimately conferred enhanced resistance to bacterial infection in these mice. We demonstrate that persistent hepatocyte-specific gp130 activation resulted in amyloid A amyloidosis in aged mice. In contrast, we did not observe overt effects of hepatic stellate cell- or cholangiocyte/liver progenitor cell-specific transgenic gp130 signaling. CONCLUSIONS Hepatocyte-specific gp130 activation alone is sufficient to trigger a robust innate immune response in the absence of NF-κB activation. We therefore conclude that gp130 engagement, e.g. by IL-6 trans-signaling, represents a safe-guard mechanism in innate immunity. LAY SUMMARY Members of the interleukin-6 cytokine family signal via the receptor subunit gp130 and are involved in multiple processes in the liver. However, as several liver cell types respond to interleukin-6 family cytokines, it is difficult to delineate cell type-specific effects. Using a novel mouse model, we provide evidence that hepatocyte-specific gp130 activation is sufficient to trigger a robust systemic innate immune response.
Collapse
Affiliation(s)
- Neele Schumacher
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany
| | - Karsten Yan
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Germany
| | - Monja Gandraß
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany
| | - Miryam Müller
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Germany
| | - Antonella Carambia
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Germany
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Joanna P Bernardes
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Germany
| | - Mouhamad Khouja
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany
| | - Ilka Thomsen
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany
| | - Karel Chalupsky
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Julia Bolik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel, Leibniz Lung Center, Germany
| | | | - Johannes Herkel
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Germany
| | - Christoph Schramm
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Germany; Martin Zeitz Center for Rare Diseases
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
30
|
Toll-Like Receptor 2 at the Crossroad between Cancer Cells, the Immune System, and the Microbiota. Int J Mol Sci 2020; 21:ijms21249418. [PMID: 33321934 PMCID: PMC7763461 DOI: 10.3390/ijms21249418] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor 2 (TLR2) expressed on myeloid cells mediates the recognition of harmful molecules belonging to invading pathogens or host damaged tissues, leading to inflammation. For this ability to activate immune responses, TLR2 has been considered a player in anti-cancer immunity. Therefore, TLR2 agonists have been used as adjuvants for anti-cancer immunotherapies. However, TLR2 is also expressed on neoplastic cells from different malignancies and promotes their proliferation through activation of the myeloid differentiation primary response protein 88 (MyD88)/nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathway. Furthermore, its activation on regulatory immune cells may contribute to the generation of an immunosuppressive microenvironment and of the pre-metastatic niche, promoting cancer progression. Thus, TLR2 represents a double-edge sword, whose role in cancer needs to be carefully understood for the setup of effective therapies. In this review, we discuss the divergent effects induced by TLR2 activation in different immune cell populations, cancer cells, and cancer stem cells. Moreover, we analyze the stimuli that lead to its activation in the tumor microenvironment, addressing the role of danger, pathogen, and microbiota-associated molecular patterns and their modulation during cancer treatments. This information will contribute to the scientific debate on the use of TLR2 agonists or antagonists in cancer treatment and pave the way for new therapeutic avenues.
Collapse
|
31
|
Ganjali S, Banach M, Pirro M, Fras Z, Sahebkar A. HDL and cancer - causality still needs to be confirmed? Update 2020. Semin Cancer Biol 2020; 73:169-177. [PMID: 33130036 DOI: 10.1016/j.semcancer.2020.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
An inverse correlation between high-density lipoprotein cholesterol (HDL-C) and cancer risk has been shown by several epidemiological studies. Some studies have even suggested that HDL-C can be used as a prognostic marker in patients with certain types of cancer. However, whether reduced HDL-C level is a consequential or causal factor in the development and progression of cancer remains a controversial issue. In this review, we update and summarize recent advances that highlight the role of HDL and some of its components in prognosis, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Zlatko Fras
- Division of Medicine, Department of Vascular Medicine, Centre for Preventive Cardiology, University Medical Centre Ljubljana, Zaloška 7, 1525, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
32
|
Lim S, Dunlap KR, Rosa-Caldwell ME, Haynie WS, Jansen LT, Washington TA, Greene NP. Comparative plasma proteomics in muscle atrophy during cancer-cachexia and disuse: The search for atrokines. Physiol Rep 2020; 8:e14608. [PMID: 33063952 PMCID: PMC7556312 DOI: 10.14814/phy2.14608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle atrophy is common across a variety of pathologies. Underlying mechanisms of atrophy differ between pathologies, and in many conditions, circulating factors are tied to muscle atrophy. Therefore, we sought to identify alterations to the plasma proteome across divergent forms of muscle atrophy, disuse and cancer cachexia, as potential mediators of atrophy. C57BL6/J mice were assigned to Lewis Lung Carcinoma (LLC)-induced cachexia, disuse by hindlimb unloading (HU), or control (CON). Plasma samples were submitted for discovery proteomics and targets of interest confirmed by immunoblot. Considerably more peptides were altered in plasma from LLC (91) than HU (9) as compared to CON. Five total proteins were similarly modulated in HU and LLC compared to CON, none reached criteria for differential expression. Serum Amyloid A1 (SAA) was 4 and 6 Log2 FC greater in LLC than CON or HU, respectively, confirmed by immunoblot. Recent reports suggest SAA is sufficient to induce atrophy via TLR. Therefore, we assessed TLR2,4, and IL-6 mRNAs in hindlimb muscles. TLR mRNAs were not altered, suggesting SAA effects on atrophy during LLC are independent of TLR signaling. However, we noted > 6-fold induction of IL-6 in soleus of HU mice, despite minimal shift in the plasma proteome, indicating potential localized inflammation in atrophying muscle. Furthermore, paraoxonase 1 (PON1) was highly repressed in LLC mice and largely undetectable by immunoblot in this group. Our data suggest SAA and PON1 as potential novel atrokines for cancer cachexia and indicate localized inflammation in atrophying muscles independent of the plasma proteome.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
33
|
Zhang W, Kong HF, Gao XD, Dong Z, Lu Y, Huang JG, Li H, Yang YP. Immune infiltration-associated serum amyloid A1 predicts favorable prognosis for hepatocellular carcinoma. World J Gastroenterol 2020; 26:5287-5301. [PMID: 32994688 PMCID: PMC7504249 DOI: 10.3748/wjg.v26.i35.5287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Serum amyloid A1 (SAA1) is an acute-phase protein involved in acute or chronic hepatitis. Its function is still controversial. In addition, the effect of the expression of SAA1 and its molecular function on the progression in hepatocellular carcinoma (HCC) is still unclear.
AIM To demonstrate the expression of SAA1 and its effect on the prognosis in HCC and explain further the correlation of SAA1 and immunity pathways.
METHODS SAA1 expression in HCC was conducted with The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) in GEPIA tool, and the survival analysis based on the SAA1 expression level was achieved in the Kaplan-Meier portal. The high or low expression group was then drawn based on the median level of SAA1 expression. The correlation of SAA1 and the clinical features were conducted in the UALCAN web-based portal with TCGA-LIHC, including tumor grade, patient disease stage, and the TP53 mutation. The correlation analysis between SAA1 expression and TP53 mutation was subjected to the TCGA portal. The tumor purity score and the immune score were analyzed with CIBERSORT. The correlation of SAA1 expression and tumor-infiltrating lymphocytes was achieved in TISIDB web-based integrated repository portal for tumor-immune system interactions. GSE125336 dataset was used to test the SAA1 expression in the responsive or resistant group with anti-PD1 therapy. Gene set enrichment analysis was applied to evaluate the gene enrichment signaling pathway in HCC. The similar genes of SAA1 in HCC were identified in GEPIA, and the protein-protein interaction of SAA1 was conducted in the Metascape tool. The expression of C-X-C motif chemokine ligand 2, C-C motif chemokine ligand 23, and complement C5a receptor 1 was studied and overall survival analysis in HCC was conducted in GEPIA and Kaplan-Meier portal, respectively.
RESULTS SAA1 expression was decreased in HCC, and lower SAA1 expression predicted poorer overall survival, progression-free survival, and disease-specific survival. Furthermore, SAA1 expression was further decreased with increased tumor grade and patient disease stage. Also, SAA1 expression was further downregulated in patients with TP53 mutation compared with patients with wild type TP53. SAA1 expression was negatively correlated with the TP53 mutation. Lower SAA1 predicted poorer survival rate, especially in the patients with no hepatitis virus infection, other than those with hepatitis virus infection. Moreover, the SAA1 expression was negatively correlated with tumor purity. In contrast, SAA1 expression was positively correlated with the immune score in HCC, and the correlation analysis between SAA1 expression and tumor-infiltrating lymphocytes also showed a positive correlation in HCC. Decreased SAA1 was closely associated with the immune tolerance of HCC. C-X-C motif chemokine ligand 2 and C-C motif chemokine ligand 23 genes were identified as the hub genes associated with SAA1, which could also serve as favorable prognosis markers for HCC.
CONCLUSION SAA1 is downregulated in the liver tumor, and it is closely involved in the progression of HCC. Lower SAA1 expression indicates lower survival rate, especially for those patients without hepatitis virus infection. Lower SAA1 expression also suggests lower immune infiltrating cells, especially for those with immune cells exerting anti-tumor immune function. SAA1 expression is closely associated with the anti-tumor immune pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Hui-Fang Kong
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Xu-Dong Gao
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Zheng Dong
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Ying Lu
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Jia-Gan Huang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Hong Li
- Department of Infectious Diseases, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou Province, China
| | - Yong-Ping Yang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| |
Collapse
|