1
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
2
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Schito L, Rey-Keim S. Hypoxia signaling and metastatic progression. Semin Cancer Biol 2023; 97:42-49. [PMID: 37926346 DOI: 10.1016/j.semcancer.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Disruption of oxygen homeostasis, resulting from an imbalance between O2 supply and demand during malignant proliferation, leads to the development of hypoxic tumor microenvironments that promote the acquisition of aggressive cancer cell phenotypes linked to metastasis and patient mortality. In this review, the mechanistic links between tumor hypoxia and metastatic progression are presented. Current status and perspectives of targeting hypoxia signaling pathways as a strategy to halt cancer cell metastatic activities are emphasized.
Collapse
Affiliation(s)
- Luana Schito
- UCD School of Medicine, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Sergio Rey-Keim
- UCD School of Medicine, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
4
|
Luo S, Jiang Y, Anfu Zheng, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Chen M, Li W, Li X, Gu L, Sun Y, Xiao Z, Shen J. Targeting hypoxia-inducible factors for breast cancer therapy: A narrative review. Front Pharmacol 2022; 13:1064661. [PMID: 36532768 PMCID: PMC9751339 DOI: 10.3389/fphar.2022.1064661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/15/2023] Open
Abstract
Hypoxia-inducible factors (HIFs), central regulators for cells to adapt to low cellular oxygen levels, are often overexpressed and activated in breast cancer. HIFs modulate the primary transcriptional response of downstream pathways and target genes in response to hypoxia, including glycolysis, angiogenesis and metastasis. They can promote the development of breast cancer and are associated with poor prognosis of breast cancer patients by regulating cancer processes closely related to tumor invasion, metastasis and drug resistance. Thus, specific targeting of HIFs may improve the efficiency of cancer therapy. In this review, we summarize the advances in HIF-related molecular mechanisms and clinical and preclinical studies of drugs targeting HIFs in breast cancer. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for HIF targeting are increasingly being developed. Therefore, we highlight the HIF related DDS, including liposomes, polymers, metal-based or carbon-based nanoparticles.
Collapse
Affiliation(s)
- Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacy, The Second People’s Hospital of Jiangyou, Mianyang, China
| | - Yu Jiang
- Department of Pharmacy, The People’s Hospital of Wusheng, Guang’an, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
5
|
Integrin-Linked Kinase Expression in Human Valve Endothelial Cells Plays a Protective Role in Calcific Aortic Valve Disease. Antioxidants (Basel) 2022; 11:antiox11091736. [PMID: 36139812 PMCID: PMC9495882 DOI: 10.3390/antiox11091736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent during aging. CAVD initiates with endothelial dysfunction, leading to lipid accumulation, inflammation, and osteogenic transformation. Integrin-linked kinase (ILK) participates in the progression of cardiovascular diseases, such as endothelial dysfunction and atherosclerosis. However, ILK role in CAVD is unknown. First, we determined that ILK expression is downregulated in aortic valves from patients with CAVD compared to non-CAVD, especially at the valve endothelium, and negatively correlated with calcification markers. Silencing ILK expression in human valve endothelial cells (siILK-hVECs) induced endothelial-to-mesenchymal transition (EndMT) and promoted a switch to an osteoblastic phenotype; SiILK-hVECs expressed increased RUNX2 and developed calcified nodules. siILK-hVECs exhibited decreased NO production and increased nitrosative stress, suggesting valvular endothelial dysfunction. NO treatment of siILK-hVECs prevented VEC transdifferentiation, while treatment with an eNOS inhibitor mimicked ILK-silencing induction of EndMT. Accordingly, NO treatment inhibited VEC calcification. Mechanistically, siILK-hVECs showed increased Smad2 phosphorylation, suggesting a TGF-β-dependent mechanism, and NO treatment decreased Smad2 activation and RUNX2. Experiments performed in eNOS KO mice confirmed the involvement of the ILK-eNOS signaling pathway in valve calcification, since aortic valves from these animals showed decreased ILK expression, increased RUNX2, and calcification. Our study demonstrated that ILK endothelial expression participates in human CAVD development by preventing endothelial osteogenic transformation.
Collapse
|
6
|
Wang HY, Zhang XP, Wang W. Regulation of epithelial-to-mesenchymal transition in hypoxia by the HIF-1α network. FEBS Lett 2022; 596:338-349. [PMID: 34905218 DOI: 10.1002/1873-3468.14258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a significant role in cancer metastasis. A series of models have focused on EMT regulation by TGF-β network. However, how EMT is regulated under hypoxia is less understood. We developed a model of HIF-1α network to explore the potential link between EMT and the network topology. Our results revealed that three positive feedback loops, composed of HIF-1α and its three targets SNAIL, TWIST, and miR-210, should be sequentially activated to induce EMT under aggravating hypoxia. We suggested that the number of the positive feedback loops is critical for determining the number of stable states in EMT. Our work may advance the understanding of the significance of network topology in the regulation of EMT.
Collapse
Affiliation(s)
- Hang-Yu Wang
- Kuang Yaming Honors School, Nanjing University, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, China
- Institute for Brain Sciences, Nanjing University, China
| | - Wei Wang
- Institute for Brain Sciences, Nanjing University, China
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, China
| |
Collapse
|
7
|
Tsirtsaki K, Gkretsi V. The focal adhesion protein Integrin-Linked Kinase (ILK) as an important player in breast cancer pathogenesis. Cell Adh Migr 2021; 14:204-213. [PMID: 33043811 PMCID: PMC7553581 DOI: 10.1080/19336918.2020.1829263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell-extracellular matrix interactions, or focal adhesions (FA), are crucial for tissue homeostasis but are also implicated in cancer. Integrin-Linked Kinase (ILK) is an abundantly expressed FA protein involved in multiple signaling pathways. Here, we reviewed the current literature on the role of ILK in breast cancer (BC). Articles included in vitro and in vivo experiments as well as studies in human BC samples. ILK attenuation via silencing or pharmaceutical inhibition, leads to apoptosis or inhibition of epithelial-to-mesenchymal transition, and cell invasion whereas ILK overexpression suppresses anoikis and promotes tumor growth and metastasis. Finally, ILK is upregulated in BC tumors and its expression is associated with grade, and metastasis. Therefore, ILK should be evaluated as a potential anti-cancer pharmaceutical target.
Collapse
Affiliation(s)
- Katerina Tsirtsaki
- Department of Life Sciences, School of Sciences, European University Cyprus , Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Department of Life Sciences, School of Sciences, European University Cyprus , Nicosia, Cyprus
| |
Collapse
|
8
|
Phung CD, Tran TH, Pham LM, Nguyen HT, Jeong JH, Yong CS, Kim JO. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020; 324:413-429. [PMID: 32461115 DOI: 10.1016/j.jconrel.2020.05.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia is a common feature of the tumor microenvironment, which is characterized by tissue oxygen deficiency due to an aggressive proliferation of cancer cells. Hypoxia activates hypoxia-inducible factor-dependent signaling, which in turn regulates metabolic reprogramming, immune suppression, resistance to apoptosis, angiogenesis, metastasis, and invasion to secondary sites. In this review, we provide an overview of the use of nanotechnology to harmonize intra-tumoral oxygen or suppress hypoxia-related signaling for an improved efficacy of cancer treatment. The biological background was followed by conducting a literature review on the (1) nanoparticles responsible for enhancing oxygen levels within the tumor, (2) nanoparticles sensitizing hypoxia, (3) nanoparticles suppressing hypoxia-inducing factor, (4) nanoparticles that relieve tumor hypoxia for enhancement of chemotherapy, photodynamic therapy, and immunotherapy, either individually or in combination. Lastly, the heterogeneity of cancer and limitations of nanotechnology are discussed to facilitate translational therapeutic treatment.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
9
|
Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci 2020; 27:63. [PMID: 32389123 PMCID: PMC7212687 DOI: 10.1186/s12929-020-00658-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essentially required by most eukaryotic organisms as a scavenger to remove harmful electron and hydrogen ions or as a critical substrate to ensure the proper execution of enzymatic reactions. All nucleated cells can sense oxygen concentration and respond to reduced oxygen availability (hypoxia). When oxygen delivery is disrupted or reduced, the organisms will develop numerous adaptive mechanisms to facilitate cells survived in the hypoxic condition. Normally, such hypoxic response will cease when oxygen level is restored. However, the situation becomes complicated if hypoxic stress persists (chronic hypoxia) or cyclic normoxia-hypoxia phenomenon occurs (intermittent hypoxia). A series of chain reaction-like gene expression cascade, termed hypoxia-mediated gene regulatory network, will be initiated under such prolonged or intermittent hypoxic conditions and subsequently leads to alteration of cellular function and/or behaviors. As a result, irreversible processes occur that may cause physiological disorder or even pathological consequences. A growing body of evidence implicates that hypoxia plays critical roles in the pathogenesis of major causes of mortality including cancer, myocardial ischemia, metabolic diseases, and chronic heart and kidney diseases, and in reproductive diseases such as preeclampsia and endometriosis. This review article will summarize current understandings regarding the molecular mechanism of hypoxia in these common and important diseases.
Collapse
Affiliation(s)
- Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - I-Chen Peng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
10
|
Tam SY, Wu VWC, Law HKW. Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond. Front Oncol 2020; 10:486. [PMID: 32322559 PMCID: PMC7156534 DOI: 10.3389/fonc.2020.00486] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
Metastasis is the main cause of cancer-related mortality. Although the actual process of metastasis remains largely elusive, epithelial-mesenchymal transition (EMT) has been considered as a major event in metastasis. Besides, hypoxia is common in solid cancers and has been considered as an important factor for adverse treatment outcomes including metastasis. Since EMT and hypoxia potentially share several signaling pathways, many recent studies focused on investigate the issue of hypoxia-induced EMT. Among all potential mediators of hypoxia-induced EMT, hypoxia-inducible factor-1α (HIF-1α) has been studied extensively. Moreover, there are other potential mediators that may also contribute to the process. This review aims to summarize the recent reports on hypoxia-induced EMT by HIF-1α or other potential mediators and provide insights for further investigations on this issue. Ultimately, better understanding of hypoxia-induced EMT may allow us to develop anti-metastatic strategies and improve treatment outcomes.
Collapse
Affiliation(s)
- Shing Yau Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Vincent W C Wu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Helen K W Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
11
|
Susman S, Pîrlog R, Leucuța D, Mitre AO, Padurean VA, Melincovici C, Moldovan I, Crișan D, Florian SI. The role of p-Stat3 Y705 immunohistochemistry in glioblastoma prognosis. Diagn Pathol 2019; 14:124. [PMID: 31690341 PMCID: PMC6829927 DOI: 10.1186/s13000-019-0903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Background In spite of the multimodal treatment used today, glioblastoma is still the most aggressive and lethal cerebral tumour. To increase survival in these patients, novel therapeutic targets must be discovered. Signal transducer and activator of transcription 3 (Stat3), a transcription factor that controls normal cell differentiation and survival is also involved in neoplastic celltransformation. In this study we evaluated the immunohistochemical expression of pY705-Stat3 in patients with primary glioblastoma and determined its prognostic role by correlating it with survival. Methods This retrospective study included 94 patients diagnosed with glioblastoma. We determined the localization, number of positive cells, and marker intensity for pY705-Stat3 in these patients with the use of immunohistochemistry. The prognostic role was determined by correlating pY705-Stat3 expression on formalin-fixed paraffin-embedded tumour tissues with the patient’s survival in univariate and multivariate COX regressions. Results We found a statistically significant difference in survival between the patients with more than 20% pY705-Stat3 positive cells and those with less than 20% pY705-Stat3 positive cells (8.9 months median survival versus 13.7 months medial survival, p < 0.001). On multivariate analyses with the COX proportional hazards regression model including pY705-Stat3 expression, age and relapse status, pY705-Stat3 status was an independent prognostic factor in glioblastoma (P < 0.001). Conclusion The results obtained show that the immunohistochemical expression of pY705-Stat3 correlates with survival in glioblastoma. This study identifies Stat3 as a possible target for existing or new developed Stat3 inhibitors.
Collapse
Affiliation(s)
- Sergiu Susman
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania. .,Department of Pathology, Imogen Research Centre, Cluj-Napoca, Romania.
| | - Radu Pîrlog
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Daniel Leucuța
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Otto Mitre
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Carmen Melincovici
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Ioana Moldovan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Doinița Crișan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania.,Department of Pathology, Emergency County Hospital, Cluj-Napoca, Romania
| | - Stefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Zheng CC, Hu HF, Hong P, Zhang QH, Xu WW, He QY, Li B. Significance of integrin-linked kinase (ILK) in tumorigenesis and its potential implication as a biomarker and therapeutic target for human cancer. Am J Cancer Res 2019; 9:186-197. [PMID: 30755822 PMCID: PMC6356918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023] Open
Abstract
Integrin-linked kinase (ILK), which is an ankyrin repeat-containing serine/threonine protein kinase, interacts with integrin β1 and the β3 cytoplasmic domain and phosphorylates integrin β1. ILK has multiple functions in cells, such as cell-extracellular matrix interactions, cell cycle, apoptosis, cell proliferation and cell motility, which are associated with the interacting partners of ILK and downstream signaling pathways. Upregulation of ILK is frequently observed in cancer tissues compared to corresponding normal tissues. Emerging evidence has demonstrated that ILK plays an important role in biological processes associated with tumorigenesis, including cancer cell proliferation, angiogenesis, metastasis, and drug resistance. Furthermore, inhibition of ILK expression and activity using siRNA or chemical inhibitors has shown a significant suppressive effect on cancer development and progression, implicating the potential of ILK as a target for cancer treatment. In this review, we summarized the functional role of ILK in tumorigenesis, with the expectation that targeting ILK could provide more evidence for cancer therapy.
Collapse
Affiliation(s)
- Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Pan Hong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Qi-Hua Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan UniversityGuangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| |
Collapse
|
14
|
Karachaliou N, Cardona AF, Bracht JWP, Aldeguer E, Drozdowskyj A, Fernandez-Bruno M, Chaib I, Berenguer J, Santarpia M, Ito M, Codony-Servat J, Rosell R. Integrin-linked kinase (ILK) and src homology 2 domain-containing phosphatase 2 (SHP2): Novel targets in EGFR-mutation positive non-small cell lung cancer (NSCLC). EBioMedicine 2019; 39:207-214. [PMID: 30473379 PMCID: PMC6354556 DOI: 10.1016/j.ebiom.2018.11.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The activation of multiple signaling pathways jeopardizes the clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutation positive non-small cell lung cancer (NSCLC). Integrin-linked kinase (ILK) regulates the interactions between tumor cells and extracellular environment to activate signaling pathways and promote cell proliferation, migration, and epithelial-mesenchymal transition. Src homology 2 domain-containing phosphatase 2 (SHP2) is essential for receptor tyrosine kinase signaling and mitogen-activated protein kinase (MAPK) pathway activation. METHODS We analyzed tumor ILK, β-receptor subunit glycoprotein 130 (gp130), SHP2, and stromal hepatocyte growth factor (HGF) and interleukin-6 (IL-6) mRNA expression in baseline tumor specimens of advanced EGFR-mutation positive NSCLC patients treated with EGFR TKIs. RESULTS ILK, when highly expressed, was an independent poor prognostic factor for the progression-free survival of the patients, both in the univariate (hazard ratio [HR for disease progression, 2.49; 95% CI, 1.37-4.52; P = .0020]) and in the multivariate (HR 3.74; 95% CI, 1.33-10.56; P = .0126) Cox regression model. Patients with high SHP2 expression had an almost 13-month shorter progression-free survival (P = .0094) and an 18-month shorter overall survival (P = .0182) in comparison to those with low SHP2 mRNA expression. INTERPRETATION The levels of ILK and SHP2 could be predictive for upfront combinatory therapy of EGFR TKIs plus SHP2 or ILK inhibitors. FUND: A grant from La Caixa Foundation, an Instituto de Salud Carlos III grant (RESPONSE, PIE16/00011), an Instituto de Salud Carlos III grant (PI14/01678), a Marie Skłodowska-Curie Innovative Training Networks European Grant (ELBA No 765492) and a Spanish Association Against Cancer (AECC) grant (PROYE18012ROSE).
Collapse
Affiliation(s)
- Niki Karachaliou
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain; Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain.
| | | | | | - Erika Aldeguer
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | | | - Manuel Fernandez-Bruno
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain
| | - Imane Chaib
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain
| | - Jordi Berenguer
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Masaoki Ito
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Jordi Codony-Servat
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Rafael Rosell
- Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain; Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
15
|
Zhang X, Xu Y, Liu H, Zhao P, Chen Y, Yue Z, Zhang Z, Wang X. HIF-2α-ILK Is Involved in Mesenchymal Stromal Cell Angiogenesis in Multiple Myeloma Under Hypoxic Conditions. Technol Cancer Res Treat 2018; 17:1533033818764473. [PMID: 29656700 PMCID: PMC5912287 DOI: 10.1177/1533033818764473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stromal cells are proven to be likely induce the angiogenic response in multiple myeloma and thus represent an enticing target for antiangiogenesis therapies for multiple myeloma. Substantial evidence indicates that angiogenesis in multiple myeloma is complex and involves direct production of angiogenic cytokines by abnormal plasma cells and these B-cell neoplasia generated pathophysiology change within the microenvironment. In this study, we demonstrated that mesenchymal stromal cells cultured with U266/Lp-1 under hypoxic conditions resulted in an increased α-smooth muscle actin expression and high productive levels of both hypoxia-inducible factor-2α and integrin-linked kinase proteins. Moreover, inhibition of hypoxia-inducible factor-2α by Small interfering RNA (siRNA) in mesenchymal stromal cells decreased the protein levels of both α-smooth muscle actin and integrin-linked kinase after mesenchymal stromal cells cultured with U266 under hypoxic conditions. We further demonstrated that transfection of integrin-linked kinase-siRNA reduced the protein level of α-smooth muscle actin and attenuated angiogenesis in vitro by decreasing the attachment of Q-dot labeled cells and secretion of angiogenic factors. In conclusion, our research showed that mesenchymal stromal cells cultured with myeloma cells under hypoxia participated in the angiogenesis of multiple myeloma, which is regulated by the hypoxia-inducible factor-2α-integrin-linked kinase pathway. Thus, targeting integrin-linked kinase may represent an effective strategy to block hypoxia-inducible factor-2α-induced angiogenesis in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Cancer Hospital of Tianjin, Tianjin Medical University, Tianjin, China
- The authors contributed equally to this work
| | - Yinhui Xu
- Thoracic Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- The authors contributed equally to this work
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- The authors contributed equally to this work
| | - Pan Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Cancer Hospital of Tianjin, Tianjin Medical University, Tianjin, China
| | - Yafang Chen
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Cancer Hospital of Tianjin, Tianjin Medical University, Tianjin, China
| | - Zhijie Yue
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Cancer Hospital of Tianjin, Tianjin Medical University, Tianjin, China
| | - Zhiqing Zhang
- Department of Neurology, The Fourth Central Hospital, Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Cancer Hospital of Tianjin, Tianjin Medical University, Tianjin, China
- Xiaofang Wang, Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Cancer Hospital of Tianjin, Tianjin Medical University, Ti-Yuan-Bei, Huan-Hu-Xi-Road, Tianjin 300060, China.
| |
Collapse
|
16
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
17
|
Deng SJ, Chen HY, Ye Z, Deng SC, Zhu S, Zeng Z, He C, Liu ML, Huang K, Zhong JX, Xu FY, Li Q, Liu Y, Wang CY, Zhao G. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene 2018; 37:5811-5828. [PMID: 29970904 DOI: 10.1038/s41388-018-0382-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
The contribution of long noncoding RNAs (lncRNAs) to pancreatic cancer progression and the regulatory mechanisms of their expression are attractive areas. In the present study, the overexpression of lncRNA-BX111887 (BX111) in pancreatic cancer tissues was detected by microarray and further validated in a cohort of pancreatic cancer tissues. We further demonstrated that knockdown or overexpression of BX111 dramatically repressed or enhanced proliferation and invasion of pancreatic cancer cells. Mechanically, BX111 activated transcription of ZEB1, a key regulator for epithelia-mesenchymal transition (EMT), via recruiting transcriptional factor Y-box protein (YB1) to its promoter region. Moreover, we revealed that BX111 transcription was induced by hypoxia-inducible factor (HIF-1α) in response to hypoxia. In addition, BX111 contributed to the hypoxia-induced EMT of pancreatic cells by regulating expression of ZEB1 and its downstream proteins E-cadherin and MMP2. Coincidence with in vitro results, BX111 depletion effectively inhibited growth and metastasis of xenograft tumor in vivo. The clinical samples of pancreatic cancer further confirmed a positive association between BX111 and ZEB1. Moreover, high BX111 expression was correlated with late TNM stage, lymphatic invasion and distant metastasis, as well as short overall survival time in patients. Taken together, our findings implicate a hypoxia-induced lncRNA contributes to metastasis and progression of pancreatic cancer, and suggest BX111 might be applied as a potential biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Shi-Jiang Deng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng-Yu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shi-Chang Deng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Zhu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhu Zeng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chi He
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming-Liang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Huang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian-Xin Zhong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng-Yu Xu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiang Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-You Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Wang X, Dai X, Zhang X, Li X, Xu T, Lan Q. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix. Biochem Biophys Res Commun 2018; 498:1052-1057. [DOI: 10.1016/j.bbrc.2018.03.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
|
19
|
Duan Y, He Q, Yue K, Si H, Wang J, Zhou X, Wang X. Hypoxia induced Bcl-2/Twist1 complex promotes tumor cell invasion in oral squamous cell carcinoma. Oncotarget 2018; 8:7729-7739. [PMID: 28032603 PMCID: PMC5352356 DOI: 10.18632/oncotarget.13890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Bcl-2 and Twist1 can be coactivated by hypoxia in hepatocellular carcinoma to promote tumor cell metastasis and vasculogenic mimicry, but their function in oral squamous cell carcinoma (OSCC) remains undefined. We employed a cohort of 82 cases of OSCC samples to examine the coexpression of Bcl-2 and Twist1 by immunohistochemistry and demonstrate the interaction between Bcl-2 and Twist1 by coimmunoprecipitation. Bcl-2 and Twist1 overexpression was associated with a poor pathological grade and tumor prognosis, and the two factors functions as a complex. Knocking down Bcl-2/Twist1 inhibited cell migration, decreased cell invasion and inversed cell epithelial-mesenchymal transition (EMT) procession. An animal model derived from the Tca8113 cell line was used to further validate the role of Bcl-2/Twist1 depletion in suppressing tumor EMT and growth. In conclusion, Bcl-2/Twist1 complex can be treated as a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yuansheng Duan
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Qinghua He
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Haishan Si
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Jiaxin Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| |
Collapse
|
20
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
21
|
Wu X. Expression of HIF-1α in keloids and its correlation with inflammatory responses and apoptosis. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218818952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the expression of hypoxia-inducible factor-1α (HIF-1α) in keloids and its correlation with inflammatory responses and apoptosis. The keloid specimens resected in our hospital from November 2015 to February 2017 were selected as the pathological group, and the normal skin tissues from our hospital during the same period were selected as the control group. The expression of HIF-1α, inflammatory response cytokines, and apoptotic molecules in the tissues of two groups were detected. The messenger RNA (mRNA) expression of HIF-1α in the keloids in the pathological group was significantly higher than that in the control group, and the mRNA expression of interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α in the pathological group was significantly higher than those in the control group. The mRNA expression of Bax in the pathological group was significantly higher than that in the control group. The mRNA expression of Bcl-2, livin, and hPEBP4 in the pathological group was significantly lower than that in the control group. Pearson test showed that there was a positive correlation between the mRNA expression of HIF-1α and inflammatory cytokines including IL-1β, IL-2, IL-6, and TNF-α. There were also a positive correlation between the mRNA expression of HIF-1α and Bax and a negative correlation between the mRNA expression of HIF-1α and Bcl-2, livin, and hPEBP4. In conclusion, HIF-1α was highly expressed in keloids and closely related to inflammatory response cytokines and apoptosis molecules. Increased expression of HIF-1α in keloids may be an important factor in inflammatory responses and increased apoptosis in skin tissues.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Plastic Surgery, Linzi District People’s Hospital, Zibo, China
| |
Collapse
|
22
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
24
|
Huang HL, Wu HY, Chu PC, Lai IL, Huang PH, Kulp SK, Pan SL, Teng CM, Chen CS. Role of integrin-linked kinase in regulating the protein stability of the MUC1-C oncoprotein in pancreatic cancer cells. Oncogenesis 2017; 6:e359. [PMID: 28692035 PMCID: PMC5541713 DOI: 10.1038/oncsis.2017.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
MUC1-C overexpression has been associated with the progression of pancreatic tumors by promoting the aggressive and metastatic phenotypes. As MUC1 is a STAT3 target gene, STAT3 plays a major role in regulating MUC1-C expression. In this study, we report an alternative mechanism by which integrin-linked kinase (ILK) post-transcriptionally modulates the expression of MUC1-C by maintaining its protein stability in pancreatic cancer cells. We found that ILK acts in concert with STAT3 to facilitate IL-6-mediated upregulation of MUC1-C; ILK depletion was equally effective as STAT3 depletion in abolishing IL-6-induced MUC1-C overexpression without disturbing the phosphorylation or cellular distribution of STAT3. Conversely, ectopic expression of constitutively active ILK increased MUC1-C expression, though this increase was not noted with kinase-dead ILK. This finding suggests the requirement of the kinase activity of ILK in regulating MUC1-C stability, which was confirmed by using the ILK kinase inhibitor T315. Furthermore, our data suggest the involvement of protein kinase C (PKC)δ in mediating the suppressive effect of ILK inhibition on MUC1-C repression. For example, co-immunoprecipitation analysis indicated that ILK depletion-mediated MUC1-C phosphorylation was accompanied by increased phosphorylation of PKCδ at the activation loop Thr-507 and increased binding of PKCδ to MUC1-C. Conversely, ILK overexpression resulted in decreased PKCδ phosphorylation. From a mechanistic perspective, the present finding, together with our recent report that ILK controls the expression of oncogenic KRAS through a regulatory loop, underscores the pivotal role of ILK in promoting pancreatic cancer progression.
Collapse
Affiliation(s)
- H-L Huang
- The PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - H-Y Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
| | - P-C Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - I-L Lai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - P-H Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - S K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - S-L Pan
- The PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - C-M Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-S Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
Zhang WJ, Chen C, Zhou ZH, Gao ST, Tee TJ, Yang LQ, Xu YY, Pang TH, Xu XY, Sun Q, Feng M, Wang H, Lu CL, Wu GZ, Wu S, Guan WX, Xu GF. Hypoxia-inducible factor-1 alpha Correlates with Tumor-Associated Macrophages Infiltration, Influences Survival of Gastric Cancer Patients. J Cancer 2017; 8:1818-1825. [PMID: 28819379 PMCID: PMC5556645 DOI: 10.7150/jca.19057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Hypoxia was a common feature for accelerating tumor metastasis by both inducting epithelial-mesenchymal transition (EMT) of tumor cells and polarization of tumor-associated macrophages (TAMs). The association and roles between hypoxia, EMT and TAMs in the biological behavior of gastric cancer (GC) for the time being recurrence is unclear. Material and methods: hypoixa by expression of hypoxia-inducible factor-1 alpha (HIF-1α), polarized functional status of infiltrated TAMs by immunohistochemical staining of CD68 and CD163, and the expression of E-cadherin as EMT property had been evaluated in 236 patients consecutive with histologically confirmed GC. Clinical significance was assessed for all these patients. Results: High expression of HIF-1α was found in patients with aggressive features, especially for recurrent patients. High infiltration of TAMs and abnormal expression of EMT-marker were also related to aggressive characteristics and predicted poor prognosis in GC. Meanwwhile, there existed a significant correlation among expression of HIF-1α, infiltration of TAMs and EMT marker in GC tissues. Multivariate Cox analysis revealed that high expression of HIF-1α combined TAMs infiltration were independent prognostic factors for disease-specific survival rate. Conclusion: HIF-1α is an unfavorable indicator for prognosis, may promote tumor progression through the induction of EMT and establishment of a pro-tumor immunosuppressive microenvironment. Further investigation into the therapeutic effects of blocking hypoxia is possible a potential strategy for GC treatment.
Collapse
Affiliation(s)
- Wei-Jie Zhang
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Cheng Chen
- Department of Radiotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhi-Hua Zhou
- Department of Pathology, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Shan-Ting Gao
- Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Teong Jin Tee
- Department of Medical, Gastroenterology unit, Nilai Medical Center, Nilai, Negeri Sembilan, Malaysia
| | - Liu-Qing Yang
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xu
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Tao-Hong Pang
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xin-Yun Xu
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Qi Sun
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Min Feng
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Hao Wang
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Chun-Lei Lu
- Department of General surgery, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Guo-Zhong Wu
- Department of General surgery, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Sheng Wu
- Department of General surgery, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Wen-Xian Guan
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Gui-Fang Xu
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
26
|
Hypoxic pathobiology of breast cancer metastasis. Biochim Biophys Acta Rev Cancer 2017; 1868:239-245. [PMID: 28526262 DOI: 10.1016/j.bbcan.2017.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/13/2017] [Accepted: 05/13/2017] [Indexed: 12/14/2022]
Abstract
Dissemination of breast cancer cells (BCCs) to distant sites (metastasis) is the ultimate cause of mortality in patients with breast cancer. Hypoxia (low O2) is a microenvironmental hallmark of most solid cancers arising as a mismatch between cellular O2 consumption and supply. Hypoxic selection of BCCs triggers molecular and cellular adaptations dependent upon hypoxia-inducible factors (HIFs), a family of evolutionarily conserved transcriptional activators that coordinate the expression of numerous genes controlling each step of the metastatic process. In this review, we summarize current advances in the understanding of HIF-driven molecular mechanisms that promote BCC metastatic dissemination and patient mortality. In addition, we discuss the clinical and therapeutic implications of HIF targeting in breast cancers.
Collapse
|
27
|
Wakeland AK, Soncin F, Moretto-Zita M, Chang CW, Horii M, Pizzo D, Nelson KK, Laurent LC, Parast MM. Hypoxia Directs Human Extravillous Trophoblast Differentiation in a Hypoxia-Inducible Factor-Dependent Manner. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:767-780. [PMID: 28167044 DOI: 10.1016/j.ajpath.2016.11.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023]
Abstract
Villous cytotrophoblasts are epithelial stem cells of the early human placenta, able to differentiate either into syncytiotrophoblasts in floating chorionic villi or extravillous trophoblasts (EVTs) at the anchoring villi. The signaling pathways regulating differentiation into these two lineages are incompletely understood. The bulk of placental growth and development in the first trimester occurs under low oxygen tension. One major mechanism by which oxygen regulates cellular function is through the hypoxia-inducible factor (HIF), a transcription factor complex stabilized under low oxygen tension to mediate cellular responses, including cell fate decisions. HIF is known to play a role in trophoblast differentiation in rodents; however, its role in human trophoblast differentiation is poorly understood. Using RNA profiling of sorted populations of primary first-trimester trophoblasts, we evaluated the first stage of EVT differentiation, the transition from epidermal growth factor receptor+ villous cytotrophoblasts into human leukocyte antigen-G+ proximal column EVT (pcEVT) and identified hypoxia as a major pcEVT-associated pathway. Using primary cytotrophoblasts, we determined that culture in low oxygen directs differentiation preferentially toward human leukocyte antigen-G+ pcEVT, and that an intact HIF complex is required for this process. Finally, using global RNA profiling, we identified integrin-linked kinase and associated cytoskeletal remodeling and adhesion to be among HIF-dependent pcEVT-associated signaling pathways. Taken together, we propose that oxygen regulates EVT differentiation through HIF-dependent modulation of various cell adhesion and morphology-related pathways.
Collapse
Affiliation(s)
- Anna K Wakeland
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Matteo Moretto-Zita
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Ching-Wen Chang
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Don Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Katharine K Nelson
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California; Department of Reproductive Medicine, University of California San Diego, La Jolla, California
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
28
|
Imada K, Shiota M, Kuroiwa K, Sugimoto M, Abe T, Kohashi K, Yokomizo A, Eto M, Naito S, Oda Y. FOXO3a Expression Regulated by ERK Signaling is Inversely Correlated With Y-Box Binding Protein-1 Expression in Prostate Cancer. Prostate 2017; 77:145-153. [PMID: 27699813 DOI: 10.1002/pros.23254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND FOXO3a is a member of the forkhead O transcription factors. FOXO3a induces the factors that contribute to cell cycle arrest and is considered a tumor suppressor in several malignant tumors. Y-box binding protein-1 (YB-1) is a multifunctional protein whose high expression is correlated with poor prognoses in various malignant tumors. In the current study, we investigated the relationship between FOXO3a and YB-1 to validate their functional roles in prostate cancer. METHODS Western blotting and cytotoxicity assays were conducted in prostate cancer cells, LNCaP, and 22Rv1 cells. We also evaluated the protein expressions of FOXO3a and YB-1 in human prostate cancer tissues, using radical prostatectomy specimens. Then, we investigated the correlations between protein expressions and clinicopathologic parameters. RESULTS We found that both FOXO3a and YB-1 proteins were phosphorylated by ERK signaling, resulting in FOXO3a inactivation and YB-1 activation in LNCaP and 22Rv1 cells. Inversely, inhibition of MEK or treatment with metformin activated FOXO3a through inactivation of ERK signaling and suppressed the viability of LNCaP and 22Rv1 cells in a dose-dependent manner. In immunohistochemical analysis, FOXO3a nuclear expression was inversely correlated with YB-1 nuclear expression (P < 0.0001). Furthermore, high FOXO3a nuclear expression was inversely correlated with a higher Gleason grade (P < 0.0001) and higher preoperative PSA (P = 0.0437). CONCLUSIONS These results showed that in prostate cancer, FOXO3a, and YB-1 play inverse reciprocal roles as a tumor-suppressor gene and oncogene, respectively, through their master regulator ERK. Prostate 77:145-153, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenjiro Imada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Kuroiwa
- Department of Urology, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Masaaki Sugimoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Abe
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Naito
- Division of Urology, Harasanshin General Hospital, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
30
|
Schito L, Semenza GL. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer 2016; 2:758-770. [PMID: 28741521 DOI: 10.1016/j.trecan.2016.10.016] [Citation(s) in RCA: 645] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
Abstract
Intratumoral hypoxia (reduced O2 availability) is a common finding in human cancer and leads to increased activity of hypoxia-inducible factors (HIFs), which regulate the expression of genes that contribute to angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial-mesenchymal transition, motility, invasion, metastasis, cancer stem cell maintenance, immune evasion, and resistance to chemotherapy and radiation therapy. Conventional anticancer therapies target well-oxygenated and proliferating cancer cells, whereas there are no approved therapies that target hypoxic cancer cells, despite growing clinical and experimental evidence indicating that intratumoral hypoxia is a critical microenvironmental factor driving cancer progression. In this review, our current understanding of the consequences of HIF activity and the translational potential of targeting HIFs for cancer therapy are discussed.
Collapse
Affiliation(s)
- Luana Schito
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gregg L Semenza
- Institute for Cell Engineering, McKusick-Nathans Institute of Genetic Medicine, and Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol 2016; 18:356-65. [PMID: 27027486 DOI: 10.1038/ncb3330] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low oxygen tension (hypoxia) is a hallmark of cancer that influences cancer cell function, but is also an important component of the tumour microenvironment as it alters the extracellular matrix, modulates the tumour immune response and increases angiogenesis. Here we discuss the regulation and role of hypoxia and its key transcriptional mediators, the hypoxia-inducible factor (HIF) family of transcription factors, in the tumour microenvironment and stromal compartments.
Collapse
Affiliation(s)
- Edward L LaGory
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA
| | - Amato J Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
32
|
Pang MF, Siedlik MJ, Han S, Stallings-Mann M, Radisky DC, Nelson CM. Tissue Stiffness and Hypoxia Modulate the Integrin-Linked Kinase ILK to Control Breast Cancer Stem-like Cells. Cancer Res 2016; 76:5277-87. [PMID: 27503933 DOI: 10.1158/0008-5472.can-16-0579] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/15/2016] [Indexed: 02/04/2023]
Abstract
Breast tumors are stiffer and more hypoxic than nonmalignant breast tissue. Here we report that stiff and hypoxic microenvironments promote the development of breast cancer stem-like cells (CSC) through modulation of the integrin-linked kinase ILK. Depleting ILK blocked stiffness and hypoxia-dependent acquisition of CSC marker expression and behavior, whereas ectopic expression of ILK stimulated CSC development under softer or normoxic conditions. Stiff microenvironments also promoted tumor formation and metastasis in ovo, where depleting ILK significantly abrogated the tumorigenic and metastatic potential of invasive breast cancer cells. We further found that the ILK-mediated phenotypes induced by stiff and hypoxic microenvironments are regulated by PI3K/Akt. Analysis of human breast cancer specimens revealed an association between substratum stiffness, ILK, and CSC markers, insofar as ILK and CD44 were expressed in cancer cells located in tumor regions predicted to be stiff. Our results define ILK as a key mechanotransducer in modulating breast CSC development in response to tissue mechanics and oxygen tension. Cancer Res; 76(18); 5277-87. ©2016 AACR.
Collapse
Affiliation(s)
- Mei-Fong Pang
- Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey. Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Michael J Siedlik
- Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey
| | - Siyang Han
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey. Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
33
|
Zheng Q, Xu Y, Lu J, Zhao J, Wei X, Liu P. Emodin Inhibits Migration and Invasion of Human Endometrial Stromal Cells by Facilitating the Mesenchymal-Epithelial Transition Through Targeting ILK. Reprod Sci 2016; 23:1526-1535. [PMID: 27130230 DOI: 10.1177/1933719116645192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To determine whether emodin facilitates the mesenchymal-epithelial transition (MET) of endometrial stromal cells (ESCs) as well as to explore the mechanism through which emodin favored the MET of ESCs. METHODS Cell viability was tested by methyl thiazolyl tetrazolium assay. Cell migration and invasion abilities were detected by transwell assays. Levels of integrin-linked kinase (ILK) and epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. RESULTS Upregulated ILK and increased abilities of migration and invasion were confirmed in the eutopic and ectopic ESCs (EuSCs and EcSCs), especially in the EcSCs. After treated with emodin, the expression of ILK was statistically downregulated in EcSCs, resulting in the MET and decreased migration and invasion abilities of EcSCs. Additionally, silencing of the ILK gene in EcSCs also achieved the above-mentioned effects, which were strengthened by emodin. Furthermore, exogenous expression of ILK in control ESCs (CSCs) resulted in the EMT and increased abilities of migration and invasion of CSCs, which can be abrogated by emodin. Besides, exogenous expression of ILK also abrogated the effects of emodin on CSCs. CONCLUSION Emodin inhibits the migration and invasion abilities of human ESCs by facilitating the MET through targeting ILK.
Collapse
Affiliation(s)
- Qiaomei Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jingjing Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
34
|
Renaud S, Falcoz PE. How can we identify new biomarkers for patients with for lung metastasectomy in colorectal cancer. Future Oncol 2016; 11:2109-11. [PMID: 26235176 DOI: 10.2217/fon.15.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Stéphane Renaud
- Department of Thoracic Surgery, Strasbourg University Hospital, Strasbourg, France.,EA 3430: Tumoral Progression & Micro-environment, Epidemiological & Translational Approaches, Translational Medicine Federation, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
35
|
Abstract
Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease.
Collapse
Affiliation(s)
- Erinn B Rankin
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, CA 94305-5152, USA
| | - Amato J Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA.
| |
Collapse
|
36
|
Zuo J, Wen J, Lei M, Wen M, Li S, Lv X, Luo Z, Wen G. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT. Med Oncol 2016; 33:15. [PMID: 26749588 DOI: 10.1007/s12032-015-0716-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022]
Abstract
The purpose of this study is to explore the role of hypoxia on the invasion and metastasis of laryngeal carcinoma. The invasion and migration ability of laryngeal cancer SCC10A cell was detected by transwell assay. Western blot was applied to analyze the expression of EMT-related proteins. Fifty-seven samples from postoperative patients with laryngeal cancer were collected to study. Immunohistochemistry was used to examine the expression of GLUT-1 and EMT-related proteins (Vim, E-cad, N-cad) in normal laryngeal squamous epithelial tissue, laryngeal cancer adjacent tissues and laryngeal squamous cell carcinoma tissues. Hypoxia promoted laryngeal cancer cell invasion and migration. Hypoxia also enhanced the expression of GLUT-1, vimentin and N-cad, which exist statistically significant correlation with the clinical staging and lymph node metastases (P < 0.05). The expression of GLUT-1 is positively correlated with Vim and N-cad expression in laryngeal squamous cell carcinoma tissues, but negatively correlated with E-cad expression. The patient survival rate with the positive expression of GLUT-1, Vim and N-cad becomes much shorter compared with those with negative expression of GLUT-1, Vim and N-cad (P < 0.05). Hypoxia promoted laryngeal cancer cell invasion and migration via EMT.
Collapse
Affiliation(s)
- Jianhong Zuo
- Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China. .,Nanhua Hospital, University of South China, Hengyang, 421000, Hunan, People's Republic of China.
| | - Juan Wen
- Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mingsheng Lei
- Department of Respiratory and Critical Care Medicine, Zhangjiajie City Hospital, Zhangjiajie, 427000, Hunan, People's Republic of China
| | - Meiling Wen
- Nanhua Hospital, University of South China, Hengyang, 421000, Hunan, People's Republic of China
| | - Sai Li
- Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Nanhua Hospital, University of South China, Hengyang, 421000, Hunan, People's Republic of China
| | - Xiu Lv
- Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Nanhua Hospital, University of South China, Hengyang, 421000, Hunan, People's Republic of China
| | - Zhaoyang Luo
- Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Gebo Wen
- Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
37
|
Shirley LA, McCarty S, Yang MC, Saji M, Zhang X, Phay J, Ringel MD, Chen CS. Integrin-linked kinase affects signaling pathways and migration in thyroid cancer cells and is a potential therapeutic target. Surgery 2015; 159:163-70. [PMID: 26549818 DOI: 10.1016/j.surg.2015.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 09/22/2015] [Accepted: 10/14/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Integrin-linked kinase (ILK) is a serine-threonine kinase that regulates interactions between the cell and the extracellular matrix. In many cancers, overexpression of ILK leads to increased cell proliferation, motility, and invasion. We hypothesized that ILK functions as a regulator of viability and migration in thyroid cancer cells. METHODS Eleven human thyroid cancer cell lines were screened for ILK protein expression. The cell lines with the greatest expression were treated with either ILK small interfering RNA (siRNA) or a novel ILK inhibitor, T315, and the effects were evaluated via Western blot and migration assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assays were performed to assess cell viability. RESULTS siRNA against ILK decreased phosphorylation of downstream effectors Akt and MLC, as well as decreased migration. Treatment with T315 showed a dose-related decrease in both Akt and MLC phosphorylation, as well as decreased migration. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assays showed T315 to have an half maximal inhibitory concentration of less than 1 μM in cell lines with high ILK expression. CONCLUSION ILK is expressed differentially in thyroid cancer cell lines. Both ILK siRNA and T315 inhibit motility of thyroid cancer cell lines, and T315 is shown to be cytotoxic at low concentrations. Altogether, our study suggests that ILK may represent an important kinase in aggressive thyroid cancers.
Collapse
Affiliation(s)
- Lawrence A Shirley
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH.
| | - Samantha McCarty
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ming-Chen Yang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Motoyasu Saji
- Division of Endocrinology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - John Phay
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Matthew D Ringel
- Division of Endocrinology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ching-Shih Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH
| |
Collapse
|
38
|
Rosell R, Karachaliou N, Chaib I, Pilotto S, Bria E, Fernández-Martínez JL, Ramirez JL. Deciphering Crosstalk Circuits in Non-small Cell Lung Cancers with an Increasing Interval Length of Low Dose CT Screening. EBioMedicine 2015; 2:782-3. [PMID: 26425674 PMCID: PMC4563159 DOI: 10.1016/j.ebiom.2015.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology and Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain ; Quirón-Dexeus Hospital, Barcelona, Spain
| | | | - Imane Chaib
- Catalan Institute of Oncology and Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| | - Sara Pilotto
- Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Emilio Bria
- Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Jose Luis Ramirez
- Catalan Institute of Oncology and Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| |
Collapse
|
39
|
Shao C, Zhang J, Fu J, Ling F. The potential role of Brachyury in inducing epithelial-to-mesenchymal transition (EMT) and HIF-1α expression in breast cancer cells. Biochem Biophys Res Commun 2015; 467:1083-9. [PMID: 26393908 DOI: 10.1016/j.bbrc.2015.09.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/13/2015] [Indexed: 12/23/2022]
Abstract
One of transcription factors of the T-box family, Brachyury has been implicated in tumorigenesis of many types of cancers, regulating cancer cell proliferation, metastasis, invasion and epithelial-to-mesenchymal transition (EMT). However, the role of Brachyury in breast cancer cells has been scarcely reported. The present study aimed to investigate the expression and role of Brachyury in breast cancer. Brachyury expression was analyzed by qRT-PCR and Western blot. The correlations between Brachyury expression and clinicopathological factors of breast cancer were determined. Involvement of EMT stimulation and hypoxia-inducible factor-1α (HIF-1α) expression induction by Brachyury was also evaluated. Moreover, the effect of Brachyury on tumor growth and metastasis in vivo was examined in a breast tumor xenograft model. Brachyury expression was enhanced in primary breast cancer tissues and Brachyury expression was correlated with tumor stage and lymph node metastasis. Hypoxia enhanced Brachyury expression, the silencing of which blocked the modulation effect of hypoxia on E-cadherin and vimentin expression. Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling as well as accelerated cell proliferation and migration in vitro. Additionally, Brachyury accelerated breast tumor xenograft growth and increased lung metastasis in nude mice. In summary, our data confirmed that Brachyury might contribute to hypoxia-induced EMT of breast cancer and trigger HIF-1alpha expression via PTEN/Akt signaling.
Collapse
Affiliation(s)
- Chao Shao
- Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403, China
| | - Jingjing Zhang
- Department of Cancer Radiotherapy, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403, China.
| | - Jianhua Fu
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403, China
| | - Feihai Ling
- Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403, China.
| |
Collapse
|