1
|
Kalin S, Comert Onder F. Discovery of potential RSK1 inhibitors for cancer therapy using virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA calculations. J Biomol Struct Dyn 2025; 43:1424-1444. [PMID: 38084766 DOI: 10.1080/07391102.2023.2291830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
The p90 ribosomal protein S6 Kinase (RSK) family belongs to Ser/Thr protein kinases that includes four isoform RSK1-4 in mammals. The ribosomal protein S6 Kinase 1 (RSK1) is also known as ribosomal protein S6 kinase alpha-1 (RPS6KA1) is a special protein due to their two catalytic regions that is associated with abundantly various cancers and it is proposed as a drug target. Several RSK1 isoform inhibitors have been reported but none of them are used in clinical studies. Thus, we aimed to perform ligand pharmacophore mapping with the known inhibitor and structure-based virtual screening studies to determine potential candidates against RSK1-terminal kinase domains CTKD and NTKD. The studied compounds from the databases (ApexBio, ChEMBL, ChemDiv). The molecular docking study was performed with the resulted candidates by using CDOCKER and Glide/SP methods. The four candidates with the highest docking scores were used for further 100-ns molecular dynamics (MD) simulations and Molecular Mechanics Generalised Born and Surface Area (MM/GBSA) calculations. The root mean square deviation (RMSD) for protein complexes were found between 2 Å and 4 Å. Solvent accessible surface area (SASA), radius of gyration (Rg), and polar surface area (PSA) values were calculated for compounds. The binding free energies were calculated between -72.22 kcal/mol and -82.44 kcal/mol. The interaction diagrams showed that hydrogen bond, alkyl, and π-alkyl interactions were observed with specific residues such as Leu144, Lys94, Asp142 for RSK1-NTKD, and Cys532, Cys556, Lys447, Asn540 for RSK1-CTKD. The identified compounds may be potential inhibitor candidates of RSK1 following the preclinical studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevil Kalin
- Department of Medical System Biology, School of Graduate Students, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
2
|
Kong T, Laranjeira ABA, Letson CT, Yu L, Lin S, Fowles JS, Fisher DAC, Ng S, Yang W, He F, Youn M, Mark K, Jose AS, Liu J, Kim AB, Cox MJ, Fulbright MC, Jayanthan A, Los G, Rentschler SL, Ding L, Sakamoto KM, Dunn SE, Challen GA, Oh ST. RSK1 is an exploitable dependency in myeloproliferative neoplasms and secondary acute myeloid leukemia. Nat Commun 2025; 16:492. [PMID: 39820365 PMCID: PMC11739599 DOI: 10.1038/s41467-024-55643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Myeloid malignancies are heterogenous disorders characterized by distinct molecular drivers but share convergence of oncogenic signaling pathways and propagation by ripe pro-inflammatory niches. Here, we establish a comprehensive transcriptional atlas across the spectrum of myeloproliferative neoplasms (MPN) and secondary acute myeloid leukemia (sAML) through RNA-sequencing of 158 primary samples encompassing CD34+ hematopoietic stem/progenitor cells and CD14+ monocytes. Supported by mass cytometry (CyTOF) profiling, we reveal aberrant networks of PI3K/AKT/mTOR signalling and NFκB-mediated hyper-inflammation. Combining ATAC-Seq, CUT&Tag, RNA-seq, and CyTOF, we demonstrate that targeting of ribosomal protein S6 kinase A1 (RSK1) suppresses NFκB activation and diminishes pro-inflammatory mediators including tumor necrosis factor (TNF) associated with MPN disease severity and transformation. We further evaluate a therapeutic approach utilizing a first-in-class RSK inhibitor, PMD-026, currently in Phase 2 development for breast cancer, for use in myeloid malignancies. Treatment with PMD-026 suppressed disease burden across seven syngeneic and patient-derived xenograft leukemia mouse models spanning the spectrum of driver and disease-modifying mutations. These findings uncover a therapeutic avenue for a conserved dependency across MPN and sAML.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher T Letson
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - LaYow Yu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuyang Lin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jared S Fowles
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sherwin Ng
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Fan He
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Minyoung Youn
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Kailen Mark
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ana San Jose
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Jingxian Liu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexander B Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology & Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie J Cox
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary C Fulbright
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aarthi Jayanthan
- Phoenix Molecular Designs, Vancouver, BC, Canada, San Diego, CA, USA
| | - Gerrit Los
- Phoenix Molecular Designs, Vancouver, BC, Canada, San Diego, CA, USA
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ding
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, BC, Canada, San Diego, CA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Bursky Center for Human Immunology & Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Kong T, Laranjeira ABA, Letson CT, Yu L, He F, Jayanthan A, Los G, Dunn SE, Challen GA, Oh ST. RSK1 dependency in FLT3-ITD acute myeloid leukemia. Blood Cancer J 2024; 14:207. [PMID: 39592591 PMCID: PMC11599852 DOI: 10.1038/s41408-024-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Internal tandem duplications (ITD) in fms-like tyrosine kinase 3 (FLT3) represent the most common genetic alteration in de novo acute myeloid leukemia (AML). Here, we identify ribosomal protein s6 kinase a1 (RSK1) as a core dependency in FLT3-ITD AML and unveil the existence of crucial bi-directional regulation. RSK1 perturbation resulted in marked apoptosis and abrogated phosphorylation of FLT3 and associated downstream signaling cascades in FLT3-ITD AML cell lines. Using cycloheximide, MG-132, and ubiquitination assays, we further demonstrate mechanistically that RSK1 regulates FLT3-ITD activity, and protein stability through deubiqutinase USP1, which we identify as a second dependency. Importantly, multivariate analysis revealed heightened expression of RPS6KA1 and USP1 to be associated with poor patient prognosis, and these effectors may serve as biomarkers predictive of patient survival and therapeutic response to FLT3-ITD inhibitors. Lastly, RSK1 inhibition utilizing a first-in-class RSK inhibitor, PMD-026, that is currently undergoing Phase 2 development for breast cancer, diminished leukemic disease burden in MV4-11 xenograft and syngeneic Flt3ITDTet2KO leukemia models. These findings illustrate an unconventional and promising therapeutic strategy targeting FLT3-ITD leukemia.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher T Letson
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - LaYow Yu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Fan He
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aarthi Jayanthan
- Phoenix Molecular Designs, Vancouver, BC, Canada
- Phoenix Molecular Designs, San Diego, CA, USA
| | - Gerrit Los
- Phoenix Molecular Designs, Vancouver, BC, Canada
- Phoenix Molecular Designs, San Diego, CA, USA
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, BC, Canada
- Phoenix Molecular Designs, San Diego, CA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Yassin-Kassab A, Chatterjee S, Khan N, Wang N, Sandulache VC, Huang EHB, Burns TF, Duvvuri U. p90RSK pathway inhibition synergizes with cisplatin in TMEM16A overexpressing head and neck cancer. BMC Cancer 2024; 24:233. [PMID: 38373988 PMCID: PMC10875868 DOI: 10.1186/s12885-024-11892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) constitutes one of the most common types of human cancers and often metastasizes to lymph nodes. Platinum-based chemotherapeutic drugs are commonly used for treatment of a wide range of cancers, including HNSCC. Its mode of action relies on its ability to impede DNA repair mechanisms, inducing apoptosis in cancer cells. However, due to acquired resistance and toxic side-effects, researchers have been focusing on developing novel combinational therapeutic strategies to overcome cisplatin resistance. In the current study, we identified p90RSK, an ERK1/2 downstream target, as a key mediator and a targetable signaling node against cisplatin resistance. Our results strongly support the role of p90RSK in cisplatin resistance and identify the combination of p90RSK inhibitor, BI-D1870, with cisplatin as a novel therapeutic strategy to overcome cisplatin resistance. In addition, we have identified TMEM16A expression as a potential upstream regulator of p90RSK through the ERK pathway and a biomarker of response to p90RSK targeted therapy in the context of cisplatin resistance.
Collapse
Affiliation(s)
- Abdulkader Yassin-Kassab
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Suman Chatterjee
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nayel Khan
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathaniel Wang
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vlad C Sandulache
- Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Eric H-B Huang
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy F Burns
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
- Smilow Research Center, 530 First Avenue, 801.b, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Wright EB, Lannigan DA. Therapeutic targeting of p90 ribosomal S6 kinase. Front Cell Dev Biol 2023; 11:1297292. [PMID: 38169775 PMCID: PMC10758423 DOI: 10.3389/fcell.2023.1297292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The Serine/Threonine protein kinase family, p90 ribosomal S6 kinases (RSK) are downstream effectors of extracellular signal regulated kinase 1/2 (ERK1/2) and are activated in response to tyrosine kinase receptor or G-protein coupled receptor signaling. RSK contains two distinct kinase domains, an N-terminal kinase (NTKD) and a C-terminal kinase (CTKD). The sole function of the CTKD is to aid in the activation of the NTKD, which is responsible for substrate phosphorylation. RSK regulates various homeostatic processes including those involved in transcription, translation and ribosome biogenesis, proliferation and survival, cytoskeleton, nutrient sensing, excitation and inflammation. RSK also acts as a major negative regulator of ERK1/2 signaling. RSK is associated with numerous cancers and has been primarily studied in the context of transformation and metastasis. The development of specific RSK inhibitors as cancer therapeutics has lagged behind that of other members of the mitogen-activated protein kinase signaling pathway. Importantly, a pan-RSK inhibitor, PMD-026, is currently in phase I/1b clinical trials for metastatic breast cancer. However, there are four members of the RSK family, which have overlapping and distinct functions that can vary in a tissue specific manner. Thus, a problem for transitioning a RSK inhibitor to the clinic may be the necessity to develop isoform specific inhibitors, which will be challenging as the NTKDs are very similar to each other. CTKD inhibitors have limited use as therapeutics as they are not able to inhibit the activity of the NTKD but could be used in the development of proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Eric B. Wright
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Deborah A. Lannigan
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department Pathology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Wang H, Zhang G, Dong L, Chen L, Liang L, Ge L, Gai D, Shen X. Identification and study of cuproptosis-related genes in prognostic model of multiple myeloma. Hematology 2023; 28:2249217. [PMID: 37610069 DOI: 10.1080/16078454.2023.2249217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a highly heterogeneous disease. Cuproptosis is a novel mode of death that is closely associated with several diseases, such as hepatocellular carcinoma. However, its role in MM is unknown. METHODS MM transcriptomic and clinical data were obtained from UCSC Xena and gene expression omnibus (GEO) databases. Following MM samples were divided into different subtypes based on the cuproptosis genes, the differentially expressed genes (DEGs) among different subtypes, namely, candidate cuproptosis related genes were analyzed by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression to construct a cuproptosis-related risk model. After the independent prognostic analysis was performed, a nomogram was constructed. Finally, Functional enrichment analysis and immune infiltration analysis were performed in the high- and low-risk groups, potential therapeutic agents were then predicted. RESULTS The 784 MM samples in UCSC Xena cohorts were divided into three different subtypes, and 4 out of 346 candidate cuproptosis related genes, namely CDKN2A, BCL3, KCNA3 and TTC14 were used to construct a risk model. Risk score was considered a reliable independent prognostic factor for MM patients. It was investigated that the pathway of cell cycle was significantly enriched in the high-risk group. In addition, immune score, ESTIMATE score and cytolytic activity were significantly different between different risk groups, as well as 13 immune cells such as memory B cells. Nine drugs were predicted in our study. CONCLUSION A cuproptosis-related prognostic model was constructed, which may have a potential guiding role in the treatment of MM.
Collapse
Affiliation(s)
- Haili Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Guoxiang Zhang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Lu Dong
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Lu Chen
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Li Liang
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Li Ge
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Dongzheng Gai
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| | - Xuliang Shen
- Shanxi Medical University, Taiyuan, People's Republic of China
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, People's Republic of China
| |
Collapse
|
7
|
Weidenauer K, Schmidt C, Rohde C, Pauli C, Blank MF, Heid D, Waclawiczek A, Corbacioglu A, Göllner S, Lotze M, Vierbaum L, Renders S, Krijgsveld J, Raffel S, Sauer T, Trumpp A, Pabst C, Müller-Tidow C, Janssen M. The ribosomal protein S6 kinase alpha-1 (RPS6KA1) induces resistance to venetoclax/azacitidine in acute myeloid leukemia. Leukemia 2023; 37:1611-1625. [PMID: 37414921 PMCID: PMC10400424 DOI: 10.1038/s41375-023-01951-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Venetoclax/azacitidine combination therapy is effective in acute myeloid leukemia (AML) and tolerable for older, multimorbid patients. Despite promising response rates, many patients do not achieve sustained remission or are upfront refractory. Identification of resistance mechanisms and additional therapeutic targets represent unmet clinical needs. By using a genome-wide CRISPR/Cas9 library screen targeting 18,053 protein- coding genes in a human AML cell line, various genes conferring resistance to combined venetoclax/azacitidine treatment were identified. The ribosomal protein S6 kinase A1 (RPS6KA1) was among the most significantly depleted sgRNA-genes in venetoclax/azacitidine- treated AML cells. Addition of the RPS6KA1 inhibitor BI-D1870 to venetoclax/azacitidine decreased proliferation and colony forming potential compared to venetoclax/azacitidine alone. Furthermore, BI-D1870 was able to completely restore the sensitivity of OCI-AML2 cells with acquired resistance to venetoclax/azacitidine. Analysis of cell surface markers revealed that RPS6KA1 inhibition efficiently targeted monocytic blast subclones as a potential source of relapse upon venetoclax/azacitidine treatment. Taken together, our results suggest RPS6KA1 as mediator of resistance towards venetoclax/azacitidine and additional RPS6KA1 inhibition as strategy to prevent or overcome resistance.
Collapse
Affiliation(s)
- Katharina Weidenauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Christina Schmidt
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Christian Rohde
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cornelius Pauli
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian F Blank
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Heid
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alexander Waclawiczek
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Anika Corbacioglu
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Stefanie Göllner
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michelle Lotze
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Vierbaum
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Renders
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Jeroen Krijgsveld
- University of Heidelberg Medical Faculty, Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Raffel
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Sauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Caroline Pabst
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maike Janssen
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
8
|
Koutsougianni F, Alexopoulou D, Uvez A, Lamprianidou A, Sereti E, Tsimplouli C, Ilkay Armutak E, Dimas K. P90 ribosomal S6 kinases: A bona fide target for novel targeted anticancer therapies? Biochem Pharmacol 2023; 210:115488. [PMID: 36889445 DOI: 10.1016/j.bcp.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The 90 kDa ribosomal S6 kinase (RSK) family of proteins is a group of highly conserved Ser/Thr kinases. They are downstream effectors of the Ras/ERK/MAPK signaling cascade. ERK1/2 activation directly results in the phosphorylation of RSKs, which further, through interaction with a variety of different downstream substrates, activate various signaling events. In this context, they have been shown to mediate diverse cellular processes like cell survival, growth, proliferation, EMT, invasion, and metastasis. Interestingly, increased expression of RSKs has also been demonstrated in various cancers, such as breast, prostate, and lung cancer. This review aims to present the most recent advances in the field of RSK signaling that have occurred, such as biological insights, function, and mechanisms associated with carcinogenesis. We additionally present and discuss the recent advances but also the limitations in the development of pharmacological inhibitors of RSKs, in the context of the use of these kinases as putative, more efficient targets for novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Fani Koutsougianni
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Dimitra Alexopoulou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Ayca Uvez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Andromachi Lamprianidou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Evangelia Sereti
- Dept of Translational Medicine, Medical Faculty, Lund University and Center for Molecular Pathology, Skäne University Hospital, Jan Waldenströms gata 59, SE 205 02 Malmö, Sweden
| | - Chrisiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece.
| |
Collapse
|
9
|
Jin L, Mi T, Wu X, Wang Z, Zhang Z, Liu J, Wang Z, Wang J, Li M, Ren C, Guo P, He D. BI-D1870 Induces Mitotic Dysfunction and Apoptosis in Neuroblastoma by Regulating the PI3K-Akt-mTORC1 Signal Axis. Cancers (Basel) 2023; 15:cancers15072023. [PMID: 37046682 PMCID: PMC10093276 DOI: 10.3390/cancers15072023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Neuroblastoma (NB) is one of the most common extracranial solid malignant tumors in children. The 5-year survival rate of high-risk or refractory NB is less than 50%. Therefore, developing new effective therapeutics for NB remains an urgent challenge. Materials and Methods: Based on the NB dataset TARGET-NBL in the TCGA database, the prognosis-related genes were analyzed using univariate cox regression (p < 0.01). The protein network interaction of prognostic genes was analyzed using STRING to obtain 150 hub genes with HR > 1 and 150 hub genes with HR < 1. The Connectivity Map database was used to predict a therapeutic drug: BI-D1870, a ribosomal S6 kinase inhibitor. The inhibitory effect of BI-D1870 on NB was investigated through in vivo and in vitro experiments, and its inhibitory mechanism was explored. Results: Both the in vivo and in vitro experiments showed that BI-D1870 could inhibit tumor proliferation and induce tumor apoptosis. Furthermore, we proved that BI-D1870 caused G2/M phase arrest and mitosis damage in cells. RNA-seq of cells showed that BI-D1870 may inhibit the growth of NB by inhibiting the PI3K-Akt-mTOR axis. Western blot and immunofluorescence testing showed that BI-D1870 inhibited the PI3K-Akt-mTORC1 signal pathway to regulate the phosphorylation of RPS6 and 4E BP1 proteins, inhibit protein translation, and inhibit microtubule formation, thus preventing mitotic proliferation and inducing apoptosis. Conclusions: This study provides strong support that BI-D1870 may be a potential adjuvant therapy for NB.
Collapse
|
10
|
Sun Y, Tang L, Wu C, Wang J, Wang C. RSK inhibitors as potential anticancer agents: Discovery, optimization, and challenges. Eur J Med Chem 2023; 251:115229. [PMID: 36898330 DOI: 10.1016/j.ejmech.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Ribosomal S6 kinase (RSK) family is a group of serine/threonine kinases, including four isoforms (RSK1/2/3/4). As a downstream effector of the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, RSK participates in many physiological activities such as cell growth, proliferation, and migration, and is intimately involved in tumor occurrence and development. As a result, it is recognized as a potential target for anti-cancer and anti-resistance therapies. There have been several RSK inhibitors discovered or designed in recent decades, but only two have entered clinical trials. Low specificity, low selectivity, and poor pharmacokinetic properties in vivo limit their clinical translation. Published studies performed structure optimization by increasing interaction with RSK, avoiding hydrolysis of pharmacophores, eliminating chirality, adapting to binding site shape, and becoming prodrugs. Besides enhancing efficacy, the focus of further design will move towards selectivity since there are functional differences among RSK isoforms. This review summarized the types of cancers associated with RSK, along with the structural characteristics and optimization process of the reported RSK inhibitors. Furthermore, we addressed the importance of RSK inhibitors' selectivity and discussed future drug development directions. This review is expected to shed light on the emergence of RSK inhibitors with high potency, specificity, and selectivity.
Collapse
Affiliation(s)
- Ying Sun
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichao Tang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, United States
| | - Chengyong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
He W, Meng J. CDC20: a novel therapeutic target in cancer. Am J Transl Res 2023; 15:678-693. [PMID: 36915766 PMCID: PMC10006751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023]
Abstract
Cell division cycle protein 20 (Cdc20) is a member of the cell cyclin family. In the early stage of mitosis, it activates the anaphase-promoting complex (APC) and forms the E3 ubiquitin ligase complex APCCdc20, which destroys key regulators of the cell cycle and promotes mitosis. Cdc20 serves as a target for the spindle checkpoint, ensuring proper chromosome segregation. As an oncoprotein, Cdc20 is highly expressed in a variety of malignant tumors, and Cdc20 overexpression is associated with poor prognosis of these tumors. This review aims to dissect the tumorigenic role of Cdc20 in human malignancies and its targeting strategies.
Collapse
Affiliation(s)
- Wenning He
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| | - Jun Meng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
12
|
Kong T, Laranjeira ABA, Yang K, Fisher DAC, Yu L, Poittevin De La Frégonnière L, Wang AZ, Ruzinova MB, Fowles JS, Fulbright MC, Cox MJ, Celik H, Challen GA, Huang S, Oh ST. DUSP6 mediates resistance to JAK2 inhibition and drives leukemic progression. NATURE CANCER 2023; 4:108-127. [PMID: 36581736 PMCID: PMC11288645 DOI: 10.1038/s43018-022-00486-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/08/2022] [Indexed: 12/31/2022]
Abstract
Myeloproliferative neoplasms (MPNs) exhibit a propensity for transformation to secondary acute myeloid leukemia (sAML), for which the underlying mechanisms remain poorly understood, resulting in limited treatment options and dismal clinical outcomes. Here, we performed single-cell RNA sequencing on serial MPN and sAML patient stem and progenitor cells, identifying aberrantly increased expression of DUSP6 underlying disease transformation. Pharmacologic dual-specificity phosphatase (DUSP)6 targeting led to inhibition of S6 and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling while also reducing inflammatory cytokine production. DUSP6 perturbation further inhibited ribosomal S6 kinase (RSK)1, which we identified as a second indispensable candidate associated with poor clinical outcome. Ectopic expression of DUSP6 mediated JAK2-inhibitor resistance and exacerbated disease severity in patient-derived xenograft (PDX) models. Contrastingly, DUSP6 inhibition potently suppressed disease development across Jak2V617F and MPLW515L MPN mouse models and sAML PDXs without inducing toxicity in healthy controls. These findings underscore DUSP6 in driving disease transformation and highlight the DUSP6-RSK1 axis as a vulnerable, druggable pathway in myeloid malignancies.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangning Yang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - LaYow Yu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Laure Poittevin De La Frégonnière
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Anthony Z Wang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jared S Fowles
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary C Fulbright
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie J Cox
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
MacMullan MA, Wang P, Graham NA. Phospho-proteomics reveals that RSK signaling is required for proliferation of natural killer cells stimulated with IL-2 or IL-15. Cytokine 2022; 157:155958. [PMID: 35841827 DOI: 10.1016/j.cyto.2022.155958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics. Following stimulation of the immortalized NK cell line NK-92 with IL-2 or IL-15 for 5, 10, 15, or 30 min, we identified 8,692 phospho-peptides from 3,023 proteins. Comparing the kinetic profiles of 3,619 fully quantified phospho-peptides, we found that IL-2 and IL-15 induced highly similar signaling in NK-92 cells. Among the IL-2/IL-15-regulated phospho-peptides were both well-known signaling events like the JAK/STAT pathway and novel signaling events with potential functional significance including LCP1 pSer5, STMN1 pSer25, CHEK1 pSer286, STIM1 pSer608, and VDAC1 pSer104. Using bioinformatic approaches, we sought to identify kinases regulated by IL-2/IL-15 stimulation and found that the p90 ribosomal S6 kinase (p90RSK) family was activated by both cytokines. Using pharmacological inhibitors, we then discovered that RSK signaling is required for IL-2 and IL-15-induced proliferation in NK-92 cells. Taken together, our analysis represents the first phospho-proteomic characterization of cytokine signaling in NK cells and increases our understanding of how cytokine signaling regulates NK cell function.
Collapse
Affiliation(s)
- Melanie A MacMullan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States.
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, United States.
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
14
|
Katayama K, Nishihata A. RSK Inhibition Induces Apoptosis by Downregulating Protein Synthesis in a Variety of Acute Myeloid Leukemia Cell Lines. Biol Pharm Bull 2021; 44:1843-1850. [PMID: 34602526 DOI: 10.1248/bpb.b21-00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1/2 (IDH1/2) mutations drive malignancy in acute myeloid leukemia (AML), which accounts for approximately 40% of AML cases. Treatment with FLT3 or IDH1/2 inhibitors is used for such patients; however, it is not considered for most patients with AML who lack mutations on the respective genes. In this study, p90 ribosomal S6 kinase (RSK) was found to serve as a new therapeutic target in various AMLs with or without FLT3 mutations. BI-D1870, a potent inhibitor of RSK, significantly suppressed the proliferation of AML cell lines, among which three encoded wild-type FLT3 and three contained FLT3 driver mutations, compared with chronic myeloid leukemia K562 cells or other adherent cancer cells. BI-D1870 inhibited protein synthesis by dephosphorylating the p70 S6 kinase and eukaryotic initiation factor 4E-binding protein 1 in all AML cells except KG-1a cells. Meanwhile, the expression of microtubule-associated protein light chain 3B-I and -II increased in KG-1a cells treated with BI-D1870. BI-D1870 induced caspase-dependent apoptosis in all AML cells, including KG-1a cells. We next investigated the synergistic effect of BI-D1870 with cytarabine, a traditional anticancer drug used in AML. Synergistic effects of BI-D1870 and cytarabine were not observed in any of the cell lines. The findings suggested that BI-D1870 alone exerts an adequate antiproliferative effect on AML with or without FLT3 mutations and serves as a novel AML therapeutic agent.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Laboratory of Molecular Targeted Therapeutics, School of Pharmacy, Nihon University.,Division of Chemotherapy, Faculty of Pharmacy, Keio University
| | - Ayane Nishihata
- Division of Chemotherapy, Faculty of Pharmacy, Keio University
| |
Collapse
|
15
|
RSK Isoforms in Acute Myeloid Leukemia. Biomedicines 2021; 9:biomedicines9070726. [PMID: 34202904 PMCID: PMC8301392 DOI: 10.3390/biomedicines9070726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Ribosomal S6 Kinases (RSKs) are a group of serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. Four RSK isoforms are directly activated by ERK1/2 in response to extracellular stimuli including growth factors, hormones, and chemokines. RSKs phosphorylate many cytosolic and nuclear targets resulting in the regulation of diverse cellular processes such as cell proliferation, survival, and motility. In hematological malignancies such as acute myeloid leukemia (AML), RSK isoforms are highly expressed and aberrantly activated resulting in poor outcomes and resistance to chemotherapy. Therefore, understanding RSK function in leukemia could lead to promising therapeutic strategies. This review summarizes the current information on human RSK isoforms and discusses their potential roles in the pathogenesis of AML and mechanism of pharmacological inhibitors.
Collapse
|
16
|
Guo C, Gao YY, Ju QQ, Zhang CX, Gong M, Li ZL. The landscape of gene co-expression modules correlating with prognostic genetic abnormalities in AML. J Transl Med 2021; 19:228. [PMID: 34051812 PMCID: PMC8164775 DOI: 10.1186/s12967-021-02914-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background The heterogenous cytogenetic and molecular variations were harbored by AML patients, some of which are related with AML pathogenesis and clinical outcomes. We aimed to uncover the intrinsic expression profiles correlating with prognostic genetic abnormalities by WGCNA. Methods We downloaded the clinical and expression dataset from BeatAML, TCGA and GEO database. Using R (version 4.0.2) and ‘WGCNA’ package, the co-expression modules correlating with the ELN2017 prognostic markers were identified (R2 ≥ 0.4, p < 0.01). ORA detected the enriched pathways for the key co-expression modules. The patients in TCGA cohort were randomly assigned into the training set (50%) and testing set (50%). The LASSO penalized regression analysis was employed to build the prediction model, fitting OS to the expression level of hub genes by ‘glmnet’ package. Then the testing and 2 independent validation sets (GSE12417 and GSE37642) were used to validate the diagnostic utility and accuracy of the model. Results A total of 37 gene co-expression modules and 973 hub genes were identified for the BeatAML cohort. We found that 3 modules were significantly correlated with genetic markers (the ‘lightyellow’ module for NPM1 mutation, the ‘saddlebrown’ module for RUNX1 mutation, the ‘lightgreen’ module for TP53 mutation). ORA revealed that the ‘lightyellow’ module was mainly enriched in DNA-binding transcription factor activity and activation of HOX genes. The ‘saddlebrown’ module was enriched in immune response process. And the ‘lightgreen’ module was predominantly enriched in mitosis cell cycle process. The LASSO- regression analysis identified 6 genes (NFKB2, NEK9, HOXA7, APRC5L, FAM30A and LOC105371592) with non-zero coefficients. The risk score generated from the 6-gene model, was associated with ELN2017 risk stratification, relapsed disease, and prior MDS history. The 5-year AUC for the model was 0.822 and 0.824 in the training and testing sets, respectively. Moreover, the diagnostic utility of the model was robust when it was employed in 2 validation sets (5-year AUC 0.743–0.79). Conclusions We established the co-expression network signature correlated with the ELN2017 recommended prognostic genetic abnormalities in AML. The 6-gene prediction model for AML survival was developed and validated by multiple datasets. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02914-2.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|
17
|
Casalvieri KA, Matheson CJ, Warfield BM, Backos DS, Reigan P. N-Substituted pyrrolopyrimidines and purines as p90 ribosomal S6 protein kinase-2 (RSK2) inhibitors. Bioorg Med Chem 2021; 41:116220. [PMID: 34034149 DOI: 10.1016/j.bmc.2021.116220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/11/2022]
Abstract
The RSK2 kinase is the downstream effector of the Ras/Raf/MEK/ERK pathway, that is often aberrantly activated in acute myeloid leukemia (AML). Recently, we reported a structure-activity study for BI-D1870, the pan-RSK inhibitor, and identified pteridinones that inhibited cellular RSK2 activity that did not result in concomitant cytotoxicity. In the current study, we developed a series of pyrrolopyrimidines and purines to replace the pteridinone ring of BI-D1870, with a range of N-substituents that extend to the substrate binding site to probe complementary interactions, while retaining the 2,6-difluorophenol-4-amino group to maintain interactions with the hinge domain and the DFG motif. Several compounds inhibited cellular RSK2 activity, and we identified compounds that uncoupled cellular RSK2 inhibition from potent cytotoxicity in the MOLM-13 AML cell line. These N-substituted probes have revealed an opportunity to further examine substituents that extend from the ATP- to the substrate-binding site may confer improved RSK potency and selectivity.
Collapse
Affiliation(s)
- Kimberly A Casalvieri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Christopher J Matheson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Becka M Warfield
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Donald S Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA.
| |
Collapse
|