1
|
BHUSARE NILAM, KUMAR MAUSHMI. A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases. Oncol Res 2024; 32:849-875. [PMID: 38686058 PMCID: PMC11055995 DOI: 10.32604/or.2024.047042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain tumor, poses significant challenges in terms of treatment success and patient survival. Current treatment modalities for glioblastoma include radiation therapy, surgical intervention, and chemotherapy. Unfortunately, the median survival rate remains dishearteningly low at 12-15 months. One of the major obstacles in treating glioblastoma is the recurrence of tumors, making chemotherapy the primary approach for secondary glioma patients. However, the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms. Consequently, considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs. To tackle glioma, numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEK-ERK-MPAK. By targeting specific signaling pathways, heterocyclic compounds have demonstrated efficacy in glioma therapeutics. Additionally, key kinases including phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase, cytoplasmic tyrosine kinase (CTK), receptor tyrosine kinase (RTK) and lipid kinase (LK) have been considered for investigation. These pathways play crucial roles in drug effectiveness in glioma treatment. Heterocyclic compounds, encompassing pyrimidine, thiazole, quinazoline, imidazole, indole, acridone, triazine, and other derivatives, have shown promising results in targeting these pathways. As part of this review, we propose exploring novel structures with low toxicity and high potency for glioma treatment. The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier. By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics, we can maximize their therapeutic value and minimize adverse effects. Considering the complex nature of glioblastoma, these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.
Collapse
Affiliation(s)
- NILAM BHUSARE
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| | - MAUSHMI KUMAR
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| |
Collapse
|
2
|
Kohal R, Bhavana, Kumari P, Sharma AK, Gupta GD, Verma SK. Fyn, Blk, and Lyn kinase inhibitors: A mini-review on medicinal attributes, research progress, and future insights. Bioorg Med Chem Lett 2024; 102:129674. [PMID: 38408513 DOI: 10.1016/j.bmcl.2024.129674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Fyn, Blk, and Lyn are part of a group of proteins called Src family kinases. They are crucial in controlling cell communication and their response to the growth, changes, and immune system. Blocking these proteins with inhibitors can be a way to treat diseases where these proteins are too active. The primary mode of action of these inhibitors is to inhibit the phosphorylation of Fyn, Blk, and Lyn receptors, which in turn affects how signals pass within the cells. This review shows the structural and functional aspects of Fyn, Blk, and Lyn kinases, highlighting the significance of their dysregulation in diseases such as cancer and autoimmune disorders. The discussion encompasses the design strategies, SAR analysis, and chemical characteristics of effective inhibitors, shedding light on their specificity and potency. Furthermore, it explores the progress of clinical trials of these inhibitors, emphasizing their potential therapeutic applications.
Collapse
Affiliation(s)
- Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Bhavana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Preety Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Arun Kumar Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India.
| |
Collapse
|
3
|
Kathiresan N, Selvaraj C, Pandian S, Subbaraj GK, Alothaim AS, Safi SZ, Kulathaivel L. Proteomics and genomics insights on malignant osteosarcoma. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:275-300. [PMID: 38220428 DOI: 10.1016/bs.apcsb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-β, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.
Collapse
Affiliation(s)
- Nachammai Kathiresan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- Computational and Structural Research in Drug Design Lab (CSRDD), Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India.
| | - Sangavi Pandian
- Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Old Mahabalipuram Road (OMR), Kelambakkam
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Langeswaran Kulathaivel
- Department of Biomedical Science, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
4
|
Targeting the FAK-Src Complex in Desmoplastic Small Round Cell Tumors, Ewing Sarcoma, and Rhabdomyosarcoma. Sarcoma 2022; 2022:3089424. [PMID: 35655525 PMCID: PMC9153931 DOI: 10.1155/2022/3089424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Desmoplastic small round cell tumors (DSRCTs), Ewing sarcoma (ES), and alveolar and embryonal rhabdomyosarcoma (ARMS and ERMS) are malignant sarcomas typically occurring at young age, with a poor prognosis in the metastatic setting. New treatment options are necessary. Src family kinase inhibitor dasatinib single-agent treatment has been investigated in a phase 2 study in patients with advanced sarcomas including ES and RMS but failed as a single agent in these subtypes. Since previous studies demonstrated high FAK and Src activities in RMS and ES tissue and cell lines, and dasatinib treatment was shown to upregulate activated FAK, we hypothesized that FAK-Src combination treatment could potentially be an interesting treatment option for these tumor types. We examined the effects of targeting the FAK-Src complex by addressing (p)FAK and (p)Src expressions in tumor sections of DSRCT (n = 13), ES (n = 68), ARMS (n = 21), and ERMS (n = 39) and by determining the antitumor effects of single and combined treatment with FAK inhibitor defactinib and multikinase (Abl/SFK) inhibitor dasatinib in vitro on cell lines of each subtype. In vivo effects were assessed in DSRCT and ERMS models. Concurrent pFAK and pSrc expressions (H-score >50) were observed in DSRCT (67%), ES (6%), ARMS (35%), and ERMS (19%) samples. Defactinib treatment decreased pFAK expression and reduced cell viability in all subtypes. Dasatinib treatment decreased pSrc expression and cell viability in each subtype. Combination treatment led to a complete reduction in pFAK and pSrc in each cell line and showed enhanced cell viability reduction, drug synergy, DNA damage induction, and a trend toward higher apoptosis induction in DSRCT, ERMS, and ARMS but not in ES cells. These promising in vitro results unfortunately do not translate into promising in vivo results as we did not observe a significant effect on tumor volume in vivo, and the combination did not show superior effects compared to dasatinib single-agent treatment.
Collapse
|
5
|
New Therapeutic Strategy for Overcoming Multidrug Resistance in Cancer Cells with Pyrazolo[3,4- d]pyrimidine Tyrosine Kinase Inhibitors. Cancers (Basel) 2021; 13:cancers13215308. [PMID: 34771471 PMCID: PMC8582576 DOI: 10.3390/cancers13215308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary P-glycoprotein (P-gp) is an ATP-binding cassette transporter whose overexpression in cancer cells is one of the main causes of multidrug resistance (MDR). Tyrosine kinase inhibitors (TKIs) have been reported to interact with ABC transporters and in some cases, increase the susceptibility of cancer cells to chemotherapy. We investigated the potential of novel TKI pyrazolo[3,4-d] pyrimidines and their prodrugs to inhibit P-gp in two MDR cancer cell lines with P-gp overexpression. The tested compounds were able to suppress P-gp by inhibiting its ATPase activity. Interestingly, prodrugs displayed a stronger potential to modulate P-gp and showed higher interaction energies in the docking simulations compared to their parent drugs. Furthermore, prodrugs showed significant potential to inhibit P-gp activity even in prolonged treatment and therefore to enhance the efficacy of doxorubicin and paclitaxel in MDR cancer cells. All of these characteristics imply that the new TKIs could be considered a valuable strategy for combating resistant cancers, especially in combination with other chemotherapeutics. Abstract Tyrosine kinase inhibitors (TKIs) often interact with the multidrug resistant (MDR) phenotype of cancer cells. In some cases, TKIs increase the susceptibility of MDR cancer cells to chemotherapy. As the overexpression of membrane transporter P-glycoprotein (P-gp) is the most common alteration in MDR cancer cells, we investigated the effects of TKI pyrazolo[3,4-d]pyrimidines on P-gp inhibition in two cellular models comprising sensitive and corresponding MDR cancer cells (human non-small cell lung carcinoma and colorectal adenocarcinoma). Tested TKIs showed collateral sensitivity by inducing stronger inhibition of MDR cancer cell line viability. Moreover, TKIs directly interacted with P-gp and inhibited its ATPase activity. Their potential P-gp binding site was proposed by molecular docking simulations. TKIs reversed resistance to doxorubicin and paclitaxel in a concentration-dependent manner. The expression studies excluded the indirect effect of TKIs on P-gp through regulation of its expression. A kinetics study showed that TKIs decreased P-gp activity and this effect was sustained for seven days in both MDR models. Therefore, pyrazolo[3,4-d]pyrimidines with potential for reversing P-gp-mediated MDR even in prolonged treatments can be considered a new therapeutic strategy for overcoming cancer MDR.
Collapse
|
6
|
Codenotti S, Marampon F, Triggiani L, Bonù ML, Magrini SM, Ceccaroli P, Guescini M, Gastaldello S, Tombolini V, Poliani PL, Asperti M, Poli M, Monti E, Fanzani A. Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Lett 2021; 505:1-12. [PMID: 33610729 DOI: 10.1016/j.canlet.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Marampon
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Marco Lorenzo Bonù
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai, Shandong Province, 264003 China
| | - Vincenzo Tombolini
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
7
|
Indovina P, Forte IM, Pentimalli F, Giordano A. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers (Basel) 2020; 12:cancers12071866. [PMID: 32664483 PMCID: PMC7408838 DOI: 10.3390/cancers12071866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), I-80131 Naples, Italy
- Correspondence: (P.I.); (F.P.)
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
- Correspondence: (P.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| |
Collapse
|
8
|
Src Inhibitors Pyrazolo[3,4-d]pyrimidines, Si306 and Pro-Si306, Inhibit Focal Adhesion Kinase and Suppress Human Glioblastoma Invasion In Vitro and In Vivo. Cancers (Basel) 2020; 12:cancers12061570. [PMID: 32545852 PMCID: PMC7352231 DOI: 10.3390/cancers12061570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), as the most aggressive brain tumor, displays a high expression of Src tyrosine kinase, which is involved in the survival, migration, and invasiveness of tumor cells. Thus, Src emerged as a potential target for GBM therapy. The effects of Src inhibitors pyrazolo[3,4-d]pyrimidines, Si306 and its prodrug pro-Si306 were investigated in human GBM cell lines (U87 and U87-TxR) and three primary GBM cell cultures. Primary GBM cells were more resistant to Si306 and pro-Si306 according to the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. However, the ability of all GBM cells to degrade the extracellular matrix was considerably compromised after Si306 and pro-Si306 applications. Besides reducing the phosphorylation of Src and its downstream signaling pathway components, both compounds decreased the phosphorylated form of focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) expression, showing the potential to suppress the aggressiveness of GBM. In vivo, Si306 and pro-Si306 displayed an anti-invasive effect against U87 xenografts in the zebrafish embryo model. Considering that Si306 and pro-Si306 are able to cross the blood–brain barrier and suppress the spread of GBM cells, we anticipate their clinical testing in the near future. Moreover, the prodrug showed similar efficacy to the drug, implying the rationality of its use in clinical settings.
Collapse
|
9
|
Fallacara AL, Zamperini C, Podolski-Renić A, Dinić J, Stanković T, Stepanović M, Mancini A, Rango E, Iovenitti G, Molinari A, Bugli F, Sanguinetti M, Torelli R, Martini M, Maccari L, Valoti M, Dreassi E, Botta M, Pešić M, Schenone S. A New Strategy for Glioblastoma Treatment: In Vitro and In Vivo Preclinical Characterization of Si306, a Pyrazolo[3,4- d]Pyrimidine Dual Src/P-Glycoprotein Inhibitor. Cancers (Basel) 2019; 11:E848. [PMID: 31248184 PMCID: PMC6628362 DOI: 10.3390/cancers11060848] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Overexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells' membrane of the blood-brain barrier, where it limits drug delivery to central nervous system (CNS) tumors. We have previously developed a set of pyrazolo[3,4-d]pyrimidines and their prodrugs as novel Src tyrosine kinase inhibitors (TKIs), showing a significant activity against CNS tumors in in vivo. Here we investigated the interaction of the most promising pair of drug/prodrug with P-gp at the cellular level. The tested compounds were found to increase the intracellular accumulation of Rho 123, and to enhance the efficacy of paclitaxel in P-gp overexpressing cells. Encouraging pharmacokinetics properties and tolerability in vivo were also observed. Our findings revealed a novel role of pyrazolo[3,4-d]pyrimidines which may be useful for developing a new effective therapy in MDR cancer treatment, particularly against glioblastoma.
Collapse
Affiliation(s)
- Anna Lucia Fallacara
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Claudio Zamperini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Marija Stepanović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Arianna Mancini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Enrico Rango
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Giulia Iovenitti
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Alessio Molinari
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Francesca Bugli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maurizio Martini
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Laura Maccari
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Massimo Valoti
- Dipartimento Scienze della Vita, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Elena Dreassi
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Silvia Schenone
- Department of Pharmacy, Università degli Studi di Genova, 16132 Genova, Italy.
| |
Collapse
|
10
|
Calandro P, Iovenitti G, Zamperini C, Candita F, Dreassi E, Chiariello M, Angelucci A, Schenone S, Botta M, Mancini A. Plasmin-Binding Tripeptide-Decorated Liposomes Loading Pyrazolo[3,4- d]pyrimidines for Targeting Hepatocellular Carcinoma. ACS Med Chem Lett 2018; 9:646-651. [PMID: 30034594 DOI: 10.1021/acsmedchemlett.8b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancer types worldwide. HCC cells were proved to overexpress c-Src and Sgk1, a tyrosine and a serine-threonine kinase, respectively, whose role is crucial for the development and progression of the tumor. Pyrazolo[3,4-d]pyrimidine derivatives are a class of tyrosine kinase inhibitors that have shown good activity against HepG2. HCC cells were also proved to overexpress plasmin, which is localized on the cell surface bound to its receptors. In this study, a tripeptide with sequence d-Ala-Phe-Lys, which binds a specific reactive site of plasmin, was synthesized and characterized. This tripeptide was used to decorate liposomes encapsulating three selected pyrazolo[3,4-d]pyrimidines. Liposomes bearing tripeptide have been characterized, not showing remarkable differences with respect to the corresponding tripeptide-free liposomes. In vitro HepG2 cell uptake profiles and cytotoxicities showed that the presence of the tripeptide on the liposomal membrane surface improves the cell-penetrating ability of liposomes and increases the activity of two of the three tested compounds.
Collapse
Affiliation(s)
- Pierpaolo Calandro
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina 1, 53100 Siena, Italy
| | - Giulia Iovenitti
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Claudio Zamperini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo Berardenga, Siena, Italy
| | - Francesca Candita
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Elena Dreassi
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Mario Chiariello
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina 1, 53100 Siena, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Vetoio, 67100, Coppito, L’Aquila, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Lead Discovery Siena S.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo Berardenga, Siena, Italy
- Biotechnology College of Science and Technology, Temple University, Biolife Science Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Arianna Mancini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
11
|
Du S, Meng L, Song L, Zhang P, Shou X, Liu C, Li F. Safety markers for rhabdomyosarcoma cells using an in vivo imaging system. Oncol Lett 2018; 16:1031-1038. [PMID: 29963179 DOI: 10.3892/ol.2018.8789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/07/2018] [Indexed: 12/29/2022] Open
Abstract
In vivo imaging system (IVIS) is a novel and rapidly expanding technology that is widely applied in life sciences, including cell tracing. IVIS is able to quantify biological events, including tumor proliferation, through counting the number of photons emitted from a specimen. PLA802-enhanced green fluorescent protein (EGFP), PLA802-monomeric cherry fluorescent protein (mCherry), RH30-EGFP and RH30-mCherry tumor cells were injected into 18 BALB/c female nude mice subcutaneously with 5×106 cells in 100 µl to quantitatively analyze EGFP and mCherry cells traced by IVIS. Inversion fluorescence microscopy revealed no transfection efficiency difference between PLA802-EGFP (95.3±1.2%) and PLA802-mCherry (95.8±1.7%), or between RH30-EGFP (94.7±2.1%) and RH30-mCherry (95.2±1.9%). Transfection did not influence the cell morphology of PLA802 or RH30. The cell migration, invasion and proliferation assay results of lentivirus-EGFP and lentivirus-mCherry revealed no significant difference prior to or following transfection. Therefore, lentivirus-EGFP and lentivirus-mCherry may serve as safety biological markers for PLA802 and RH30 cells. In vivo experiments demonstrated that lentivirus-EGFP and lentivirus-mCherry tumor luminescence signals were observed in all mice by IVIS. Hematoxylin-eosin staining and immunohistochemistry indicated that PLA802-EGFP, PLA802-mCherry, RH30-EGFP and RH30-mCherry cell lines exhibited rhabdomyosarcoma (RMS) characteristics like the maternal cells. In summary, mCherry and green fluorescent protein in human RMS PLA802 and RH30 cancer cells may be safely and stably expressed for a long time in vitro and in vivo.
Collapse
Affiliation(s)
- Shutong Du
- Department of Pathology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,Department of Nursing, School of Medicine, Xijing University, Xian, Shanxi 710123, P.R. China
| | - Lian Meng
- Department of Pathology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Lingxie Song
- Department of Pathology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Pengpeng Zhang
- Department of Pathology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xi Shou
- Department of Animal Experiment Center, Xinjiang Key Laboratory for Medical Animal Model Research, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Chunxia Liu
- Department of Pathology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Feng Li
- Department of Pathology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
12
|
Sanna M, Sicilia G, Alazzo A, Singh N, Musumeci F, Schenone S, Spriggs KA, Burley JC, Garnett MC, Taresco V, Alexander C. Water Solubility Enhancement of Pyrazolo[3,4- d]pyrimidine Derivatives via Miniaturized Polymer-Drug Microarrays. ACS Med Chem Lett 2018. [PMID: 29541359 DOI: 10.1021/acsmedchemlett.7b00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A miniaturized assay was optimized to evaluate the enhanced apparent water solubility of pyrazolo[3,4-d]pyrimidine derivatives used extensively as anticancer drug scaffolds. The applied amount of drugs used in the reported strategy ranged from 5 to 10 μg per formulation which were dispensed by an inkjet 2D printer directly into a 96-well plate. The selected polymer/drug formulations with high water solubility demonstrated improved cytotoxicity against a human lung adenocarcinoma cancer cell line (A549) compared to the free drugs. We attribute the enhanced efficacy to the improved apparent-solubility of the drug molecules achieved via this methodology. This novel miniaturized method showed promising results in terms of water solubility improvement of the highly hydrophobic pyrazolo[3,4-d]pyrimidine derivatives, requiring only a few micrograms of each drug per tested polymeric formulation. In addition, the reported experimental evidence may facilitate identification of suitable polymers for combination with drug, leading to investigations on biological properties or mechanisms of action in a single formulation.
Collapse
Affiliation(s)
- Monica Sanna
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Giovanna Sicilia
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ali Alazzo
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nishant Singh
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Francesca Musumeci
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Keith A. Spriggs
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Jonathan C. Burley
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Martin C. Garnett
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Vincenzo Taresco
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
13
|
Li H, Huang K, Gao L, Wang L, Niu Y, Liu H, Wang Z, Wang L, Wang G, Wang J. TES inhibits colorectal cancer progression through activation of p38. Oncotarget 2018; 7:45819-45836. [PMID: 27323777 PMCID: PMC5216763 DOI: 10.18632/oncotarget.9961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/29/2016] [Indexed: 02/06/2023] Open
Abstract
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Uehara K, Ikehara F, Shibuya R, Nakazato I, Oshiro M, Kiyuna M, Tanabe Y, Toyoda Z, Kurima K, Kina S, Hisaoka M, Kinjo T. Molecular Signature of Tumors with Monoallelic 13q14 Deletion: a Case Series of Spindle Cell Lipoma and Genetically-Related Tumors Demonstrating a Link Between FOXO1 Status and p38 MAPK Pathway. Pathol Oncol Res 2017; 24:861-869. [PMID: 28887603 PMCID: PMC6132820 DOI: 10.1007/s12253-017-0303-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022]
Abstract
Spindle cell/pleomorphic lipomas (SCLs), cellular angiofibromas (CAFs) and mammary-type myofibroblastomas (MFBs) are rare benign mesenchymal tumors with monoallelic 13q14 deletion. They are predicted to have a common pathogenic mechanism due to shared similar histological and immunohistochemical features; however, pathological consequences of monoallelic 13q14 deletion remain unknown. We previously reported a CAF case with monoallelic 13q14 deletion in which the tumor expressed decreased levels of FOXO1 and RB1, both of which were encoded in 13q14, and increased reactive oxygen species (ROS) levels. We further demonstrated the activation of p38 mitogen-activated protein kinase (p38 MAPK) pathway induced by oxidative stress. We hypothesized that SCLs, CAFs and MFBs would share common molecular signatures involving FOXO1, ROS and p38 MAPK and that their expression patterns were different from those tumors without monoallelic 13q14 deletion such as solitary fibrous tumors (SFTs). We compared the expression levels of FOXO1, RB1, ROS markers and several signal transduction factors between SCLs and SFTs. SCLs expressed decreased levels of FOXO1 and RB1, whereas SFTs showed no change. Both tumor types exhibited increased markers of ROS; however, nuclear localization of phosphorylated p38 was significantly more frequent in SCLs than that in SFTs, suggesting p38 MAPK activation by oxidative stress. SFTs showed lower p38 MAPK activity and higher β-catenin expression, implying that oxidative stress was caused by increased cellular proliferation stress. Finally, CAFs and MFBs showed changes similar to those observed in SCLs. Overall, tumors with monoallelic 13q14 deletion showed shared molecular signatures that might be associated with pathogenesis.
Collapse
Affiliation(s)
- Karina Uehara
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Fukino Ikehara
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Ryo Shibuya
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Iwao Nakazato
- Department of Pathology, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Mariko Oshiro
- Health Information Management Major, Management and Information Science Division, Faculty of International Studies, Meio University, Okinawa, Japan
| | - Masaya Kiyuna
- Department of Pathology, Tomishiro Chuo Hospital, Okinawa, Japan
| | - Yasuka Tanabe
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Zensei Toyoda
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Kiyoto Kurima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masanori Hisaoka
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Takao Kinjo
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
15
|
Vignaroli G, Iovenitti G, Zamperini C, Coniglio F, Calandro P, Molinari A, Fallacara AL, Sartucci A, Calgani A, Colecchia D, Mancini A, Festuccia C, Dreassi E, Valoti M, Musumeci F, Chiariello M, Angelucci A, Botta M, Schenone S. Prodrugs of Pyrazolo[3,4-d]pyrimidines: From Library Synthesis to Evaluation as Potential Anticancer Agents in an Orthotopic Glioblastoma Model. J Med Chem 2017. [PMID: 28650650 DOI: 10.1021/acs.jmedchem.7b00637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pyrazolo[3,4-d]pyrimidines are potent protein kinase inhibitors with promising antitumor activity but suboptimal aqueous solubility, consequently worth being further optimized. Herein, we present the one-pot two-step procedure for the synthesis of a set of pyrazolo[3,4-d]pyrimidine prodrugs (1a-8a and 9a-e) with higher aqueous solubility and enhanced pharmacokinetic and therapeutic properties. ADME studies demonstrated for the most promising prodrugs a better aqueous solubility, a favorable hydrolysis in human and murine serum, and an increased ability to cross cell membranes with respect to the parental drugs, explaining their better 24 h in vitro cytotoxicity against human glioblastoma U87 cell line. Finally, the 4-4a couple of drug/prodrug was also evaluated in vivo, revealing a profitable pharmacokinetic profile of the prodrug associated with a good efficacy. The application of the prodrug approach demonstrated to be a successful strategy for improving aqueous solubility of the parental drugs, determining a positive impact also in their biological efficacy.
Collapse
Affiliation(s)
- Giulia Vignaroli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy.,Lead Discovery Siena S.r.l. , via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy
| | - Giulia Iovenitti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy.,Lead Discovery Siena S.r.l. , via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy
| | - Claudio Zamperini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy.,Lead Discovery Siena S.r.l. , via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy
| | - Federica Coniglio
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy.,Lead Discovery Siena S.r.l. , via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy
| | - Pierpaolo Calandro
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessio Molinari
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Andrea Sartucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessia Calgani
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell'Aquila , Via Vetoio, 67100 Coppito, L'Aquila, Italy
| | - David Colecchia
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori, Core Research Laboratory , Via Fiorentina 1, 53100 Siena, Italy
| | - Andrea Mancini
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell'Aquila , Via Vetoio, 67100 Coppito, L'Aquila, Italy
| | - Claudio Festuccia
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell'Aquila , Via Vetoio, 67100 Coppito, L'Aquila, Italy
| | - Elena Dreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Musumeci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Genova , Viale Benedetto XV 3, 16132 Genova, Italy
| | - Mario Chiariello
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori, Core Research Laboratory , Via Fiorentina 1, 53100 Siena, Italy
| | - Adriano Angelucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università dell'Aquila , Via Vetoio, 67100 Coppito, L'Aquila, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy.,Lead Discovery Siena S.r.l. , via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , BioLife Science Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Silvia Schenone
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori, Core Research Laboratory , Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
16
|
Yu X, Yang YP, Dikici E, Deo SK, Daunert S. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:293-320. [PMID: 28375702 PMCID: PMC5895458 DOI: 10.1146/annurev-anchem-061516-045205] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| |
Collapse
|
17
|
Waters AM, Stafman LL, Garner EF, Mruthyunjayappa S, Stewart JE, Mroczek-Musulman E, Beierle EA. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Transl Oncol 2016; 9:263-73. [PMID: 27567948 PMCID: PMC4925808 DOI: 10.1016/j.tranon.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 01/15/2023] Open
Abstract
Despite the tremendous advances in the treatment of childhood solid tumors, rhabdomyosarcoma (RMS) continues to provide a therapeutic challenge. Children with metastatic or relapsed disease have a disease-free survival rate under 30%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumorigenesis. Signaling pathways both upstream and downstream to FAK have been found to be important in sarcoma tumorigenesis, leading us to hypothesize that FAK would be present in RMS and would impact cellular survival. In the current study, we showed that FAK was present and phosphorylated in pediatric alveolar and embryonal RMS tumor specimens and cell lines. We also examined the effects of FAK inhibition upon two RMS cell lines utilizing parallel approaches including RNAi and small molecule inhibitors. FAK inhibition resulted in decreased cellular survival, invasion, and migration and increased apoptosis. Furthermore, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse RMS xenograft model. The findings from this study will help to further our understanding of the regulation of tumorigenesis in RMS and may provide desperately needed novel therapeutic strategies for these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Alicia M Waters
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Evan F Garner
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Smitha Mruthyunjayappa
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Jerry E Stewart
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | | | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL.
| |
Collapse
|
18
|
Indovina P, Casini N, Forte IM, Garofano T, Cesari D, Iannuzzi CA, Del Porro L, Pentimalli F, Napoliello L, Boffo S, Schenone S, Botta M, Giordano A. SRC Family Kinase Inhibition in Ewing Sarcoma Cells Induces p38 MAP Kinase-Mediated Cytotoxicity and Reduces Cell Migration. J Cell Physiol 2016; 232:129-35. [PMID: 27037775 DOI: 10.1002/jcp.25397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 11/11/2022]
Abstract
Ewing sarcoma (ES) is a highly aggressive bone and soft tissue cancer, representing the second most common primary malignant bone tumor in children and adolescents. Although the development of a multimodal therapy, including both local control (surgery and/or radiation) and systemic multidrug chemotherapy, has determined a significant improvement in survival, patients with metastatic and recurrent disease still face a poor prognosis. Moreover, considering that ES primarily affects young patients, there are concerns about long-term adverse effects of the therapy. Therefore, more rational strategies, targeting specific molecular alterations underlying ES, are required. Recent studies suggest that SRC family kinases (SFKs), which are aberrantly activated in most cancer types, could represent key therapeutic targets also for ES. Here, we challenged ES cell lines with a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221), which was previously shown to be a valuable proapoptotic agent in other tumor types while not affecting normal cells. We observed that SI221 significantly reduced ES cell viability and proved to be more effective than the well-known SFK inhibitor PP2. SI221 was able to induce apoptosis in ES cells and also reduced ES cell clonogenic potential. Furthermore, SI221 was also able to reduce ES cell migration. At the molecular level, our data suggest that SFK inhibition through SI221 could reduce ES cell viability at least in part by hindering an SFK-NOTCH1 receptor-p38 mitogen-activated protein kinase (MAPK) axis. Overall, our study suggests a potential application of specific SFK inhibition in ES therapy. J. Cell. Physiol. 232: 129-135, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paola Indovina
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.
| | - Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Iris Maria Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | | | - Daniele Cesari
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Carmelina Antonella Iannuzzi
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Leonardo Del Porro
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Luca Napoliello
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | | | - Maurizio Botta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Improvement of pyrazolo[3,4-d]pyrimidines pharmacokinetic properties: nanosystem approaches for drug delivery. Sci Rep 2016; 6:21509. [PMID: 26898318 PMCID: PMC4761914 DOI: 10.1038/srep21509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/26/2016] [Indexed: 12/18/2022] Open
Abstract
Pyrazolo[3,4-d]pyrimidines are a class of compounds with a good activity against several cancer cell lines. Despite the promising anticancer activity, these molecules showed a poor aqueous solubility. This issue could threat the future development of pyrazolo[3,4-d]pyrimidines as clinical drug candidates. With the aim of improving their solubility profile and consequently their pharmacokinetic properties, we have chosen four compounds (1–4) on the base of their anti-neuroblastoma activity and we have developed albumin nanoparticles and liposomes for the selected candidates. Albumin nanoparticles and liposomes were prepared and characterized regarding size and ζ-potential distribution, polidispersity index, entrapment efficiency and activity against SH-SY5Y human neuroblastoma cell line. The most promising nanosystem, namely LP-2, was chosen to perform further studies: confocal microscopy, stability and drug release in physiological conditions, and biodistribution. Altogether, the obtained data strongly indicate that the encapsulation of pyrazolo[3,4-d]pyrimidines in liposomes represent an effective method to overcome the poor water solubility.
Collapse
|
20
|
Chen H, Shen J, Choy E, Hornicek FJ, Duan Z. Targeting protein kinases to reverse multidrug resistance in sarcoma. Cancer Treat Rev 2015; 43:8-18. [PMID: 26827688 DOI: 10.1016/j.ctrv.2015.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma.
Collapse
Affiliation(s)
- Hua Chen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States; Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, No. 1017 Dongmenbei Road, Shenzhen, Guangdong Province 518020, China
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States.
| |
Collapse
|