1
|
Skálová A, Klubíčková N, Bradová M, Agaimy A, Rupp NJ, Damjanov I, Kolnikova G, Martínek P, Šteiner P, Grossmann P, Vaněček T, Michal M, Leivo I. Discovery of Novel TULP4/ACTN4/EWSR1/ACTB::MYB and ESRRG::DNM3 Fusions Expands Molecular Landscape of Adenoid Cystic Carcinoma Beyond Fusions Between MYB/MYBL1 and NFIB Genes. Am J Surg Pathol 2024; 48:00000478-990000000-00411. [PMID: 39235305 PMCID: PMC11556814 DOI: 10.1097/pas.0000000000002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Adenoid cystic carcinoma (AdCC) is one of the most common salivary gland malignancies and occurs in all major and minor salivary gland and seromucous gland sites. AdCCs of salivary gland origin have long been categorized as fusion-defined carcinomas owing to the almost consistent presence of fusion genes MYB::NFIB, or less commonly MYBL1::NFIB. We collected a cohort of 95 cases of AdCC, which were largely characterized by canonical fusions MYB::NFIB (49 cases) or MYBL1::NFIB (9 cases). In additional 11 cases of AdCC, rearrangements in MYB or NFIB genes were detected by FISH. In addition, NGS revealed novel noncanonical fusion transcripts EWSR1::MYB; ACTB::MYB; ESRRG::DNM3, MYB::TULP4, and ACTN4::MYB, each of them in 1 case. The tumors that showed noncanonical fusions had features of metatypical AdCC with a diverse architecture, lobulated multinodular growth pattern, and hypercellular peripheral palisading of nuclei (2 cases), tubular hypereosinophilia (2 cases), and pale eosinophilic to vacuolated (bubbly) cytoplasm (3 cases). Our study documented 3 cases of AdCC of salivary glands harboring novel gene fusions TULP4::MYB, ACTN4::MYB, and ACTB::MYB, in 1 case each, which have not been described before. A rare EWSR1::MYB fusion was detected in 1 case. Moreover, 1 case of sinonasal metatypical AdCC showed EWSR1 rearrangement detected by FISH. Also, 1 case with an ESRRG::DNM3 fusion of unknown significance is described in this study. These discoveries illustrate how broad molecular profiling will expand understanding of changes in known entities.
Collapse
Affiliation(s)
- Alena Skálová
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
- Bioptic Laboratory, Ltd., Pilsen, Czech Republic
| | - Natálie Klubíčková
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
- Bioptic Laboratory, Ltd., Pilsen, Czech Republic
| | - Martina Bradová
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
- Bioptic Laboratory, Ltd., Pilsen, Czech Republic
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Niels J. Rupp
- Department of Pathology, and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ivan Damjanov
- The University of Kansas School of Medicine, Kansas City, KS
| | - Georgina Kolnikova
- Department of Pathology, National Oncologic Institute, Bratislava, Slovak Republic
| | - Petr Martínek
- Molecular and Genetic Laboratory, Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Petr Šteiner
- Molecular and Genetic Laboratory, Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Petr Grossmann
- Molecular and Genetic Laboratory, Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Tomas Vaněček
- Molecular and Genetic Laboratory, Bioptic Laboratory, Ltd, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
- Bioptic Laboratory, Ltd., Pilsen, Czech Republic
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku and Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Bedell M, Lewis DW, Seethala RR. A Novel Scoring System for MYB RNA In Situ Hybridization Displays High Sensitivity and Specificity for Adenoid Cystic Carcinoma in a Clinical Setting. Head Neck Pathol 2024; 18:51. [PMID: 38896376 PMCID: PMC11187024 DOI: 10.1007/s12105-024-01656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND MYB RNA in situ hybridization (ISH) has emerged as a reliable and accessible marker to support adenoid cystic carcinoma (ACC) diagnosis, though still not well studied. Here, we report our results in a validation and prospective cohort to improve MYB RNA ISH diagnostic accuracy. METHODS 79 cases (23 retrospective and 56 prospective) underwent MYB RNA ISH testing (44 ACC and 35 non-ACC). MYB RNA ISH results were initially interpreted based on previously established (original) scoring criteria. Weighted "i-scores", percent positive tumor cells, percent tumor cells with large signals (% LS), and staining pattern (abluminal, diffuse, focal non-patterned, or negative) were inputs for logistic regression models. Final model performance characteristics were compared with original scoring criteria and MYB::NFIB FISH results. RESULTS An abluminal pattern was characteristic and exclusive to ACC. All i-scores, % LS, and percent positive were significantly higher in ACC. Original scoring criteria yielded a 95.5% sensitivity (Sn), 68.6% specificity (Sp), and 83.5% accuracy. MYB::NFIB FISH yielded a 42.9% sensitivity, 100% specificity, and 60% accuracy. Optimizing for performance, simplicity, and minimal collinearity, our final model was defined as: abluminal pattern and/or % LS > 16.5%, which resulted in a 93.2% Sn, 97.1% Sp, and 94.9% accuracy for ACC diagnosis. False negatives included an ACC with striking tubular eosinophilia and a MYBL1::NFIB translocated ACC. One false positive exclusive to the final model was a nasopharyngeal carcinoma with MYB amplification. CONCLUSIONS MYB RNA ISH has a higher Sn than MYB::NFIB FISH while retaining high Sp. Our model provides improvements to specificity compared to original scoring criteria and highlight the importance of abluminal staining pattern and % LS. Nonetheless, alternate fusions remain key false negatives while rare non-ACC with other mechanisms of MYB activation may present as false positives.
Collapse
Affiliation(s)
- Mariel Bedell
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Dale W Lewis
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Raja R Seethala
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Albalawi E. Genetic Rearrangements in Different Salivary Gland Tumors: A Systematic Review. Cureus 2024; 16:e61639. [PMID: 38966479 PMCID: PMC11223175 DOI: 10.7759/cureus.61639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Salivary gland tumors (SGT) encompass a wide range of neoplasms, each with its own unique histological type and clinical presentation. This review hones in on prevalent subtypes of SGTs, including adenoid cystic carcinoma (ACC), salivary duct carcinoma (SDC), and polymorphous adenocarcinoma (PAC). The articles, identified through specific keywords, were meticulously screened in databases like PubMed, Scopus, Google Scholar, and Web of Science from 2018 to 2023. Eight articles delved into genetic modifications among the selected SGT types. A fusion protein known as MYB-NF1B is typically associated with ACC, promoting cell proliferation while inhibiting apoptosis. The presence of MYB modifications in ACCs is a beacon of hope, as it is linked to a more favorable prognosis. In contrast, SDCs often exhibit HER2 expression. The invasive nature of SGTs contributes to their resistance to treatment. In the case of PAC, the role of PRKD1 is particularly noteworthy. PRKD1, integrated with other genes from the PRKD1/2/3 cluster, helps to differentiate PAC from other diseases. Furthermore, the genetic profiles of KTN1-PRKD1) and PPP2R2A:PRKD1 are distinct. The significant genetic variability among SGTs necessitates meticulous examination. This field is in a constant state of evolution, with new discoveries reshaping our understanding. Genetics is a key player in deciphering SGTs and tailoring treatments. This complex neoplasm demands ongoing research to uncover all genetic influences, thereby enhancing diagnostic methodologies, therapeutic strategies, and patient outcomes.
Collapse
|
4
|
Kimura TDC, de Lima-Souza RA, Maciel TF, Kowalski LP, Coutinho-Camillo CM, Egal ESA, Altemani A, Mariano FV. Dynamic Role of miRNAs in Salivary Gland Carcinomas: From Biomarkers to Therapeutic Targets. Head Neck Pathol 2024; 18:12. [PMID: 38393615 PMCID: PMC10891027 DOI: 10.1007/s12105-023-01603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Salivary gland carcinomas (SGCs) are a rare group of malignant neoplasms of the head and neck region. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been associated with the control biological process and oncogenic mechanism by the regulation of gene expression at the post-transcriptional level. Recent evidence has suggested that miRNA expression may play a role in the tumorigenesis and carcinogenesis process in SGCs. METHODS This review provides a comprehensive literature review of the role of miRNAs expression in SGCs focusing on the diagnostic, prognostic, and therapeutic applications. RESULTS In this review, numerous dysregulated miRNAs have demonstrated an oncogenic and suppressor role in SGCs. CONCLUSION In the future, these miRNAs may eventually constitute useful diagnostic and prognostic biomarkers that may lead to a better understanding of SGCs oncogenesis. Additionally, the development of therapeutic agents based on miRNAs may be a promising target in SGC treatment.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Tayná Figueiredo Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
5
|
Ueda K, Murase T, Kawakita D, Nagao T, Kusafuka K, Nakaguro M, Urano M, Yamamoto H, Taguchi KI, Kano S, Tada Y, Tsukahara K, Okami K, Onitsuka T, Fujimoto Y, Sakurai K, Hanai N, Nagao T, Kawata R, Hato N, Nibu KI, Inagaki H. The Landscape of MYB/MYBL1- and Peri-MYB/MYBL1-Associated Rearrangements in Adenoid Cystic Carcinoma. Mod Pathol 2023; 36:100274. [PMID: 37423587 DOI: 10.1016/j.modpat.2023.100274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Approximately 60% of adenoid cystic carcinoma (AdCC) cases are positive for MYB::NFIB or MYBL1::NFIB, whereas MYB/MYBL1 oncoprotein, a key driver of AdCC, is overexpressed in most cases. Juxtaposition of superenhancer regions in NFIB and other genes into the MYB/MYBL1 locus is an attractive oncogenic hypothesis for AdCC cases, either negative or positive for MYB/MYBL1::NFIB. However, evidence supporting this hypothesis is insufficient. We examined 160 salivary AdCC cases for rearrangements in MYB/MYBL1 loci and peri-MYB/MYBL1 areas (centromeric and telomeric areas of 10 Mb each) using formalin-fixed, paraffin-embedded tumor sections. For the detection of the rearrangements, we employed conventional fluorescence in situ hybridization split and fusion assays and a 5 Mb fluorescence in situ hybridization split assay. The latter is a novel assay that enabled us to detect any possible splits within a 5 Mb distance of a chromosome. We found MYB/MYBL1- and peri-MYB/MYBL1-associated rearrangements in 149/160 patients (93%). AdCC cases positive for rearrangements in MYB, MYBL1, the peri-MYB area, and the peri-MYBL1 area numbered 105 (66%), 20 (13%), 19 (12%), and 5 (3%), respectively. In 24 peri-MYB/MYBL1 rearrangement-positive cases, 14 (58%) were found to have a juxtaposition of the NFIB or RAD51B locus into the MYB/MYBL1 loci. On comparing with a tumor group positive for MYB::NFIB, a hallmark of AdCC, other genetically classified tumor groups had similar features of overexpression of the MYB transcript and MYB oncoprotein as detected by semiquantitative RT-qPCR and immunohistochemistry, respectively. In addition, clinicopathological and prognostic features were similar among these groups. Our study suggests that peri-MYB/MYBL1 rearrangements may be a frequent event in AdCC and may result in biological and clinicopathological consequences comparable to MYB/MYBL1 rearrangements. The landscape of MYB/MYBL1 and peri-MYB/MYBL1 rearrangements shown here strongly suggests that juxtaposition of superenhancers into MYB/MYBL1 or peri-MYB/MYBL1 loci is an alteration that acts as a key driver for AdCC oncogenesis and may unify MYB/MYBL1 rearrangement-positive and negative cases.
Collapse
Affiliation(s)
- Kaori Ueda
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takayuki Murase
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Kawakita
- Department of Otorhinolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | | | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Makoto Urano
- Department of Diagnostic Pathology, Bantane Hospital, Fujita Health University School of Medicine, Nagoya, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate of School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Ken-Ichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kenji Okami
- Department of Otolaryngology-Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Tetsuro Onitsuka
- Division of Head and Neck Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yasushi Fujimoto
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Otolaryngology-Head and Neck Surgery, Aichi Medical University, Nagakute, Japan
| | - Kazuo Sakurai
- Department of Otorhinolaryngology, Fujita Health University, Okazaki Medical Center, Okazaki, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Ryo Kawata
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Naohito Hato
- Department of Otolaryngology, Ehime University School of Medicine, Toon, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
6
|
Forooghi Pordanjani T, Dabirmanesh B, Choopanian P, Mirzaie M, Mohebbi S, Khajeh K. Extracting Potential New Targets for Treatment of Adenoid Cystic Carcinoma using Bioinformatic Methods. IRANIAN BIOMEDICAL JOURNAL 2023; 27:294-306. [PMID: 37873683 PMCID: PMC10707816 DOI: 10.61186/ibj.27.5.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/25/2023] [Indexed: 12/17/2023]
Abstract
Background Adenoid cystic carcinoma is a slow-growing malignancy that most often occurs in the salivary glands. Currently, no FDA-approved therapeutic target or diagnostic biomarker has been identified for this cancer. The aim of this study was to find new therapeutic and diagnostic targets using bioinformatics methods. Methods We extracted the gene expression information from two GEO datasets (including GSE59701 and GSE88804). Different expression genes between adenoid cystic carcinoma (ACC) and normal samples were extracted using R software. The biochemical pathways involved in ACC were obtained by using the Enrichr database. PPI network was drawn by STRING, and important genes were extracted by Cytoscape. Real-time PCR and immunohistochemistry were used for biomarker verification. Results After analyzing the PPI network, 20 hub genes were introduced to have potential as diagnostic and therapeutic targets. Among these genes, PLCG1 was presented as new biomarker in ACC. Furthermore, by studying the function of the hub genes in the enriched biochemical pathways, we found that insulin-like growth factor type 1 receptor and PPARG pathways most likely play a critical role in tumorigenesis and drug resistance in ACC and have a high potential for selection as therapeutic targets in future studies. Conclusion In this study, we achieved the recognition of the pathways involving in ACC pathogenesis and also found potential targets for treatment and diagnosis of ACC. Further experimental studies are required to confirm the results of this study.
Collapse
Affiliation(s)
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Peyman Choopanian
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleh Mohebbi
- ENT and Head & Neck Research Center, the Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Chen Z, Jiang J, Fan Y, Lu H. Pulmonary adenoid cystic carcinoma: molecular characteristics and literature review. Diagn Pathol 2023; 18:65. [PMID: 37198615 DOI: 10.1186/s13000-023-01354-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Pulmonary adenoid cystic carcinoma (PACC) is an exceptionally rare salivary gland-type malignant neoplasm. Because of its clinical manifestations, imaging features are not different from other types of non-small cell lung cancer, which is a diagnostic challenge for most doctors. CONCLUSIONS A review of the literature shows that high amounts of immunohistochemical (IHC) markers, such as CK7, CD117, P63, SMA, CK5/6, and S-100 are helpful for PACC diagnosis. Surgical resection is the main treatment of PACC, but treatment options for advanced PACC patients are limited and the research of molecular targeted drugs is ongoing in advanced cases not eligible for surgery. Currently, research on PACC targeted therapy mainly focuses on the exploration of v-myb avian myeloblastosis virus oncogene homolog (MYB) and its downstream target genes. In addition, median tumor mutation burden and PD-1/PD-L1 were lower in PACC, which may indicate poor efficacy of immunotherapy in PACC patients. This review focuses on the pathologic features, molecular characteristics, diagnosis, treatment and prognosis of PACC to establish a comprehensive understanding of PACC.
Collapse
Affiliation(s)
- Zhixin Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P.R. China
| | - Jiapeng Jiang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P.R. China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P.R. China
| | - Ying Fan
- Department of Medical Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China
| | - Hongyang Lu
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P.R. China.
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P.R. China.
| |
Collapse
|
8
|
miR-183-5p overexpression orchestrates collective invasion in salivary adenoid cystic carcinoma through the FAT1/YAP1 signaling pathway. Biochem Biophys Res Commun 2023; 655:127-137. [PMID: 36934588 DOI: 10.1016/j.bbrc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The invasion of cancer cells into interstitial tissues in a cohesive unit is termed collective invasion, and it is important for the invasion and metastasis of salivary adenoid cystic carcinoma (SACC). However, the underlying mechanisms regulating SACC collective invasion are still poorly understood. Here, we found that SACC tissues exhibited remarkable FAT1 downregulation and YAP1 upregulation at the invasive front, which was closely associated with collective invasion and distant metastasis. Decreasing FAT1 expression significantly activated the YAP1 signaling pathway and promoted collective invasion. Moreover, miR-183-5p was identified as the candidate regulator of FAT1 by bioinformatic analysis and an online database algorithm. A dual luciferase reporter experiment further confirmed that miR-183-5p directly targeted the FAT1 3'-UTR to reduce FAT1 expression. Increasing or decreasing miR-183-5p expression promoted or attenuated collective invasion, which was reversed by YAP1 siRNA or FAT1 siRNA, respectively. In addition, knocking down miR-183-5p reduced tumor burden and attenuated collective invasion in vivo. Together, these results suggest that the miR-183-5p/FAT1/YAP1 signaling pathway is a critical driver of SACC collective invasion, revealing a novel therapeutic target.
Collapse
|
9
|
Dabbs DJ, Huang RS, Ross JS. Novel markers in breast pathology. Histopathology 2023; 82:119-139. [PMID: 36468266 DOI: 10.1111/his.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Breast pathology is an ever-expanding database of information which includes markers, or biomarkers, that detect or help treat the disease as prognostic or predictive information. This review focuses on these aspects of biomarkers which are grounded in immunohistochemistry, liquid biopsies and next-generation sequencing.
Collapse
Affiliation(s)
- David J Dabbs
- PreludeDx, Laguna Hills, CA, USA.,Department of Pathology, University of Pittsburgh, Board Member, CASI (Consortium for Analytical Standardization in Immunohistochemistry), Pittsburgh, PA, USA
| | - Richard S Huang
- Clinical Development, Foundation Medicine, Cambridge, MA, USA
| | | |
Collapse
|
10
|
Wagner VP, Ferrarotto R, Vargas PA, Martins MD, Bingle CD, Bingle L. Drug-based therapy for advanced adenoid cystic carcinoma: Current landscape and challenges based on an overview of registered clinical trials. Crit Rev Oncol Hematol 2023; 181:103886. [PMID: 36427771 DOI: 10.1016/j.critrevonc.2022.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) has a significant patient-population in need of effective systemic therapy, as no drug is currently approved by the FDA for its management. We critically reviewed ACC-clinical trials (CT) registered on the ClinicalTrials.gov website using "ACC" under condition or disease. Trials specifically designed to test a drug-based therapy for ACC (n = 33) were analyzed with most being one-arm phase II trials enrolling advanced, recurrent/metastatic, incurable ACC cases. Site restriction, maximum ECOG status, and period of disease progression varied as inclusion criteria. Small-molecule inhibitors were those most commonly investigated with Apatinib, Axitinib and Lenvatinib showing the best results in association with rigid enrollment criteria. The overall median time to progression remains modest and more efforts are urgently needed in this field. CTs designed to test drugs that act on key pathways associated with ACC aggressiveness are being conducted and represent a promising pathway if efficacy is proved.
Collapse
Affiliation(s)
- Vivian Petersen Wagner
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| | - Renata Ferrarotto
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Manoela Domingues Martins
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil; Oral Pathology Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Parikh AS, Wizel A, Davis D, Lefranc-Torres A, Rodarte-Rascon AI, Miller LE, Emerick KS, Varvares MA, Deschler DG, Faquin WC, Aster JC, Lin DT, Bernstein BE, Drier Y, Puram SV. Single-cell RNA sequencing identifies a paracrine interaction that may drive oncogenic notch signaling in human adenoid cystic carcinoma. Cell Rep 2022; 41:111743. [PMID: 36450256 PMCID: PMC9760094 DOI: 10.1016/j.celrep.2022.111743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Salivary adenoid cystic carcinoma (ACC) is a rare, biologically unique biphasic tumor that consists of malignant myoepithelial and luminal cells. MYB and Notch signaling have been implicated in ACC pathophysiology, but in vivo descriptions of these two programs in human tumors and investigation into their active coordination remain incomplete. We utilize single-cell RNA sequencing to profile human head and neck ACC, including a comparison of primary ACC with a matched local recurrence. We define expression heterogeneity in these rare tumors, uncovering diversity in myoepithelial and luminal cell expression. We find differential expression of Notch ligands DLL1, JAG1, and JAG2 in myoepithelial cells, suggesting a paracrine interaction that may support oncogenic Notch signaling. We validate this selective expression in three published cohorts of patients with ACC. Our data provide a potential explanation for the biphasic nature of low- and intermediate-grade ACC and may help direct new therapeutic strategies against these tumors.
Collapse
Affiliation(s)
- Anuraag S Parikh
- Department of Otolaryngology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Avishai Wizel
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Daniel Davis
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | | | | | - Lauren E Miller
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin S Emerick
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark A Varvares
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel G Deschler
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C Aster
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley E Bernstein
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Sidharth V Puram
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Emerick C, Mariano FV, Vargas PA, Nör JE, Squarize CH, Castilho RM. Adenoid Cystic Carcinoma from the salivary and lacrimal glands and the breast: different clinical outcomes to the same tumor. Crit Rev Oncol Hematol 2022; 179:103792. [PMID: 35973662 DOI: 10.1016/j.critrevonc.2022.103792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/31/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a biphasic malignant lesion that can develop at various anatomical sites. Salivary and lacrimal ACC lesions have a high risk of local invasion, metastasis, and poor prognosis. In more distant organs, such as the breast, ACC is a rarer and less aggressive lesion. One of the major predictors of mortality of ACC is perineural invasion, which can be seen in 30% of breast lesions, 85% of salivary lesions, and almost 100% of lacrimal gland tumors. The biological differences between these three ACC tumors are still poorly understood. We focused on the current understanding of the genetic variations observed on ACC tumors and prognostic differences associated with distinct anatomical sites. A special effort was made to present the currently available therapies alongside the emerging strategies under development.
Collapse
Affiliation(s)
- Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, and Endodontics, Angiogenesis Research Laboratory, University of Michigan School of Dentistry Ann Arbor, Michigan, USA; Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Cristiane H Squarize
- Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Machine Learning Predictor of Immune Checkpoint Blockade Response in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14133191. [PMID: 35804967 PMCID: PMC9265060 DOI: 10.3390/cancers14133191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Predicting responses to immune checkpoint blockade (ICB) lacks official standards despite the discovery of several markers. Expensive drugs and different reactivities for each patient are the main disadvantages of immunotherapy. Gastric cancer is refractory and stem-like in nature and does not respond to immunotherapy. In this study, we aimed to identify a characteristic gene that predicts ICB response in gastric cancer and discover a drug target for non-responders. We built and evaluated a model using four machine learning algorithms for two cohorts of bulk and single-cell RNA seq to predict ICB response in gastric cancer patients. Through the LASSO feature selection, we discovered a marker gene signature that distinguishes responders from non-responders. VCAN, a candidate characteristic gene selected by all four machine learning algorithms, had a significantly high prevalence in non-responders (p = 0.0019) and showed a poor prognosis (p = 0.0014) at high expression values. This is the first study to discover a signature gene for predicting ICB response in gastric cancer by molecular subtype and provides broad insights into the treatment of stem-like immuno-oncology through precision medicine.
Collapse
|
14
|
Wagner VP, Bingle CD, Bingle L. MYB-NFIB fusion transcript in Adenoid Cystic Carcinoma: current state of knowledge and future directions. Crit Rev Oncol Hematol 2022; 176:103745. [PMID: 35738530 DOI: 10.1016/j.critrevonc.2022.103745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is the most common type of salivary gland cancer that can also arise in other primary sites. Regardless of the site, most ACC cases carry a recurrent chromosomal translocation - t(6;9)(q22-23;p23-24) - involving the MYB oncogene and the NFIB transcription factor. Generally, a long sequence of MYB is fused to the terminal exons of NFIB, yet the break can occur in different exons for both genes, resulting in multiple chimeric variants. The fusion status can be determined by a number of methods, each of them with particular advantages. In vitro and in vivo studies have been conducted to understand the biological consequences of MYB-NFIB translocation, and such findings could contribute to improving the current inefficient therapeutic options for disseminated ACC. This review provides a discussion on relevant evidence in the context of ACC MYB-NFIB translocations to determine the current state of knowledge and discuss future directions.
Collapse
Affiliation(s)
- Vivian P Wagner
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
de Sousa LG, Neto FL, Lin J, Ferrarotto R. Treatment of Recurrent or Metastatic Adenoid Cystic Carcinoma. Curr Oncol Rep 2022; 24:621-631. [PMID: 35212920 DOI: 10.1007/s11912-022-01233-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Adenoid cystic carcinoma (ACC) is a rare and heterogeneous malignancy of secretory glands. Recurrence after curative-intent treatment is common, and approximately 40% of patients develop metastatic disease, for which consensus is lacking regarding therapeutic approaches. Here, we review the available therapies for recurrent/metastatic (R/M) ACC and offer our perspectives on future treatment options. RECENT FINDINGS Proteogenomic studies of ACC revealed two molecular subtypes with therapeutic implications: ACC-I (37% of cases) and ACC-II (63%); each has distinct disease biology and prognosis. Molecular drivers, such as NOTCH1, have emerged as potential therapeutic targets for ACC-I and are being explored in clinical trials. Despite its biological heterogeneity, treatment for R/M ACC is not personalized and limited to cytotoxic agents and VEGFR inhibitors, which produce modest responses and significant toxicity. The increasing understanding of ACC's molecular biology might guide the development of biomarkers for patient selection and new therapies development.
Collapse
Affiliation(s)
- Luana Guimaraes de Sousa
- Departments of a Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, PO Box 432, Houston, TX, 77030, USA
| | - Felippe Lazar Neto
- Departments of a Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, PO Box 432, Houston, TX, 77030, USA
| | - Jessica Lin
- Departments of a Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, PO Box 432, Houston, TX, 77030, USA
| | - Renata Ferrarotto
- Departments of a Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, PO Box 432, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Meng C, Huang S, Cheng T, Zhang X, Yan X. Induction of Salivary Gland-Like Tissue by Induced Pluripotent Stem Cells In Vitro. Tissue Eng Regen Med 2022; 19:389-401. [PMID: 35171451 PMCID: PMC8971325 DOI: 10.1007/s13770-021-00402-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate the in vitro induction of salivary gland-like tissue by ips cells in an interferon regulatory factor 6 (IRF6) overexpression and parotid conditioned medium environment. METHODS Urine-derived ips cells were isolated, identified, transfected with IRF6 and cultured in parotid conditioned medium to induce ips cells into salivary gland differentiation, morphological changes of ips cells were observed, CCK-8 was used to determine the cell proliferation efficiency and transcriptome sequencing was used to detect the expression of genes related to parotid gland formation. RESULTS Immunofluorescence staining showed that the isolated ips cells were positive for NANOG, SSEA4 and OCT4 and had embryonic-like stem cell characteristics; CCK-8 showed that there was no statistical difference in the proliferation efficiency between the IRF6+ induced group and the simple induced group after induction of ips cells into salivary glands. The results of transcriptome sequencing showed that there were a total of 643 differentially expressed genes, including 365 up-regulated genes and 278 down-regulated genes in the IRF6+ induced group compared to the blank control group, and the salivary gland related genes HAPLN1, CCL2, MSX2, ANXA1, CYP11A1, HES1 and LUM were all highly expressed in the IRF6+ induced group. CONCLUSION IRF6 promotes salivary gland differentiation in urine-derived iPSCs, and its mechanism of promoting differentiation may be that IRF6 upregulates the expression of HAPLN1, CCL2, MSX2, ANXA1, CYP11A1, HES1 and LUM to promote epithelial differentiation.
Collapse
Affiliation(s)
- Cen Meng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengyuan Huang
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Taiqi Cheng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Dandapath I, Chakraborty R, Kaur K, Mahajan S, Singh J, Sharma MC, Sarkar C, Suri V. Molecular alterations of low-grade gliomas in young patients: Strategies and platforms for routine evaluation. Neurooncol Pract 2021; 8:652-661. [PMID: 34777834 PMCID: PMC8579091 DOI: 10.1093/nop/npab053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, it has been established that molecular biology of pediatric low-grade gliomas (PLGGs) is entirely distinct from adults. The majority of the circumscribed pediatric gliomas are driven by mitogen-activated protein kinase (MAPK) pathway, which has yielded important diagnostic, prognostic, and therapeutic biomarkers. Further, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT) Steering Committee in their fourth meeting, suggested including a panel of molecular markers for integrated diagnosis in "pediatric-type" diffuse gliomas. However, a designated set of platforms for the evaluation of these alterations has yet not been mentioned for easier implementation in routine molecular diagnostics. Herein, we have reviewed the relevance of analyzing these markers and discussed the strategies and platforms best apposite for clinical laboratories.
Collapse
Affiliation(s)
- Iman Dandapath
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Kavneet Kaur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Zhu QH, Meng Y, Tang YT, Hou CX, Sun NN, Han W, Wang CX, Ye J. Identification of pivotal microRNAs involved in the development and progression of salivary adenoid cystic carcinoma. J Oral Pathol Med 2021; 51:160-171. [PMID: 34797582 DOI: 10.1111/jop.13261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND miRNAs and mRNAs have been significantly implicated in tumorigenesis and served as promising prognostic biomarkers for human cancer. Hence, this study was aimed to develop the pivotal miRNA biomarkers-based prognostic signature for salivary adenoid cystic carcinoma. METHODS The miRNA and mRNA expression data were integrated from the gene expression omnibus database to study their involvement in salivary adenoid cystic carcinoma development and progression. Gene ontology and kyoto encyclopedia of genes and genomes were conducted to analyze the biological pathways. Reverse transcription-quantitative PCR was used to verify the expression of selected miRNAs in salivary adenoid cystic carcinoma and corresponding normal tissues. RESULTS There were 386 differentially expressed genes: 158 upregulated and 228 downregulated genes and 102 differentially expressed miRNAs: 78 upregulated and 24 downregulated miRNAs in the salivary adenoid cystic carcinoma samples. A miRNA-mRNA network containing 11 miRNAs and 199 genes was subsequently constructed. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis revealed that the genes targeted by the 11 miRNAs were mostly involved in tumor-related pathways and processes, such as miRNAs in cancer, focal adhesion, neurotrophin signaling pathway, and the PI3K-Akt signaling pathway. Among them, 4 miRNAs (miR-375, miR-494, miR-34c-5p, and miR-331-3p) were selected to verify by reverse transcription-quantitative PCR in 36 pairs of collected salivary adenoid cystic carcinoma and adjacent nontumor samples. Overall survival analysis revealed that the higher expression of miR-331-3p was significantly associated with a worst overall survival and multivariate Cox regression analysis suggested that hsa-miR-331-3p could be an independent prognostic factor for salivary adenoid cystic carcinoma. CONCLUSION Our results revealed that 4-miRNAs signature was a powerful prognostic biomarker for salivary adenoid cystic carcinoma, which provide a basis for exploring deeper mechanisms regarding the progression of salivary adenoid cystic carcinoma, and leading to the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Qing-Hai Zhu
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Meng
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xing Hou
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Nan-Nan Sun
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Han
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xing Wang
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - JinHai Ye
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Allen TA, Cullen MM, Hawkey N, Mochizuki H, Nguyen L, Schechter E, Borst L, Yoder JA, Freedman JA, Patierno SR, Cheng K, Eward WC, Somarelli JA. A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation. Front Oncol 2021; 11:641187. [PMID: 34631514 PMCID: PMC8495265 DOI: 10.3389/fonc.2021.641187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Metastasis is a multistep process in which cells must detach, migrate/invade local structures, intravasate, circulate, extravasate, and colonize. A full understanding of the complexity of this process has been limited by the lack of ability to study these steps in isolation with detailed molecular analyses. Leveraging a comparative oncology approach, we injected canine osteosarcoma cells into the circulation of transgenic zebrafish with fluorescent blood vessels in a biologically dynamic metastasis extravasation model. Circulating tumor cell clusters that successfully extravasated the vasculature as multicellular units were isolated under intravital imaging (n = 6). These extravasation-positive tumor cell clusters sublines were then molecularly profiled by RNA-Seq. Using a systems-level analysis, we pinpointed the downregulation of KRAS signaling, immune pathways, and extracellular matrix (ECM) organization as enriched in extravasated cells (p < 0.05). Within the extracellular matrix remodeling pathway, we identified versican (VCAN) as consistently upregulated and central to the ECM gene regulatory network (p < 0.05). Versican expression is prognostic for a poorer metastasis-free and overall survival in patients with osteosarcoma. Together, our results provide a novel experimental framework to study discrete steps in the metastatic process. Using this system, we identify the versican/ECM network dysregulation as a potential contributor to osteosarcoma circulating tumor cell metastasis.
Collapse
Affiliation(s)
- Tyler A Allen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Mark M Cullen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nathan Hawkey
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Hiroyuki Mochizuki
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Lan Nguyen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Elyse Schechter
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Luke Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Steven R Patierno
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, NC, United States
| | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
20
|
MYB RNA In Situ Hybridization Facilitates Sensitive and Specific Diagnosis of Adenoid Cystic Carcinoma Regardless of Translocation Status. Am J Surg Pathol 2021; 45:488-497. [PMID: 33165092 DOI: 10.1097/pas.0000000000001616] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenoid cystic carcinoma (AdCC) can demonstrate histologic and immunohistochemical (IHC) overlap with a wide range of salivary and nonsalivary tumors, especially in small biopsy specimens. While MYB fluorescence in situ hybridization (FISH) frequently is used to confirm the diagnosis of AdCC, the pathognomonic MYB-NFIB fusion is only present in 40% to 70% of cases. Likewise, although MYB RNA overexpression is seen in the vast majority of AdCC regardless of translocation status, MYB IHC has shown suboptimal specificity for this diagnosis. In this study, we sought to determine whether a novel chromogenic RNA in situ hybridization (ISH) platform could directly detect MYB RNA overexpression and offer a rapid diagnostic adjunct for AdCC. We performed MYB RNA ISH on 84 cases of AdCC as well as 128 other salivary tumors and 108 basaloid and sinonasal carcinomas that mimic AdCC. MYB RNA ISH was 92% sensitive for AdCC, including 97% of cases with MYB rearrangement and 83% without MYB rearrangement by FISH. It was also 89% specific for AdCC overall, with 95% specificity among other salivary tumors and 81% specificity in basaloid and sinonasal carcinomas. In contrast, MYB IHC was 94% sensitive but just 54% specific for AdCC. Overall, MYB RNA ISH provides superior sensitivity for the diagnosis of AdCC compared with MYB FISH and superior specificity compared with MYB IHC. This assay could provide a useful tool for rapidly confirming the diagnosis of AdCC in formalin-fixed, paraffin-embedded specimens.
Collapse
|
21
|
Liu Z, Gao J, Yang Y, Zhao H, Ma C, Yu T. Potential targets identified in adenoid cystic carcinoma point out new directions for further research. Am J Transl Res 2021; 13:1085-1108. [PMID: 33841642 PMCID: PMC8014416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Adenoid cystic carcinoma (AdCC) of the head and neck originates from salivary glands, with high risks of recurrence and metastasis that account for the poor prognosis of patients. The purpose of this research was to identify key genes related to AdCC for further investigation of their diagnostic and prognostic significance. In our study, the AdCC sample datasets GSE36820, GSE59702 and GSE88804 from the Gene Expression Omnibus (GEO) database were used to explore the abnormal coexpression of genes in AdCC compared with their expression in normal tissue. A total of 115 DEGs were obtained by screening with GEO2R and FunRich software. According to functional annotation analysis using Enrichr, these DEGs were mainly enriched in the SOX2, AR, SMAD and MAPK signaling pathways. A protein-protein network of the DEGs was established by the Search Tool for the Retrieval of Interacting Genes (STRING) and annotated through the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) and was shown to be enriched with proteins involved in cardiac muscle cell proliferation and extracellular matrix organization. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that ITGA9, LAMB1 and BAMBI were associated with the PI3K-Akt and TGF-β pathways. Furthermore, 36 potential target miRNAs were identified by the OncomiR and miRNA Pathway Dictionary Database (miRPathDB). In conclusion, SLC22A3, FOXP2, Cdc42EP3, COL27A1, DUSP1 and HSPB8 played critical roles according to the enrichment analysis; ITGA9, LAMB1 and BAMBI were involved in significant pathways according to the KEGG analysis; ST3Gal4 is a pivotal component of the PPI network of all the DEGs obtained; SPARC, COL4A2 and PRELP were highly related to multiple malignancies in pan-cancer research; hsa-miR-29-3p, hsa-miR-132-3p and hsa-miR-708-5p were potential regulators in AdCC. The involved pathways, biological processes and miRNAs have been shown to play significant roles in the genesis, growth, invasion and metastasis of AdCC. In this study, these identified DEGs were considered to have a potential influence on AdCC but have not been studied in this disease. The analysis results promote our understanding of the molecular mechanisms and biological processes of AdCC, which might be useful for targeted therapy or diagnosis.
Collapse
Affiliation(s)
- Zhenan Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Jian Gao
- Department of Stomatology, Xintai Hospital of Traditional Chinese MedicineTaian, China
| | - Yihui Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Huaqiang Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Chuan Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Tingting Yu
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological HospitalJinan, China
| |
Collapse
|
22
|
Jiang M, Liu X, Zhang C, Zhu L, Wu HD, Dong L, Wang T, Lin T, He Y. Bioinformatics identification of the candidate microRNAs and construction of a competing endogenous RNA regulatory network in lacrimal gland adenoid cystic carcinoma high-grade transformation. Oncol Lett 2021; 21:360. [PMID: 33747217 PMCID: PMC7967933 DOI: 10.3892/ol.2021.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
Adenoid cystic carcinoma of the lacrimal gland (LACC) is a major orbital malignancy. The recurrence rate and mortality rate are higher in LACC high-grade transformation (LACC-HGT) compared with in LACC. The present study aimed to identify the candidate microRNAs (miRNAs/miRs) and construct a competing endogenous RNA (ceRNA) regulatory network for LACC-HGT. A miRNA microarray on paraffin-embedded tissues was performed to identify the differentially expressed miRNAs (DEMs) of LACC-HGT. The overlap with the salivary adenoid cystic carcinoma miRNA/RNA sequencing dataset in the Gene Expression Omnibus was used to identify candidate miRNAs. In order to construct a ceRNA regulatory network of LACC-HGT, a microarray of mRNA and circRNA in primary cell lines was performed. The circRNAs and genes with high expression in LACC-HGT were predicted as targeting miRNAs, and the circRNA-miRNA-mRNA regulatory network was constructed. miR-140-3p was identified as part of the ceRNA network and as a candidate miRNA, therefore this was further analyzed using reverse transcription-quantitative (RT-q)PCR. Overall, the Agilent Human microarray analysis identified a total of 16 DEMs from the LACC-HGT paraffin-embedded tissues. A total of 653 DECs and 9,566 DEGs of LACC-HGT primary cell lines were screened via the microarray of mRNA and circRNA. The ceRNA regulatory network was constructed using the cross-binding of circRNA-miRNA, miRNA-mRNA and the downregulated miRNAs in LACC-HGT to clearly demonstrate the circRNA-miRNA-mRNA interaction relationship. RT-qPCR results confirmed that miR-140-3p was downregulated in LACC-HGT tissues and primary cell lines compared with LACC. Target genes CD200 and parathyroid hormone-related protein were significantly upregulated in LACC-HGT primary cell lines. miR-140-3p and its target genes may play an important role in LACC-HGT pathogenesis. In conclusion, the current bioinformatics study constructed a ceRNA network based on a microarray, which may help identify novel miRNA therapeutic targets for LACC-HGT.
Collapse
Affiliation(s)
- Meixia Jiang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Xun Liu
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Chuanli Zhang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Limin Zhu
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Hai-Dong Wu
- Tianjin Key Laboratory of Early Draggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300384, P.R. China
| | - Lijie Dong
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Tingting Wang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Tingting Lin
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Yanjin He
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| |
Collapse
|
23
|
Soares CD, de Cáceres CVBL, Rodrigues-Fernandes CI, de Lima Morais TM, de Almeida OP, de Carvalho MGF, Fonseca FP. Prognostic importance of RUNX1 expression for head and neck adenoid cystic carcinoma. Oral Dis 2020; 27:266-276. [PMID: 32609408 DOI: 10.1111/odi.13522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE In the present study, we aimed to investigate the prognostic value of RUNX1 expression in 76 patients with adenoid cystic carcinoma (ACC). MATERIALS AND METHODS All cases were arranged in tissue microarray blocks and submitted to immunohistochemistry against RUNX1. These results were statistically correlated with clinicopathologic features, including age, gender, tumour site, tumour size, lymph node status, AJCC clinical stage, distant metastasis, treatment, recurrences, follow-up, histologic pattern, vascular and neural invasion, all of which obtained from patient's medical records. RESULTS RUNX1 was expressed in the nuclei of tumour cells, with a mean of 18.1% of positivity. Nuclear RUNX1 expression was significantly associated with AJCC clinical stage (p < .0001), solid histologic pattern (p < .0001), vascular invasion (p < .0001) and presence of local recurrence (p < .0001). Using univariate and multivariate analyses, RUNX1 nuclear expression was significantly associated with a lower disease-free survival (p < .0001 and p = .028, respectively) and disease-specific survival (p < .0001 and p = .018, respectively) rates. CONCLUSION In summary, RUNX1 nuclear expression may represent an indicator of unfavourable outcome for patients affected by head and neck ACC.
Collapse
Affiliation(s)
- Ciro Dantas Soares
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil.,Private Pathology Service, Natal, Rio Grande do Norte, Brazil
| | | | | | - Thayná Melo de Lima Morais
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Oslei Paes de Almeida
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Abstract
Adenoid cystic carcinoma (ACC) is one of the most frequent malignancies of salivary glands. The objective of this study was to identify key genes and potential mechanisms during ACC samples.The gene expression profiles of GSE88804 data set were downloaded from Gene Expression Omnibus. The GSE88804 data set contained 22 samples, including 15 ACC samples and 7 normal salivary gland tissues. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were constructed, and protein-protein interaction network of differentially expressed genes (DEGs) was performed by Cytoscape. The top 10 hub genes were analyzed based on Gene Expression Profiling Interactive Analysis. Then, DEGs between ACC samples and normal salivary gland samples were analyzed by gene set enrichment analysis. Furthermore, miRTarBase and Cytoscape were used for visualization of miRNA-mRNA regulatory network. KEGG pathway analysis was undertaken using DIANA-miRPath v3.0.In total, 382 DEGs were identified, including 119 upregulated genes and 263 downregulated genes. GO analysis showed that DEGs were mainly enriched in extracellular matrix organization, extracellular matrix, and calcium ion binding. KEGG pathway analysis showed that DEGs were mainly enriched in p53 signaling pathway and salivary secretion. Expression analysis and survival analysis showed that ANLN, CCNB2, CDK1, CENPF, DTL, KIF11, and TOP2A are all highly expressed, which all may be related to poor overall survival. Predicted miRNAs of 7 hub DEGs mainly enriched in proteoglycans in cancer and pathways in cancer.This study indicated that identified DEGs and hub genes might promote our understanding of molecular mechanisms, which might be used as molecular targets or diagnostic biomarkers for ACC.
Collapse
Affiliation(s)
- Hong-Bing Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi
| | - Guan-Jiang Huang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province
| | - Meng-Si Luo
- Department of Anesthesiology, Zhongshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong Province, China
| |
Collapse
|
25
|
Jiang Y, Gao R, Cao C, Forbes L, Li J, Freeberg S, Fredenburg KM, Justice JM, Silver NL, Wu L, Varma S, West R, Licht JD, Zajac-Kaye M, Kentsis A, Kaye FJ. MYB-activated models for testing therapeutic agents in adenoid cystic carcinoma. Oral Oncol 2019; 98:147-155. [PMID: 31606723 DOI: 10.1016/j.oraloncology.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/26/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE There are no effective systemic therapies for adenoid cystic cancer (ACC) and lack of tumor lines and mouse models have hindered drug development.We aim to develop MYB-activated models for testing new therapeutic agents. MATERIALS AND METHODS We studied new ACC patient-derived xenograft (PDX) models and generated a matched cell line from one patient. In addition, we generated a genetically-engineered MYB-NFIB mouse model (GEMM) that was crossed with Ink4a+/-/Arf+/- mice to study tumor spectrum and obtain tumor lines. Using human and murine ACC-like tumor lines, we analyzed MYB expression by RNA-Seq and immunoblot and tested efficacy of new MYB inhibitors. RESULTS We detected MYB-NFIB transcripts in both UFH1 and UFH2 PDX and observed tumor inhibition by MYB depletion using shRNA in vivo. We observed rapid loss of MYB expression when we cultured UFH1 in vitro, but were able to generate a UFH2 tumor cell line that retained MYB expression for 6 months. RNA-Seq expression detected an ACC-like mRNA signature in PDX samples and we confirmed an identical KMT2A/MLL variant in UFH2 PDX, matched cell line, and primary biopsy. Although the predominant phenotype of the MYB-NFIB GEMM was B-cell leukemia, we also generated a MYB-activated ACC-like mammary tumor cell line. We observed tumor inhibition using a novel MYB peptidomimetic in both human and murine tumor models. CONCLUSIONS We generated and studied new murine and human MYB-activated tumor samples and detected growth inhibition with MYB peptidomimetics. These data provide tools to define treatment strategies for patients with advanced MYB-activated ACC.
Collapse
Affiliation(s)
- Yue Jiang
- Department Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Ruli Gao
- Department Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunxia Cao
- Department Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Lauren Forbes
- Molecular Pharmacology Program, Sloan Kettering Institute and Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jianping Li
- Department Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Shelby Freeberg
- Department Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | - Jeb M Justice
- Department Otolaryngology, University of Florida, Gainesville, FL 32608, USA
| | - Natalie L Silver
- Department Otolaryngology, University of Florida, Gainesville, FL 32608, USA
| | - Lizi Wu
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32608, USA
| | - Sushama Varma
- Department Pathology, Stanford University Medical Center, Palo Alto, CA 94304, USA
| | - Robert West
- Department Pathology, Stanford University Medical Center, Palo Alto, CA 94304, USA
| | - Jonathan D Licht
- Department Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Maria Zajac-Kaye
- Department Anatomy Cell Biology, University of Florida, Gainesville, FL 32608, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute and Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Frederic J Kaye
- Department Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
26
|
Detecting MYB and MYBL1 fusion genes in tracheobronchial adenoid cystic carcinoma by targeted RNA-sequencing. Mod Pathol 2019; 32:1416-1420. [PMID: 31028361 PMCID: PMC6763356 DOI: 10.1038/s41379-019-0277-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
Abstract
Primary tracheobronchial adenoid cystic carcinoma is rare, accounting for less than 1% of all lung tumors. Many adenoid cystic carcinomas have been reported to have a specific chromosome translocation t(6;9)/MYB-NFIB. More recently, t(8;9)/MYBL1-NFIB gene fusion was reported in salivary gland adenoid cystic carcinomas which lacked a t(6;9)/MYB-NFIB. Two prior studies showed t(6;9)/MYB-NFIB in tracheobronchial adenoid cystic carcinoma; however, only rare cases of MYBL1 rearrangement have been reported in this carcinoma. In this study, we used targeted RNA sequencing to investigate fusion genes in tracheobronchial adenoid cystic carcinoma at our institution. Fusions of either MYB or MYBL1 genes were detected in 7 of 7 carcinomas. Three cases had MYB-NFIB, and 3 had MYBL1-NFIB. The remaining case showed a rare MYBL1-RAD51B fusion. These findings suggest that rearrangement involving MYB or MYBL1 is a hallmark of tracheobronchial adenoid cystic carcinoma.
Collapse
|
27
|
Zhao H, He L, Yin D, Song B. Identification of β-catenin target genes in colorectal cancer by interrogating gene fitness screening data. Oncol Lett 2019; 18:3769-3777. [PMID: 31516589 PMCID: PMC6733007 DOI: 10.3892/ol.2019.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 11/06/2022] Open
Abstract
β-catenin regulates its target genes which are associated with proliferation, differentiation, migration and angiogenesis, and the dysregulation of Wnt/β-catenin signaling facilitates hallmarks of colorectal cancer (CRC). Identification of β-catenin targets and their potential roles in tumorigenesis has gained increased interest. However, the number of identified targets remains limited. The present study implemented a novel strategy, interrogating gene fitness profiles derived from large-scale RNA interference and CRISPR-CRISPR associated protein 9 screening data to identify β-catenin target genes in CRC cell lines. Using these data sets, pair wise gene fitness similarities were determined which highlighted a total of 13 genes whose functions were highly correlated with β-catenin. It was further demonstrated that the expression of these genes were altered in CRC, illustrating their potential roles in the progression of CRC. The present study further demonstrated that these targets could be used to predict disease-free survival in CRC. In conclusion, the findings provided novel approaches for the identification of β-catenin targets, which may become prognostic biomarkers or drug targets for the management of CRC.
Collapse
Affiliation(s)
- Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang He
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
28
|
Comprehensive and in-depth analysis of microRNA and mRNA expression profile in salivary adenoid cystic carcinoma. Gene 2018; 678:349-360. [PMID: 30098429 DOI: 10.1016/j.gene.2018.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To conduct an integrated analysis of microRNA and mRNA expression profile and further discover vital molecules to uncover novel pathogenic mechanisms in salivary adenoid cystic carcinoma (SACC). MATERIALS AND METHODS MicroRNA and mRNA expression profiles were obtained from six paired primary SACC tumors and corresponding adjacent normal glands using high-throughput next-generation sequencing technology followed by an overall integrated bioinformatics analysis and subsequently molecular biology techniques validation. RESULTS Compared with adjacent noncancerous normal gland, 2107 significant differentially expressed mRNA were determined in SACC. Gene ontology and KEGG pathway analysis suggested that the differentially expressed genes were relevant to many significant biological implications. Venn diagram analysis of differentially expressed genes in different group identified 29 differentially expressed overlapping mRNA. 40 differentially expressed microRNAs were also identified in SACC. Furthermore, integrated analysis of microRNA and mRNA expression profiles recognized a core microRNA-mRNA regulatory network and unmasked many novel genes including SCUBE3, CA6, hsa-miR-885-5p and other molecules which may play an essential role in the carcinogenesis of SACC. Also, Q-PCR and immunohistochemistry results reveal the high expression and distribution of SCUBE3 in SACC and dual luciferase reporter assay also preliminarily validated that SCUBE3 was a target of hsa-miR-885-5p. CONCLUSION Contemporary microRNA/mRNA analysis have uncovered many mRNAs and microRNAs worthy further exploration in SACC. These are bound to help us shed light on the overall genetic background of SACC and further elucidate the potential molecular mechanism of SACC.
Collapse
|
29
|
Andreasen S, Tan Q, Agander TK, Steiner P, Bjørndal K, Høgdall E, Larsen SR, Erentaite D, Olsen CH, Ulhøi BP, von Holstein SL, Wessel I, Heegaard S, Homøe P. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Mod Pathol 2018; 31:1211-1225. [PMID: 29467480 DOI: 10.1038/s41379-018-0005-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Adenoid cystic carcinoma is among the most frequent malignancies in the salivary and lacrimal glands and has a grave prognosis characterized by frequent local recurrences, distant metastases, and tumor-related mortality. Conversely, adenoid cystic carcinoma of the breast is a rare type of triple-negative (estrogen and progesterone receptor, HER2) and basal-like carcinoma, which in contrast to other triple-negative and basal-like breast carcinomas has a very favorable prognosis. Irrespective of site, adenoid cystic carcinoma is characterized by gene fusions involving MYB, MYBL1, and NFIB, and the reason for the different clinical outcomes is unknown. In order to identify the molecular mechanisms underlying the discrepancy in clinical outcome, we characterized the phenotypic profiles, pattern of gene rearrangements, and global microRNA expression profiles of 64 salivary gland, 9 lacrimal gland, and 11 breast adenoid cystic carcinomas. All breast and lacrimal gland adenoid cystic carcinomas had triple-negative and basal-like phenotypes, while salivary gland tumors were indeterminate in 13% of cases. Aberrations in MYB and/or NFIB were found in the majority of cases in all three locations, whereas MYBL1 involvement was restricted to tumors in the salivary gland. Global microRNA expression profiling separated salivary and lacrimal gland adenoid cystic carcinoma from their respective normal glands but could not distinguish normal breast adenoid cystic carcinoma from normal breast tissue. Hierarchical clustering separated adenoid cystic carcinomas of salivary gland origin from those of the breast and placed lacrimal gland carcinomas in between these. Functional annotation of the microRNAs differentially expressed between salivary gland and breast adenoid cystic carcinoma showed these as regulating genes involved in metabolism, signal transduction, and genes involved in other cancers. In conclusion, microRNA dysregulation is the first class of molecules separating adenoid cystic carcinoma according to the site of origin. This highlights a novel venue for exploring the biology of adenoid cystic carcinoma.
Collapse
Affiliation(s)
- Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark. .,Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark.
| | - Qihua Tan
- Department of Clinical Research, Unit of Human Genetics, University of Southern Denmark, Odense, Denmark
| | | | - Petr Steiner
- Department of Pathology, Faculty of Medicine, Charles University in Prague, Pilsen, Czech Republic.,Bioptic Laboratory Ltd, Molecular Pathology Laboratory, Pilsen, Czech Republic
| | - Kristine Bjørndal
- Department of ORL-Head and Neck Surgery, Odense University Hospital, Odense, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Daiva Erentaite
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Sarah Linéa von Holstein
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Irene Wessel
- Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Preben Homøe
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
30
|
Andreasen S. Molecular features of adenoid cystic carcinoma with an emphasis on microRNA expression. APMIS 2018; 126 Suppl 140:7-57. [DOI: 10.1111/apm.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery; Zealand University Hospital; Køge Denmark
| |
Collapse
|
31
|
Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 2018; 7:66239-66254. [PMID: 27533466 PMCID: PMC5323230 DOI: 10.18632/oncotarget.11288] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022] Open
Abstract
Adenoid cystic carcinoma (ACC), the second most common salivary gland malignancy, is notorious for poor prognosis, which reflects the propensity of ACC to progress to clinically advanced metastatic disease. Due to high long-term mortality and lack of effective systemic treatment, the slow-growing but aggressive ACC poses a particular challenge in head and neck oncology. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to the ACC development have been recognized. Although the specific chromosomal translocations resulting in MYB-NFIB fusions provide insight into the ACC pathogenesis and represent attractive diagnostic and therapeutic targets, their clinical significance is unclear, and a substantial subset of ACCs do not harbor the MYB-NFIB translocation. Strategies based on detection of newly described genetic events (such as MYB activating super-enhancer translocations and alterations affecting another member of MYB transcription factor family-MYBL1) offer new hope for improved risk assessment, therapeutic intervention and tumor surveillance. However, the impact of these approaches is still limited by an incomplete understanding of the ACC biology, and the manner by which these alterations initiate and drive ACC remains to be delineated. This manuscript summarizes the current status of gene fusions and other driver genetic alterations in ACC pathogenesis and discusses new therapeutic strategies stemming from the current research.
Collapse
|
32
|
Han F, Wang S, Chang Y, Li C, Yang J, Han Z, Chang B, Sun B, Chen L. Triptolide prevents extracellular matrix accumulation in experimental diabetic kidney disease by targeting microRNA-137/Notch1 pathway. J Cell Physiol 2017; 233:2225-2237. [PMID: 28695984 DOI: 10.1002/jcp.26092] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in multiple biological functions via suppressing target genes. Triptolide is a monomeric compound isolated from a traditional Chinese herb, which exerts protective roles in many kinds of glomerular diseases. However, our understanding of the triptolide effect on miRNAome is still limited. In this study, we found that triptolide significantly decreased albuminuria and improved glomerulosclerosis in rats with diabetic kidney disease (DKD). And triptolide also inhibited extracellular matrix (ECM) protein accumulation and the notch1 pathway activation under diabetic conditions. MiR-137 was significantly decreased in the HG (high glucose)-treated HRMCs and in the kidney tissues of the diabetic rats, but was upregulated by triptolide. In addition, overexpression of miR-137 exerted similar effects to those of triptolide, while miR-137 inhibition aggravated ECM protein accumulation. Luciferase reporter assay results demonstrated that miR-137 directly targets Notch1. Furthermore, the miR-137-dependent effects were due to Notch1 suppression that in turn inhibited ECM protein expression, key mediators of glomerulosclerosis. Finally, downregulation of miR-137 reversed the ECM inhibition role of triptolide in HG cultured HRMCs. Taken together, these findings indicate that triptolide is a potential therapeutic option for DKD and that miR-137/Notch1 pathway play roles in the anti-glomerulosclerosis mechanism of triptolide.
Collapse
Affiliation(s)
- Fei Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shanshan Wang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yunpeng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunjun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhe Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Andersson MK, Afshari MK, Andrén Y, Wick MJ, Stenman G. Targeting the Oncogenic Transcriptional Regulator MYB in Adenoid Cystic Carcinoma by Inhibition of IGF1R/AKT Signaling. J Natl Cancer Inst 2017; 109:3845954. [DOI: 10.1093/jnci/djx017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mattias K. Andersson
- Affiliations of authors: Sahlgrenska Cancer Center, Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden (MKA, MKA, YA, GS); Preclinical Research, South Texas Accelerated Research Therapeutics, San Antonio, TX (MJW)
| | - Maryam K. Afshari
- Affiliations of authors: Sahlgrenska Cancer Center, Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden (MKA, MKA, YA, GS); Preclinical Research, South Texas Accelerated Research Therapeutics, San Antonio, TX (MJW)
| | - Ywonne Andrén
- Affiliations of authors: Sahlgrenska Cancer Center, Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden (MKA, MKA, YA, GS); Preclinical Research, South Texas Accelerated Research Therapeutics, San Antonio, TX (MJW)
| | - Michael J. Wick
- Affiliations of authors: Sahlgrenska Cancer Center, Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden (MKA, MKA, YA, GS); Preclinical Research, South Texas Accelerated Research Therapeutics, San Antonio, TX (MJW)
| | - Göran Stenman
- Affiliations of authors: Sahlgrenska Cancer Center, Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden (MKA, MKA, YA, GS); Preclinical Research, South Texas Accelerated Research Therapeutics, San Antonio, TX (MJW)
| |
Collapse
|
34
|
Mitsui Y, Shiina H, Kato T, Maekawa S, Hashimoto Y, Shiina M, Imai-Sumida M, Kulkarni P, Dasgupta P, Wong RK, Hiraki M, Arichi N, Fukuhara S, Yamamura S, Majid S, Saini S, Deng G, Dahiya R, Nakajima K, Tanaka Y. Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma. Mol Cancer Res 2017; 15:884-895. [PMID: 28242813 DOI: 10.1158/1541-7786.mcr-16-0444] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022]
Abstract
The proteoglycan versican (VCAN) promotes tumor progression and enhances metastasis in several cancers; however, its role in clear cell renal cell carcinoma (ccRCC) remains unknown. Recent evidence suggests that VCAN is an important target of chromosomal 5q gain, one of the most prevalent genetic abnormalities in ccRCC. Thus, we investigated whether VCAN expression is associated with the pathogenesis of ccRCC. VCAN expression was analyzed using three RCC and normal kidney cell lines as well as a clinical cohort of 84 matched ccRCC and normal renal tissues. Functional analyses on growth and progression properties were performed using VCAN-depleted ccRCC cells. Microarray expression profiling was employed to investigate the target genes and biologic pathways involved in VCAN-mediated ccRCC carcinogenesis. ccRCC had elevated VCAN expression in comparison with normal kidney in both cell lines and clinical specimens. The elevated expression of VCAN was significantly correlated with metastasis (P < 0.001) and worse 5-year overall survival after radical nephrectomy (P = 0.014). In vitro, VCAN knockdown significantly decreased cell proliferation and increased apoptosis in Caki-2 and 786-O cells, and this was associated with alteration of several TNF signaling-related genes such as TNFα, BID, and BAK Furthermore, VCAN depletion markedly decreased cell migration and invasion which correlated with reduction of MMP7 and CXCR4. These results demonstrate that VCAN promotes ccRCC tumorigenesis and metastasis and thus is an attractive target for novel diagnostic, prognostic, and therapeutic strategies.Implications: This study highlights the oncogenic role of VCAN in renal cell carcinogenesis and suggests that this gene has therapeutic and/or biomarker potential for renal cell cancer. Mol Cancer Res; 15(7); 884-95. ©2017 AACR.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan. .,Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Hiroaki Shiina
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Taku Kato
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Shigekatsu Maekawa
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Yutaka Hashimoto
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Marisa Shiina
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Mitsuho Imai-Sumida
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Priyanka Kulkarni
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Pritha Dasgupta
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Ryan Kenji Wong
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California
| | - Miho Hiraki
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Naoko Arichi
- Department of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soichiro Yamamura
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Guoren Deng
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California.,Department of Urology, University of California, San Francisco, California
| | - Koichi Nakajima
- Department of Urology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, California. .,Department of Urology, University of California, San Francisco, California
| |
Collapse
|
35
|
Ross JS, Gay LM. Comprehensive genomic sequencing and the molecular profiles of clinically advanced breast cancer. Pathology 2017; 49:120-132. [DOI: 10.1016/j.pathol.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
|
36
|
Ho AL, Dunn L, Sherman EJ, Fury MG, Baxi SS, Chandramohan R, Dogan S, Morris LGT, Cullen GD, Haque S, Sima CS, Ni A, Antonescu CR, Katabi N, Pfister DG. A phase II study of axitinib (AG-013736) in patients with incurable adenoid cystic carcinoma. Ann Oncol 2016; 27:1902-8. [PMID: 27566443 DOI: 10.1093/annonc/mdw287] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recurrent/metastatic adenoid cystic carcinoma (ACC) is an incurable disease with no standard treatments. The majority of ACCs express the oncogenic transcription factor MYB (also c-myb), often in the context of a MYB gene rearrangement. This phase II trial of the tyrosine kinase inhibitor (TKI) axitinib (Pfizer) tested the hypothesis that targeting pathways activated by MYB can be therapeutically effective for ACC. PATIENTS AND METHODS This is a minimax two-stage, phase II trial that enrolled patients with incurable ACC of any primary site. Progressive or symptomatic disease was required. Patients were treated with axitinib 5 mg oral twice daily; dose escalation was allowed. The primary end point was best overall response (BOR). An exploratory analysis correlating biomarkers to drug benefit was conducted, including next-generation sequencing (NGS) in 11 patients. RESULTS Thirty-three patients were registered and evaluable for response. Fifteen patients had the axitinib dose increased. Tumor shrinkage was achieved in 22 (66.7%); 3 (9.1%) had confirmed partial responses. Twenty-five (75.8%) patients had stable disease, 10 of whom had disease stability for >6 months. The median progression-free survival (PFS) was 5.7 months (range 0.92-21.8 months). Grade 3 axitinib-related toxicities included hypertension, oral pain and fatigue. A trend toward superior PFS was noted with the MYB/NFIB rearrangement, although this was not statistically significant. NGS revealed three tumors with 4q12 amplification, producing increased copies of axitinib-targeted genes PDGFR/KDR/KIT. Two 4q12 amplified patients achieved stable disease for >6 months, including one with significant tumor reduction and the longest PFS on study (21.8 months). CONCLUSIONS Although the primary end point was not met, axitinib exhibited clinical activity with tumor shrinkage achieved in the majority of patients with progressive disease before trial enrollment. Analysis of MYB biomarkers and genomic profiling suggests the hypothesis that 4q12 amplified ACCs are a disease subset that benefit from TKI therapy.
Collapse
Affiliation(s)
- A L Ho
- Department of Medicine Department of Medicine
| | | | - E J Sherman
- Department of Medicine Department of Medicine
| | - M G Fury
- Department of Medicine Department of Medicine
| | - S S Baxi
- Department of Medicine Department of Medicine
| | | | | | - L G T Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, USA
| | | | - S Haque
- Department of Radiology Department of Radiology, Weill Cornell Medical College, New York City
| | - C S Sima
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, USA
| | - A Ni
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, USA
| | | | | | - D G Pfister
- Department of Medicine Department of Medicine
| |
Collapse
|
37
|
Yarbrough WG, Panaccione A, Chang MT, Ivanov SV. Clinical and molecular insights into adenoid cystic carcinoma: Neural crest-like stemness as a target. Laryngoscope Investig Otolaryngol 2016; 1:60-77. [PMID: 28894804 PMCID: PMC5510248 DOI: 10.1002/lio2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest-like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. DATA SOURCES Articles available on Pubmed or OVID MEDLINE databases and unpublished data. REVIEW METHODS Systematic review of articles pertaining to ACC and neural crest-like stem cells. RESULTS Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest-like stemness is a major target in this rare tumor. New cell culture techniques and patient-derived xenografts provide tools for preclinical testing. CONCLUSION Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest-like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
- Yale Cancer CenterNew HavenConnecticutUSA
| | - Alexander Panaccione
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTennesseeU.S.A.
| | - Michael T. Chang
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| | - Sergey V. Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
38
|
Guo T, Gaykalova DA, Considine M, Wheelan S, Pallavajjala A, Bishop JA, Westra WH, Ideker T, Koch WM, Khan Z, Fertig EJ, Califano JA. Characterization of functionally active gene fusions in human papillomavirus related oropharyngeal squamous cell carcinoma. Int J Cancer 2016; 139:373-82. [PMID: 26949921 PMCID: PMC5579720 DOI: 10.1002/ijc.30081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/24/2016] [Indexed: 01/04/2023]
Abstract
The Cancer Genome Atlas (TCGA) sequencing analysis of head and neck squamous cell carcinoma (HNSCC) recently reported on gene fusions, however, few human papillomavirus (HPV) positive samples were included, and the functional relevance of identified fusions was not explored. We therefore performed an independent analysis of gene fusions in HPV-positive oropharyngeal SCC (OPSCC). RNA sequencing was performed on 47 HPV-positive OPSCC primary tumors and 25 normal mucosal samples from cancer unaffected controls on an Illumina TruSeq platform. MapSplice2 was used for alignment and identification of fusion candidates. Putative fusions with less than five spanning reads, detected in normal tissues, or that mapped to the same gene were filtered out. Selected fusions were validated by RT-PCR and Sanger sequencing. Within 47 HPV-positive OPSCC tumors, 282 gene fusions were identified. Most fusions (85.1%) occurred in a single tumor, and the remaining fusions recurred in 2-16 tumors. Gene fusions were associated with significant up regulation of 16 genes (including EGFR and ERBB4) and down regulation of four genes (PTPRT, ZNF750, DLG2, SLCO5A1). Expression of these genes followed similar patterns of up regulation and down regulation in tumors without these fusions compared to normal tissue. Five of six gene fusions selected for validation were confirmed through RT-PCR and sequencing. This integrative analysis provides a method of prioritizing functionally relevant gene fusions that may be expanded to other tumor types. These results demonstrate that gene fusions may be one mechanism by which functionally relevant genes are altered in HPV-positive OPSCC.
Collapse
Affiliation(s)
- Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Michael Considine
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Sarah Wheelan
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Aparna Pallavajjala
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - William H Westra
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Trey Ideker
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Wayne M Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Zubair Khan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Elana J Fertig
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Moores Cancer Center, University of California, San Diego, CA
| |
Collapse
|
39
|
Rettig EM, Talbot CC, Sausen M, Jones S, Bishop JA, Wood LD, Tokheim C, Niknafs N, Karchin R, Fertig EJ, Wheelan SJ, Marchionni L, Considine M, Ling S, Fakhry C, Papadopoulos N, Kinzler KW, Vogelstein B, Ha PK, Agrawal N. Whole-Genome Sequencing of Salivary Gland Adenoid Cystic Carcinoma. Cancer Prev Res (Phila) 2016; 9:265-74. [PMID: 26862087 PMCID: PMC4818686 DOI: 10.1158/1940-6207.capr-15-0316] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022]
Abstract
Adenoid cystic carcinomas (ACC) of the salivary glands are challenging to understand, treat, and cure. To better understand the genetic alterations underlying the pathogenesis of these tumors, we performed comprehensive genome analyses of 25 fresh-frozen tumors, including whole-genome sequencing and expression and pathway analyses. In addition to the well-described MYB-NFIB fusion that was found in 11 tumors (44%), we observed five different rearrangements involving the NFIB transcription factor gene in seven tumors (28%). Taken together, NFIB translocations occurred in 15 of 25 samples (60%, 95% CI, 41%-77%). In addition, mRNA expression analysis of 17 tumors revealed overexpression of NFIB in ACC tumors compared with normal tissues (P = 0.002). There was no difference in NFIB mRNA expression in tumors with NFIB fusions compared with those without. We also report somatic mutations of genes involved in the axonal guidance and Rho family signaling pathways. Finally, we confirm previously described alterations in genes related to chromatin regulation and Notch signaling. Our findings suggest a separate role for NFIB in ACC oncogenesis and highlight important signaling pathways for future functional characterization and potential therapeutic targeting.
Collapse
Affiliation(s)
- Eleni M Rettig
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, Maryland
| | - Sian Jones
- Personal Genome Diagnostics, Baltimore, Maryland
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura D Wood
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Collin Tokheim
- Johns Hopkins Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Noushin Niknafs
- Johns Hopkins Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Karchin
- Johns Hopkins Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, John Hopkins University School of Medicine, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology Biostatistics & Bioinformatics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah J Wheelan
- Department of Oncology, John Hopkins University School of Medicine, Baltimore, Maryland
| | - Luigi Marchionni
- Department of Oncology, John Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Considine
- Department of Oncology Biostatistics & Bioinformatics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Carole Fakhry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Milton J. Dance Jr. Head and Neck Cancer Center, Greater Baltimore Medical Center, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Milton J. Dance Jr. Head and Neck Cancer Center, Greater Baltimore Medical Center, Baltimore, Maryland.
| | - Nishant Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Surgery, Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois States.
| |
Collapse
|
40
|
Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R, Schumacher SE, Urbanski L, O'Rourke R, Gibson WJ, Pelton K, Ramkissoon SH, Han HJ, Zhu Y, Choudhari N, Silva A, Boucher K, Henn RE, Kang YJ, Knoff D, Paolella BR, Gladden-Young A, Varlet P, Pages M, Horowitz PM, Federation A, Malkin H, Tracy AA, Seepo S, Ducar M, Van Hummelen P, Santi M, Buccoliero AM, Scagnet M, Bowers DC, Giannini C, Puget S, Hawkins C, Tabori U, Klekner A, Bognar L, Burger PC, Eberhart C, Rodriguez FJ, Hill DA, Mueller S, Haas-Kogan DA, Phillips JJ, Santagata S, Stiles CD, Bradner JE, Jabado N, Goren A, Grill J, Ligon AH, Goumnerova L, Waanders AJ, Storm PB, Kieran MW, Ligon KL, Beroukhim R, Resnick AC. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 2016; 48:273-82. [PMID: 26829751 PMCID: PMC4767685 DOI: 10.1038/ng.3500] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022]
Abstract
Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs including 19 Angiocentric Gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in Angiocentric Gliomas. In vitro and in vivo functional studies show MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression, and hemizygous loss of the tumor suppressor QKI. This represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.
Collapse
Affiliation(s)
- Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Lori A Ramkissoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Payal Jain
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Cell and Molecular Biology Graduate Group, Gene Therapy and Vaccines Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillaume Bergthold
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department de Cancerologie de l'Enfant et de l'Adolescent et Unité Mixte de Recherche du Centre National de la Recherche Scientifique 8203 'Vectorologie et Nouvelles Therapeutiques du Cancer', Gustave Roussy, Université Paris XI Sud, Villejuif, France
| | - Jeremiah Wala
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rhamy Zeid
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven E Schumacher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Laura Urbanski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ryan O'Rourke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - William J Gibson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Pelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shakti H Ramkissoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Harry J Han
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuankun Zhu
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Namrata Choudhari
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katie Boucher
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rosemary E Henn
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yun Jee Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David Knoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Brenton R Paolella
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Pascale Varlet
- Laboratoire de Neuropathologie, Hopital Sainte-Anne, Université Paris V Descartes, Paris, France
| | - Melanie Pages
- Laboratoire de Neuropathologie, Hopital Sainte-Anne, Université Paris V Descartes, Paris, France
| | - Peleg M Horowitz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander Federation
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hayley Malkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | | | - Sara Seepo
- Broad Institute, Cambridge, Massachusetts, USA
| | - Matthew Ducar
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul Van Hummelen
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mirko Scagnet
- Neurosurgery Unit, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephanie Puget
- Departement de Neurochirurgie, Hopital Necker-Enfants Malades, Université Paris V Descartes, Paris, France
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Almos Klekner
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Laszlo Bognar
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Peter C Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Ashley Hill
- Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.,Center for Neuroscience and Behavioral Medicine, Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.,Department of Pathology, Children's National Medical Center, Washington, DC, USA
| | - Sabine Mueller
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Sandro Santagata
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James E Bradner
- Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Alon Goren
- Broad Technology Laboratories, Broad Institute, Cambridge, Massachusetts, USA
| | - Jacques Grill
- Department de Cancerologie de l'Enfant et de l'Adolescent et Unité Mixte de Recherche du Centre National de la Recherche Scientifique 8203 'Vectorologie et Nouvelles Therapeutiques du Cancer', Gustave Roussy, Université Paris XI Sud, Villejuif, France
| | - Azra H Ligon
- Brigham and Women's Hospital Department of Pathology, Center for Advanced Molecular Diagnostics, Division of Cytogenetics, Boston, Massachusetts, USA
| | - Liliana Goumnerova
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Angela J Waanders
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mark W Kieran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Adam C Resnick
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Brayer KJ, Frerich CA, Kang H, Ness SA. Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor-Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma. Cancer Discov 2015; 6:176-87. [PMID: 26631070 DOI: 10.1158/2159-8290.cd-15-0859] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/24/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Adenoid cystic carcinoma (ACC), the second most common malignancy of salivary glands, is a rare tumor with a bleak prognosis for which therapeutic targets are unavailable. We used RNA sequencing (RNA-seq) to analyze low-quality RNA from archival, formaldehyde-fixed, paraffin-embedded samples. In addition to detecting the most common ACC translocation, t(6;9) fusing the MYB proto-oncogene to NFIB, we also detected previously unknown t(8;9) and t(8;14) translocations fusing the MYBL1 gene to the NFIB and RAD51B genes, respectively. RNA-seq provided information about gene fusions, alternative RNA splicing, and gene expression signatures. Interestingly, tumors with MYB and MYBL1 translocations displayed similar gene expression profiles, and the combined MYB and MYBL1 expression correlated with outcome, suggesting that the related MYB proteins are interchangeable oncogenic drivers in ACC. Our results provide important details about the biology of ACC and illustrate how archival tissue samples can be used for detailed molecular analyses of rare tumors. SIGNIFICANCE Using RNA-seq to perform whole-transcriptome analysis of archival ACC tumor samples, we identified novel, recurrent gene fusions, detected alternative RNA splicing, and established gene expression signatures that provide detailed information about the biology of ACC tumors.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Candace A Frerich
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Huining Kang
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Scott A Ness
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| |
Collapse
|
42
|
Mitani Y, Liu B, Rao PH, Borra VJ, Zafereo M, Weber RS, Kies M, Lozano G, Futreal PA, Caulin C, El-Naggar AK. Novel MYBL1 Gene Rearrangements with Recurrent MYBL1-NFIB Fusions in Salivary Adenoid Cystic Carcinomas Lacking t(6;9) Translocations. Clin Cancer Res 2015; 22:725-33. [PMID: 26631609 DOI: 10.1158/1078-0432.ccr-15-2867-t] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Adenoid cystic carcinoma (ACC) is an indolent salivary gland malignancy, characterized by t(6;9) translocations and MYB-NFIB gene fusions in approximately 50% of the tumors. The genetic alterations underlying t(6;9)-negative and t(6;9)-positive/MYB-NFIB fusion-negative ACC remain unknown. To uncover the genetic alterations in ACC lacking the canonical translocation and fusion transcript and identify new abnormalities in translocation positive tumors. EXPERIMENTAL DESIGN We performed whole-genome sequencing in 21 salivary ACCs and conducted targeted molecular analyses in a validation set (81 patients). Microarray gene-expression data were also analyzed to explore the biologic differences between fusion positive and negative tumors. RESULTS We identified a novel MYBL1-NFIB gene fusion as a result of t(8;9) translocation and multiple rearrangements in the MYBL1 gene in 35% of the t(6;9)-negative ACCs. All MYBL1 alterations involved deletion of the C-terminal negative regulatory domain and were associated with high MYBL1 expression. Reciprocal MYB and MYBL1 expression was consistently found in ACCs. In addition, 5'-NFIB fusions that did not involve MYB/MYBL1 genes were identified in a subset of t(6;9)-positive/fusion-negative tumors. We also delineated distinct gene-expression profiles in ACCs associated with the length of the MYB or MYBL1 fusions, suggesting a biologic importance of the C-terminal part of these fusions. CONCLUSIONS Our study defines new molecular subclasses of ACC characterized by MYBL1 rearrangements and 5'-NFIB gene fusions.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pulivarthi H Rao
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | | | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randal S Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merrill Kies
- Department of Thoracic/Head and Neck Medicine Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
43
|
Alekseyenko AA, Walsh EM, Wang X, Grayson AR, Hsi PT, Kharchenko PV, Kuroda MI, French CA. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev 2015. [PMID: 26220994 PMCID: PMC4526735 DOI: 10.1101/gad.267583.115] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NUT midline carcinoma (NMC), a subtype of squamous cell cancer, is one of the most aggressive human solid malignancies known. NMC is driven by the creation of a translocation oncoprotein, BRD4-NUT, which blocks differentiation and drives growth of NMC cells. BRD4-NUT forms distinctive nuclear foci in patient tumors, which we found correlate with ∼100 unprecedented, hyperacetylated expanses of chromatin that reach up to 2 Mb in size. These "megadomains" appear to be the result of aberrant, feed-forward loops of acetylation and binding of acetylated histones that drive transcription of underlying DNA in NMC patient cells and naïve cells induced to express BRD4-NUT. Megadomain locations are typically cell lineage-specific; however, the cMYC and TP63 regions are targeted in all NMCs tested and play functional roles in tumor growth. Megadomains appear to originate from select pre-existing enhancers that progressively broaden but are ultimately delimited by topologically associating domain (TAD) boundaries. Therefore, our findings establish a basis for understanding the powerful role played by large-scale chromatin organization in normal and aberrant lineage-specific gene transcription.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Erica M Walsh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xin Wang
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Adlai R Grayson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter T Hsi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA; Hematology/Oncology Program, Children's Hospital, Boston, Massachusetts 02115, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
44
|
Fonseca FP, Sena Filho M, Altemani A, Speight PM, Vargas PA. Molecular signature of salivary gland tumors: potential use as diagnostic and prognostic marker. J Oral Pathol Med 2015; 45:101-10. [DOI: 10.1111/jop.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Felipe Paiva Fonseca
- Department of Oral Diagnosis (Pathology); Piracicaba Dental School; University of Campinas; Piracicaba Brazil
| | - Marcondes Sena Filho
- Department of Oral Diagnosis (Pathology); Piracicaba Dental School; University of Campinas; Piracicaba Brazil
| | - Albina Altemani
- Department of Pathology; Faculty of Medical Sciences; University of Campinas; Campinas Brazil
| | - Paul M. Speight
- Unit of Oral and Maxillofacial Pathology; School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis (Pathology); Piracicaba Dental School; University of Campinas; Piracicaba Brazil
| |
Collapse
|