1
|
Malik AJ, Malaviya R. Meeting proceedings of the 43rd Indian Association for Cancer Research (IACR). Biol Open 2024; 13:bio061613. [PMID: 39140283 PMCID: PMC11340811 DOI: 10.1242/bio.061613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The 43rd Annual Conference of the Indian Association of Cancer Research (IACR) was held between 19th and 22nd January 2024 at the Indian Institute of Education and Research (IISER), Pune, India. Cancer is the second leading cause of death globally; efforts have been made to understand and treat this deadly disease for several decades. The 43rd IACR, organised by Mayurika Lahiri, Kundan Sengupta, Nagaraj Balasubramanian, Mridula Nambiar, Krishanpal Karmodiya, and Siddhesh Kamat, highlighted recent advances in cancer research, with implications in therapeutics at the forefront of the discussions. The meeting proved to be a promising platform for cancer researchers ranging from graduate and postdoctoral students to subject experts in varied aspects of cancer biology to showcase their research, ideate with their peers, and form collaborations.
Collapse
Affiliation(s)
- Ajay J. Malik
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Radhika Malaviya
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
2
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Messeha SS, Noel S, Zarmouh NO, Womble T, Latinwo LM, Soliman KFA. Involvement of AKT/PI3K Pathway in Sanguinarine's Induced Apoptosis and Cell Cycle Arrest in Triple-negative Breast Cancer Cells. Cancer Genomics Proteomics 2023; 20:323-342. [PMID: 37400144 PMCID: PMC10320563 DOI: 10.21873/cgp.20385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND/AIM Chemotherapy resistance in triple-negative breast cancer (TNBC) cells is well documented. Therefore, it is necessary to develop safer and more effective therapeutic agents to enhance the outcomes of chemotherapeutic agents. The natural alkaloid sanguinarine (SANG) has demonstrated therapeutic synergy when coupled with chemotherapeutic agents. SANG can also induce cell cycle arrest and trigger apoptosis in various cancer cells. MATERIALS AND METHODS In this study, we investigated the molecular mechanism underlying SANG activity in MDA-MB-231 and MDA-MB-468 cells as two genetically different models of TNBC. We employed various assays including Alamar Blue to measure the effect of SANG on cell viability and proliferation rate, flow cytometry analysis to study the potential of the compound to induce apoptosis and cell cycle arrest, quantitative qRT PCR apoptosis array to measure the expression of different genes mediating apoptosis, and the western system was used to analyze the impact of the compound on AKT protein expression. RESULTS SANG lowered cell viability and disrupted cell cycle progression in both cell lines. Furthermore, S-phase cell cycle arrest-mediated apoptosis was found to be the primary contributor to cell growth inhibition in MDA-MB-231 cells. SANG-treated TNBC cells showed significantly up-regulated mRNA expression of 18 genes associated with apoptosis, including eight TNF receptor superfamily (TNFRSF), three members of the BCL2 family, and two members of the caspase (CASP) family in MDA-MB-468 cells. In MDA-MB-231 cells, two members of the TNF superfamily and four members of the BCL2 family were affected. The western study data showed the inhibition of AKT protein expression in both cell lines concurrent with up-regulated BCL2L11 gene. Our results point to the AKT/PI3K signaling pathway as one of the key mechanisms behind SANG-induced cell cycle arrest and death. CONCLUSION SANG shows anticancer properties and apoptosis-related gene expression changes in the two TNBC cell lines and suggests AKT/PI3K pathway implication in apoptosis induction and cell cycle arrest. Thus, we propose SANG's potential as a solitary or supplementary treatment agent against TNBC.
Collapse
Affiliation(s)
- Samia S Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Sophie Noel
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Najla O Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata, Libya
| | - Tracy Womble
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Lekan M Latinwo
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.;
| |
Collapse
|
5
|
Grassilli S, Brugnoli F, Cairo S, Bianchi N, Judde JG, Bertagnolo V. Vav1 Selectively Down-Regulates Akt2 through miR-29b in Certain Breast Tumors with Triple Negative Phenotype. J Pers Med 2022; 12:jpm12060993. [PMID: 35743776 PMCID: PMC9224635 DOI: 10.3390/jpm12060993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents the most aggressive breast tumor, showing a high intrinsic variability in terms of both histopathological features and response to therapies. Blocking the Akt signaling pathway is a well-studied approach in the treatment of aggressive breast tumors. The high homology among the Akt isoforms and their distinct, and possibly opposite, oncogenic functions made it difficult to develop effective drugs. Here we investigated the role of Vav1 as a potential down-regulator of individual Akt isozymes. We revealed that the over-expression of Vav1 in triple negative MDA-MB-231 cells reduced only the Akt2 isoform, acting at the post-transcriptional level through the up-modulation of miR-29b. The Vav1/miR-29b dependent decrease in Akt2 was correlated with a reduced lung colonization of circulating MDA-MB-231 cells. In cell lines established from PDX, the Vav1 induced down-modulation of Akt2 is strongly dependent on miR-29b and occurs only in some TNBC tumors. These findings may contribute to better classify breast tumors having the triple negative phenotype, and suggest that the activation of the Vav1/miR-29b axis, precisely regulating the amount of an Akt isozyme crucial for tumor dissemination, could have great potential for driving more accurate therapies to TNBCs, often not eligible or resistant to treatments.
Collapse
Affiliation(s)
- Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | - Stefano Cairo
- Xentech, 91000 Evry, France; (S.C.); (J.-G.J.)
- Istituto di Ricerca Pediatrica, 35127 Padova, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | | | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- Correspondence:
| |
Collapse
|
6
|
Narci K, Kahraman DC, Koyas A, Ersahin T, Tuncbag N, Atalay RC. Context dependent isoform specific PI3K inhibition confers drug resistance in hepatocellular carcinoma cells. BMC Cancer 2022; 22:320. [PMID: 35331184 PMCID: PMC8953069 DOI: 10.1186/s12885-022-09357-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Targeted therapies for Primary liver cancer (HCC) is limited to the multi-kinase inhibitors, and not fully effective due to the resistance to these agents because of the heterogeneous molecular nature of HCC developed during chronic liver disease stages and cirrhosis. Although combinatorial therapy can increase the efficiency of targeted therapies through synergistic activities, isoform specific effects of the inhibitors are usually ignored. This study concentrated on PI3K/Akt/mTOR pathway and the differential combinatory bioactivities of isoform specific PI3K-α inhibitor (PIK-75) or PI3K-β inhibitor (TGX-221) with Sorafenib dependent on PTEN context. METHODS The bioactivities of inhibitors on PTEN adequate Huh7 and deficient Mahlavu cells were investigated with real time cell growth, cell cycle and cell migration assays. Differentially expressed genes from RNA-Seq were identified by edgeR tool. Systems level network analysis of treatment specific pathways were performed with Prize Collecting Steiner Tree (PCST) on human interactome and enriched networks were visualized with Cytoscape platform. RESULTS Our data from combinatory treatment of Sorafenib and PIK-75 and TGX-221 showed opposite effects; while PIK-75 displays synergistic effects on Huh7 cells leading to apoptotic cell death, Sorafenib with TGX-221 display antagonistic effects and significantly promotes cell growth in PTEN deficient Mahlavu cells. Signaling pathways were reconstructed and analyzed in-depth from RNA-Seq data to understand mechanism of differential synergistic or antagonistic effects of PI3K-α (PIK-75) and PI3K-β (TGX-221) inhibitors with Sorafenib. PCST allowed as to identify AOX1 and AGER as targets in PI3K/Akt/mTOR pathway for this combinatory effect. The siRNA knockdown of AOX1 and AGER significantly reduced cell proliferation in HCC cells. CONCLUSIONS Simultaneously constructed and analyzed differentially expressed cellular networks presented in this study, revealed distinct consequences of isoform specific PI3K inhibition in PTEN adequate and deficient liver cancer cells. We demonstrated the importance of context dependent and isoform specific PI3K/Akt/mTOR signaling inhibition in drug resistance during combination therapies. ( https://github.com/cansyl/Isoform-spesific-PI3K-inhibitor-analysis ).
Collapse
Affiliation(s)
- Kubra Narci
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Deniz Cansen Kahraman
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Altay Koyas
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Tulin Ersahin
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Nurcan Tuncbag
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Rengul Cetin Atalay
- Cancer System Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey.
- Present Address: Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Zhang LY, Shen ZX, Guo L. Inhibiting L1CAM Reverses Cisplatin Resistance of Triple Negative Breast Cancer Cells by Blocking AKT Signaling Pathway. Cancer Invest 2022; 40:313-324. [PMID: 35040385 DOI: 10.1080/07357907.2021.2016801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DDP-resistant MDA-MB-231 cells (MDA-MB-231/DDP) cells had higher expression of L1CAM than their parental cells. L1CAM siRNA decreased the IC50 of MDA-MB-231/DDP cells to DDP. L1CAM inhibition down-regulated p-AKT/AKT in MDA-MB-231/DDP cells; meanwhile, it could promote MDA-MB-231/DDP cell apoptosis, inhibit cell EMT, invasion, and migration. Moreover, SC79 (an AKT activator) increased the DDP-resistance of MDA-MB-231/DDP cells, which was reversed by L1CAM inhibition. Furthermore, co-treatment of L1CAM shRNA and cisplatin injection had better anti-tumor effects in vivo than these two single treatments with decreased p-AKT/AKT. Thus, silencing L1CAM reversed the DDP resistance by inhibiting the AKT pathway.
Collapse
Affiliation(s)
- Lu-Yao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhi-Xin Shen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lu Guo
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
8
|
Kreutzer D, Döring H, Werner P, Ritter CA, Hilgeroth A. Novel Symmetrical Cage Compounds as Inhibitors of the Symmetrical MRP4-Efflux Pump for Anticancer Therapy. Int J Mol Sci 2021; 22:5098. [PMID: 34065900 PMCID: PMC8150856 DOI: 10.3390/ijms22105098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Within the last decades cancer treatment improved by the availability of more specifically acting drugs that address molecular target structures in cancer cells. However, those target-sensitive drugs suffer from ongoing resistances resulting from mutations and moreover they are affected by the cancer phenomenon of multidrug resistance. A multidrug resistant cancer can hardly be treated with the common drugs, so that there have been long efforts to develop drugs to combat that resistance. Transmembrane efflux pumps are the main cause of the multidrug resistance in cancer. Early inhibitors disappointed in cancer treatment without a proof of expression of a respective efflux pump. Recent studies in efflux pump expressing cancer show convincing effects of those inhibitors. Based on the molecular symmetry of the efflux pump multidrug resistant protein (MRP) 4 we synthesized symmetric inhibitors with varied substitution patterns. They were evaluated in a MRP4-overexpressing cancer cell line model to prove structure-dependent effects on the inhibition of the efflux pump activity in an uptake assay of a fluorescent MRP4 substrate. The most active compound was tested to resentisize the MRP4-overexpressing cell line towards a clinically relevant anticancer drug as proof-of-principle to encourage for further preclinical studies.
Collapse
Affiliation(s)
- David Kreutzer
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| | - Henry Döring
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| | - Peter Werner
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| | - Christoph A. Ritter
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, 17489 Greifswald, Germany;
| | - Andreas Hilgeroth
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| |
Collapse
|