1
|
Santi MD, Zhang M, Liu N, Viet CT, Xie T, Jensen DD, Amit M, Pan H, Ye Y. Repurposing EGFR Inhibitors for Oral Cancer Pain and Opioid Tolerance. Pharmaceuticals (Basel) 2023; 16:1558. [PMID: 38004424 PMCID: PMC10674507 DOI: 10.3390/ph16111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Oral cancer pain remains a significant public health concern. Despite the development of improved treatments, pain continues to be a debilitating clinical feature of the disease, leading to reduced oral mobility and diminished quality of life. Opioids are the gold standard treatment for moderate-to-severe oral cancer pain; however, chronic opioid administration leads to hyperalgesia, tolerance, and dependence. The aim of this review is to present accumulating evidence that epidermal growth factor receptor (EGFR) signaling, often dysregulated in cancer, is also an emerging signaling pathway critically involved in pain and opioid tolerance. We presented preclinical and clinical data to demonstrate how repurposing EGFR inhibitors typically used for cancer treatment could be an effective pharmacological strategy to treat oral cancer pain and to prevent or delay the development of opioid tolerance. We also propose that EGFR interaction with the µ-opioid receptor and glutamate N-methyl-D-aspartate receptor could be two novel downstream mechanisms contributing to pain and morphine tolerance. Most data presented here support that repurposing EGFR inhibitors as non-opioid analgesics in oral cancer pain is promising and warrants further research.
Collapse
Affiliation(s)
- Maria Daniela Santi
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Morgan Zhang
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Naijiang Liu
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Dane D. Jensen
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Huilin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yi Ye
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| |
Collapse
|
2
|
Bai Y, Sha J, Okui T, Moriyama I, Ngo HX, Tatsumi H, Kanno T. The Epithelial-Mesenchymal Transition Influences the Resistance of Oral Squamous Cell Carcinoma to Monoclonal Antibodies via Its Effect on Energy Homeostasis and the Tumor Microenvironment. Cancers (Basel) 2021; 13:5905. [PMID: 34885013 PMCID: PMC8657021 DOI: 10.3390/cancers13235905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major type of cancer that accounts for over 90% of all oral cancer cases. Recently developed evidence-based therapeutic regimens for OSCC based on monoclonal antibodies (mAbs), such as cetuximab, pembrolizumab, and nivolumab, have attracted considerable attention worldwide due to their high specificity, low toxicity, and low rates of intolerance. However, the efficacy of those three mAbs remains poor because of the low rate of responders and acquired resistance within a short period of time. The epithelial-mesenchymal transition (EMT) process is fundamental for OSCC growth and metastasis and is also responsible for the poor response to mAbs. During EMT, cancer cells consume abundant energy substrates and create an immunosuppressive tumor microenvironment to support their growth and evade T cells. In this review, we provide an overview of the complex roles of major substrates and signaling pathways involved in the development of therapeutic resistance in OSCC. In addition, we summarize potential therapeutic strategies that may help overcome this resistance. This review aims to help oral oncologists and researchers aiming to manage OSCC and establish new treatment modalities.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan; (Y.B.); (J.S.); (T.O.); (H.X.N.); (H.T.)
| | - Jingjing Sha
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan; (Y.B.); (J.S.); (T.O.); (H.X.N.); (H.T.)
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan; (Y.B.); (J.S.); (T.O.); (H.X.N.); (H.T.)
| | - Ichiro Moriyama
- Department of Medical Oncology/Innovative Cancer Center, Shimane University Hospital, Izumo, Shimane 693-8501, Japan;
| | - Huy Xuan Ngo
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan; (Y.B.); (J.S.); (T.O.); (H.X.N.); (H.T.)
| | - Hiroto Tatsumi
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan; (Y.B.); (J.S.); (T.O.); (H.X.N.); (H.T.)
| | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan; (Y.B.); (J.S.); (T.O.); (H.X.N.); (H.T.)
| |
Collapse
|
3
|
Eldridge RC, Uppal K, Hayes DN, Smith MR, Hu X, Qin ZS, Beitler JJ, Miller AH, Wommack EC, Higgins KA, Shin DM, Ulrich BC, Qian DC, Saba NF, Bruner DW, Jones DP, Xiao C. Plasma metabolic phenotypes of HPV-associated vs smoking-associated head and neck cancer and patient survival. Cancer Epidemiol Biomarkers Prev 2021; 30:1858-1866. [PMID: 34376485 DOI: 10.1158/1055-9965.epi-21-0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Metabolic differences between human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) and smoking-associated HNSCC may partially explain differences in prognosis. The former relies on mitochondrial oxidative phosphorylation (OXPHOS) while the latter relies on glycolysis. These differences have not been studied in blood. METHODS We extracted metabolites using untargeted liquid chromatography high-resolution mass spectrometry from pretreatment plasma in a cohort of 55 HPV-associated and 82 smoking-associated HNSCC subjects. Metabolic pathway enrichment analysis of differentially expressed metabolites produced pathway-based signatures. Significant pathways (P<0.05) were reduced via principal components analysis and assessed with overall survival via Cox models. We classified each subject as glycolytic or OXPHOS phenotype and assessed it with survival. RESULTS Of 2,410 analyzed metabolites, 191 were differentially expressed. Relative to smoking-associated HNSCC, bile acid biosynthesis (P<0.0001) and octadecatrienoic acid beta-oxidation (P=0.01), were upregulated in HPV-associated HNSCC, while galactose metabolism (P=0.001) and vitamin B6 metabolism (P=0.01) were downregulated; the first two suggest an OXPHOS phenotype while the latter two suggest glycolytic. First principal components of bile acid biosynthesis (HR=0.52 per standard deviation, 95% CI:0.38-0.72, P<0.001) and octadecatrienoic acid beta-oxidation (HR=0.54 per sd, 95% CI:0.38-0.78, P<0.001) were significantly associated with overall survival independent of HPV and smoking. The glycolytic vs OXPHOS phenotype was also independently associated with survival (HR=3.17, 95% CI:1.07-9.35; P=0.04). CONCLUSIONS Plasma metabolites related to glycolysis and mitochondrial OXPHOS may be biomarkers of HNSCC patient prognosis independent of HPV or smoking. Future investigations should determine if they predict treatment efficacy. IMPACT Blood metabolomics may be a useful marker to aid HNSCC patient prognosis.
Collapse
Affiliation(s)
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University
| | - D Neil Hayes
- Center for Cancer Research, Univeristy of Tennessee Health Science Center
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University
| | - Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University
| | | | | | | | | | | | | | | | | | | | | | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University
| | - Canhua Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University
| |
Collapse
|
4
|
Kaempferol Induces Cell Death and Sensitizes Human Head and Neck Squamous Cell Carcinoma Cell Lines to Cisplatin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33368015 DOI: 10.1007/5584_2020_603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cisplatin is a first-line chemotherapeutic drug commonly used to treat patients with head and neck cancer; nevertheless, cisplatin resistance poses a main challenge for its clinical efficacy. Recent studies have shown that kaempferol, a natural flavonoid found in various plants and foods, has an anticancer effect. The following study evaluated the cytotoxic effects of kaempferol on head and neck tumor cells and their mechanism of action, evaluating the effects on proliferation, the oxygen consumption rate, transmembrane potential, tumor cell migration and induction of apoptosis. Moreover, we determined the effects of a combination of kaempferol and cisplatin on head and neck tumor cells. We found that kaempferol inhibited the oxygen consumption rate and decreased the intracellular ATP content in tumor cells. This novel mechanism may inhibit the migratory capacity and promote antiproliferative effects and apoptosis of tumor cells. Additionally, our in vitro data indicated that kaempferol may sensitize head and neck tumor cells to the effects of cisplatin. These effects provide new evidence for the use of a combination of kaempferol and cisplatin in vivo and their future applications in head and neck cancer therapy.
Collapse
|
5
|
Ford KM, Panwala R, Chen DH, Portell A, Palmer N, Mali P. Peptide-tiling screens of cancer drivers reveal oncogenic protein domains and associated peptide inhibitors. Cell Syst 2021; 12:716-732.e7. [PMID: 34051140 PMCID: PMC8298269 DOI: 10.1016/j.cels.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Gene fragments derived from structural domains mediating physical interactions can modulate biological functions. Utilizing this, we developed lentiviral overexpression libraries of peptides comprehensively tiling high-confidence cancer driver genes. Toward inhibiting cancer growth, we assayed ~66,000 peptides, tiling 65 cancer drivers and 579 mutant alleles. Pooled fitness screens in two breast cancer cell lines revealed peptides, which selectively reduced cellular proliferation, implicating oncogenic protein domains important for cell fitness. Coupling of cell-penetrating motifs to these peptides enabled drug-like function, with peptides derived from EGFR and RAF1 inhibiting cell growth at IC50s of 27-63 μM. We anticipate that this peptide-tiling (PepTile) approach will enable rapid de novo mapping of bioactive protein domains and associated interfering peptides.
Collapse
Affiliation(s)
- Kyle M Ford
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Dai-Hua Chen
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Nathan Palmer
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
6
|
Partners in crime: POPX2 phosphatase and its interacting proteins in cancer. Cell Death Dis 2020; 11:840. [PMID: 33037179 PMCID: PMC7547661 DOI: 10.1038/s41419-020-03061-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphorylation and dephosphorylation govern intracellular signal transduction and cellular functions. Kinases and phosphatases are involved in the regulation and development of many diseases such as Alzheimer’s, diabetes, and cancer. While the functions and roles of many kinases, as well as their substrates, are well understood, phosphatases are comparatively less well studied. Recent studies have shown that rather than acting on fewer and more distinct substrates like the kinases, phosphatases can recognize specific phosphorylation sites on many different proteins, making the study of phosphatases and their substrates challenging. One approach to understand the biological functions of phosphatases is through understanding their protein–protein interaction network. POPX2 (Partner of PIX 2; also known as PPM1F or CaMKP) is a serine/threonine phosphatase that belongs to the PP2C family. It has been implicated in cancer cell motility and invasiveness. This review aims to summarize the different binding partners of POPX2 phosphatase and explore the various functions of POPX2 through its interactome in the cell. In particular, we focus on the impact of POPX2 on cancer progression. Acting via its different substrates and interacting proteins, POPX2’s involvement in metastasis is multifaceted and varied according to the stages of metastasis.
Collapse
|
7
|
Catalán M, Castro-Castillo V, Gajardo-de la Fuente J, Aguilera J, Ferreira J, Ramires-Fernandez R, Olmedo I, Molina-Berríos A, Palominos C, Valencia M, Domínguez M, Souto JA, Jara JA. Continuous flow synthesis of lipophilic cations derived from benzoic acid as new cytotoxic chemical entities in human head and neck carcinoma cell lines. RSC Med Chem 2020; 11:1210-1225. [PMID: 33479625 DOI: 10.1039/d0md00153h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023] Open
Abstract
Continuous flow chemistry was used for the synthesis of a series of delocalized lipophilic triphenylphosphonium cations (DLCs) linked by means of an ester functional group to several hydroxylated benzoic acid derivatives and evaluated in terms of both reaction time and selectivity. The synthesized compounds showed cytotoxic activity and selectivity in head and neck tumor cell lines. The mechanism of action of the molecules involved a mitochondrial uncoupling effect and a decrease in both intracellular ATP production and apoptosis induction.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Vicente Castro-Castillo
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Javier Gajardo-de la Fuente
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Jocelyn Aguilera
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | | | - Ivonne Olmedo
- Physiopathology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago 8380453 , Chile
| | - Alfredo Molina-Berríos
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Charlotte Palominos
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marcelo Valencia
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marta Domínguez
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Souto
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| |
Collapse
|
8
|
Picon H, Guddati AK. Mechanisms of resistance in head and neck cancer. Am J Cancer Res 2020; 10:2742-2751. [PMID: 33042614 PMCID: PMC7539768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023] Open
Abstract
Resistance to treatment is one of the biggest challenges in combating head and neck squamous cell carcinoma (HNSCC). The concept of resistance, however, is often viewed as a whole without categorization into the two types of resistance: acquired and intrinsic. Comparison of the mechanisms of the two types of resistance can give further insight as to the importance of these resistance pathways, as mechanisms that are common between the two categories are more likely to be integral to cell survival. In this review, a new perspective on resistance is presented in order to identify molecular targets that have potential for wide therapeutic application. Resistance mechanisms are grouped by the primary pathway involved in order to help establish connections between studies and identify the pathways most active in HNSCC resistance. The receptor tyrosine kinase AXL is one of the targets that showed the greatest promise for overcoming resistance to cetuximab, an antibody targeting the epidermal growth factor receptor (EGFR), as it is shown to be upregulated in both acquired and intrinsically cetuximab-resistant cells. Other targets of interest are signal transducer and activator of transcription 3 (STAT3), a downstream transcription factor of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, and TWIST, a marker of epithelial-mesenchymal transition. STAT3 has been shown to be upregulated and more active in cetuximab-resistant HNSCC cell lines, and its inhibition decreased cell growth in cell lines resistant to anti-EGFR therapy. Twist has been shown to have roles in acquired resistance for both cetuximab and cisplatin, a platinum-based therapy that targets dividing cells, which suggests that it also has an integral role in resistance. Other resistance mechanisms are also summarized in this review, but further studies are needed in order to confirm their utility as targets for overcoming resistance in HNSCC.
Collapse
Affiliation(s)
- Hector Picon
- Medical College of Georgia, Augusta UniversityAugusta, GA 30909, USA
| | - Achuta Kumar Guddati
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta UniversityAugusta, GA 30909, USA
| |
Collapse
|
9
|
Ye H, Liu Y, Wu K, Luo H, Cui L. AMPK activation overcomes anti-EGFR antibody resistance induced by KRAS mutation in colorectal cancer. Cell Commun Signal 2020; 18:115. [PMID: 32703218 PMCID: PMC7376720 DOI: 10.1186/s12964-020-00584-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies (both acquired and intrinsic), owing to the amplification or mutation of the KRAS oncogene. However, the mechanism underlying this resistance is incompletely understood. Methods DLD1 cells with WT (+/−) or KRAS G13D mutant allele were treated with different concentrations of Cetuximab (Cet) or panitumumab (Pab) to study the mechanism underlying the KRAS mutation-induced resistance to anti-EGFR antibodies. The function of AMPK in KRAS mutation-induced resistance to anti-EGFR antibodies in CRC cells, and the regulatory role of Bcl-2 family proteins in DLD1 cells with WT or mutated KRAS upon AMPK activation were investigated. In addition, xenograft tumor models with the nude mouse using DLD1 cells with WT or mutated KRAS were established to examine the effects of AMPK activation on KRAS mutation-mediated anti-EGFR antibody resistance. Results Higher levels of AMPK activity in CRC cells with wild-type KRAS treated with anti-EGFR antibody resulted in apoptosis induction. In contrast, CRC cells with mutated KRAS showed lower AMP-activated protein kinase (AMPK) activity and decreased sensitivity to the inhibitory effect of anti-EGFR antibody. CRC cells with mutated KRAS showed high levels of glycolysis and produced an excessive amount of ATP, which suppressed AMPK activation. The knockdown of AMPK expression in CRC cells with WT KRAS produced similar effects to those observed in cells with mutated KRAS and decreased their sensitivity to cetuximab. On the contrary, the activation of AMPK by metformin (Met) or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) could overcome the KRAS-induced resistance to the anti-EGFR antibody in vivo and in vitro. The activation of AMPK resulted in the inhibition of myeloid cell leukemia 1 (Mcl-1) translation through the suppression of the mammalian target of rapamycin (mTOR) pathway. Conclusion The results established herein indicate that targeting AMPK is a potentially promising and effective CRC treatment strategy. Video abstract
Collapse
Affiliation(s)
- Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China. .,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, Guangdong Province, China.
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China
| | - Kefeng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong Province, China.,Institute of Marine Biomedical Research, Guangdong Medical University, No.2 Wenming East Road, Zhanjiang, 524023, Guangdong Province, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, Guangdong Province, China
| |
Collapse
|
10
|
Li Y, Chen X, Zhou Z, Li Q, Westover KD, Wang M, Liu J, Zhang S, Zhang J, Xu B, Wei X. Dynamic surveillance of tamoxifen-resistance in ER-positive breast cancer by CAIX-targeted ultrasound imaging. Cancer Med 2020; 9:2414-2426. [PMID: 32048471 PMCID: PMC7131861 DOI: 10.1002/cam4.2878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Tamoxifen‐based hormone therapy is central for the treatment of estrogen receptor positive (ER+) breast cancer. However, the acquired tamoxifen resistance, typically co‐exists with hypoxia, remains a major challenge. We aimed to develop a non‐invasive, targeted ultrasound imaging approach to dynamically monitory of tamoxifen resistance. After we assessed acquired tamoxifen resistance in 235 breast cancer patients and a list of breast cancer cell lines, we developed poly(lactic‐co‐glycolic acid)‐poly(ethylene glycol)‐carbonic anhydrase IX mono antibody nanobubbles (PLGA‐PEG‐mAbCAIX NBs) to detect hypoxic breast cancer cells upon exposure of tamoxifen in nude mice. We demonstrate that carbonic anhydrase IX (CAIX) expression is associated with breast cancer local recurrence and tamoxifen resistance both in clinical and cellular models. We find that CAIX overexpression increases tamoxifen tolerance in MCF‐7 cells and predicts early tamoxifen resistance along with an oscillating pattern in intracellular ATP level in vitro. PLGA‐PEG‐mAbCAIX NBs are able to dynamically detect tamoxifen‐induced hypoxia and tamoxifen resistance in vivo. CAIX‐conjugated NBs with noninvasive ultrasound imaging is powerful for dynamically monitoring hypoxic microenvironment in ER+ breast cancer with tamoxifen resistance.
Collapse
Affiliation(s)
- Ying Li
- Breast Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoyu Chen
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - ZhiWei Zhou
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Kenneth D Westover
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Meng Wang
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junjun Liu
- Breast Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Sheng Zhang
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jin Zhang
- Breast Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Xu
- Breast Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
11
|
Mignion L, Acciardo S, Gourgue F, Joudiou N, Caignet X, Goebbels RM, Corbet C, Feron O, Bouzin C, Cani PD, Machiels JP, Schmitz S, Jordan BF. Metabolic Imaging Using Hyperpolarized Pyruvate-Lactate Exchange Assesses Response or Resistance to the EGFR Inhibitor Cetuximab in Patient-Derived HNSCC Xenografts. Clin Cancer Res 2019; 26:1932-1943. [PMID: 31831557 DOI: 10.1158/1078-0432.ccr-19-1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/04/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Optimal head and neck squamous cell carcinoma (HNSCC) patient selection for anti-EGFR-based therapy remains an unmet need since only a minority of patients derive long-term benefit from cetuximab treatment. We assessed the ability of state-of-the-art noninvasive in vivo metabolic imaging to probe metabolic shift in cetuximab-sensitive and -resistant HNSCC patient-derived tumor xenografts (PDTXs). EXPERIMENTAL DESIGN Three models selected based on their known sensitivity to cetuximab in patients (cetuximab-sensitive or acquired-resistant HNC007 PDTXs, cetuximab-naïve UCLHN4 PDTXs, and cetuximab-resistant HNC010 PDTXs) were inoculated in athymic nude mice. RESULTS Cetuximab induced tumor size stabilization in mice for 4 weeks in cetuximab-sensitive and -naïve models treated with weekly injections (30 mg/kg) of cetuximab. Hyperpolarized 13C-pyruvate-13C-lactate exchange was significantly decreased in vivo in cetuximab-sensitive xenograft models 8 days after treatment initiation, whereas it was not modified in cetuximab-resistant xenografts. Ex vivo analysis of sensitive tumors resected at day 8 after treatment highlighted specific metabolic changes, likely to participate in the decrease in the lactate to pyruvate ratio in vivo. Diffusion MRI showed a decrease in tumor cellularity in the HNC007-sensitive tumors, but failed to show sensitivity to cetuximab in the UCLHN4 model. CONCLUSIONS This study constitutes the first in vivo demonstration of cetuximab-induced metabolic changes in cetuximab-sensitive HNSCC PDTXs that were not present in resistant tumors. Using metabolic imaging, we were able to identify hyperpolarized 13C-pyruvate as a potential marker for response and resistance to the EGFR inhibitor in HNSCC.
Collapse
Affiliation(s)
- Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Stefania Acciardo
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Florian Gourgue
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium.,Metabolism and Nutrition Group, Louvain Drug Research Institute, UCLouvain, WELBIO (WELBIO- Walloon Excellence in Life Sciences and BIOtechnology), Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Xavier Caignet
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Rose-Marie Goebbels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Imaging Platform 2IP, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Group, Louvain Drug Research Institute, UCLouvain, WELBIO (WELBIO- Walloon Excellence in Life Sciences and BIOtechnology), Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Pascal Machiels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Sandra Schmitz
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
12
|
Lu H, Lu Y, Xie Y, Qiu S, Li X, Fan Z. Rational combination with PDK1 inhibition overcomes cetuximab resistance in head and neck squamous cell carcinoma. JCI Insight 2019; 4:131106. [PMID: 31578313 DOI: 10.1172/jci.insight.131106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Cetuximab, an EGFR-blocking antibody, is currently approved for treatment of metastatic head and neck squamous cell carcinoma (HNSCC), but its response rate is limited. In addition to blocking EGFR-stimulated cell signaling, cetuximab can induce endocytosis of ASCT2, a glutamine transporter associated with EGFR in a complex, leading to glutathione biosynthesis inhibition and cellular sensitization to ROS. Pyruvate dehydrogenase kinase-1 (PDK1), a key mitochondrial enzyme overexpressed in cancer cells, redirects glucose metabolism from oxidative phosphorylation toward aerobic glycolysis. In this study, we tested the hypothesis that targeting PDK1 is a rational approach to synergize with cetuximab through ROS overproduction. We found that combination of PDK1 knockdown or inhibition by dichloroacetic acid (DCA) with ASCT2 knockdown or with cetuximab treatment induced ROS overproduction and apoptosis in HNSCC cells, and this effect was independent of effective inhibition of EGFR downstream pathways but could be lessened by N-acetyl cysteine, an anti-oxidative agent. In several cetuximab-resistant HNSCC xenograft models, DCA plus cetuximab induced marked tumor regression, whereas either agent alone failed to induce tumor regression. Our findings call for potentially novel clinical trials of combining cetuximab and DCA in patients with cetuximab-sensitive EGFR-overexpressing tumors and patients with cetuximab-resistant EGFR-overexpressing tumors.
Collapse
Affiliation(s)
- Haiquan Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yangyiran Xie
- Program in Neuroscience, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinqun Li
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
13
|
Metabolic Regulation of Glycolysis and AMP Activated Protein Kinase Pathways during Black Raspberry-Mediated Oral Cancer Chemoprevention. Metabolites 2019; 9:metabo9070140. [PMID: 31336728 PMCID: PMC6680978 DOI: 10.3390/metabo9070140] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/15/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
Oral cancer is a public health problem with an incidence of almost 50,000 and a mortality of 10,000 each year in the USA alone. Black raspberries (BRBs) have been shown to inhibit oral carcinogenesis in several preclinical models, but our understanding of how BRB phytochemicals affect the metabolic pathways during oral carcinogenesis remains incomplete. We used a well-established rat oral cancer model to determine potential metabolic pathways impacted by BRBs during oral carcinogenesis. F344 rats were exposed to the oral carcinogen 4-nitroquinoline-1-oxide in drinking water for 14 weeks, then regular drinking water for six weeks. Carcinogen exposed rats were fed a 5% or 10% BRB supplemented diet or control diet for six weeks after carcinogen exposure. RNA-Seq transcriptome analysis on rat tongue, and mass spectrometry and NMR metabolomics analysis on rat urine were performed. We tentatively identified 57 differentially or uniquely expressed metabolites and over 662 modulated genes in rats being fed with BRB. Glycolysis and AMPK pathways were modulated during BRB-mediated oral cancer chemoprevention. Glycolytic enzymes Aldoa, Hk2, Tpi1, Pgam2, Pfkl, and Pkm2 as well as the PKA-AMPK pathway genes Prkaa2, Pde4a, Pde10a, Ywhag, and Crebbp were downregulated by BRBs during oral cancer chemoprevention. Furthermore, the glycolysis metabolite glucose-6-phosphate decreased in BRB-administered rats. Our data reveal the novel metabolic pathways modulated by BRB phytochemicals that can be targeted during the chemoprevention of oral cancer.
Collapse
|
14
|
Byeon HK, Ku M, Yang J. Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med 2019; 51:1-14. [PMID: 30700700 PMCID: PMC6353966 DOI: 10.1038/s12276-018-0202-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) overexpression is common in head and neck squamous cell carcinoma. Targeted therapy specifically directed towards EGFR has been an area of keen interest in head and neck cancer research, as EGFR is potentially an integration point for convergent signaling. Despite the latest advancements in cancer diagnostics and therapeutics against EGFR, the survival rates of patients with advanced head and neck cancer remain disappointing due to anti-EGFR resistance. This review article will discuss recent multilateral efforts to discover and validate actionable strategies that involve signaling pathways in heterogenous head and neck cancer and to overcome anti-EGFR resistance in the era of precision medicine. Particularly, this review will discuss in detail the issue of cancer metabolism, which has recently emerged as a novel mechanism by which head and neck cancer may be successfully controlled according to different perspectives. South Korean researchers propose novel combination strategies for overcoming drug resistance and halting the progression of head and neck cancer (HNC). Although high levels of epidermal growth factor receptor (EGFR) protein in HNC correlate with reduced survival, patients’ response to the EGFR inhibitor cetuximab often declines rapidly after a short period of effectiveness. Hyung Kwon Byeon at Korea University College of Medicine in Seoul and colleagues review current knowledge of the mechanisms underlying cetuximab resistance. They suggest that evaluating a patient’s genetic profile and combining cetuximab with drugs that enhance the effects of inhibiting EGFR signaling pathways (with inhibitors of other EGFR family members or proteins that mediate EGFR entry to the cell nucleus, for example) as well as with agents that inhibit cancer cell metabolism could be a more effective approach for treating HNC.
Collapse
Affiliation(s)
- Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Republic of Korea. .,Systems Molecular Oncology for Head and Neck Cancer, Seoul, Republic of Korea. .,Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea.
| | - Minhee Ku
- Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea.,Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Research Institute of Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea. .,Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Research Institute of Radiological Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Meng S, Wang G, Lu Y, Fan Z. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Lung Cancer 2018; 121:82-90. [PMID: 29858032 DOI: 10.1016/j.lungcan.2018.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. MATERIALS AND METHODS Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. RESULTS Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. CONCLUSIONS HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI treatment of NSCLC cells with activating mutation of EGFR deserves further investigation.
Collapse
Affiliation(s)
- Shuyan Meng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Guorui Wang
- Department of Surgery, Jiangyuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Jiangsu Province, 214063, People's Republic of China
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Wei M, Mao S, Lu G, Li L, Lan X, Huang Z, Chen Y, Zhao M, Zhao Y, Xia Q. Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal. BMC Cancer 2018; 18:434. [PMID: 29665787 PMCID: PMC5902941 DOI: 10.1186/s12885-018-4344-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/08/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metformin (Met) is a widely available diabetic drug and shows suppressed effects on renal cell carcinoma (RCC) metabolism and proliferation. Laboratory studies in RCC suggested that metformin has remarkable antitumor activities and seems to be a potential antitumor drug. But the facts that metformin may be not effective in reducing the risk of RCC in cancer clinical trials made it difficult to determine the benefits of metformin in RCC prevention and treatment. The mechanisms underlying the different conclusions between laboratory experiments and clinical analysis remains unclear. The goal of the present study was to determine whether long-term metformin use can induce resistance in RCC, whether metformin resistance could be used to explain the disaccord in laboratory and clinical studies, and whether the drug valproic acid (VPA), which inhibits histone deacetylase, exhibits synergistic cytotoxicity with metformin and can counteract the resistance of metformin in RCC. METHODS We performed CCK8, transwell, wound healing assay, flow cytometry and western blotting to detect the regulations of proliferation, migration, cell cycle and apoptosis in 786-O, ACHN and metformin resistance 786-O (786-M-R) cells treated with VPA, metformin or a combination of two drugs. We used TGF-β, SC79, LY294002, Rapamycin, protein kinase B (AKT) inhibitor to treat the 786-O or 786-M-R cells and detected the regulations in TGF-β /pSMAD3 and AMPK/AKT pathways. RESULTS 786-M-R was refractory to metformin-induced antitumor effects on proliferation, migration, cell cycle and cell apoptosis. AMPK/AKT pathways and TGF-β/SMAD3 pathways showed low sensibilities in 786-M-R. The histone H3 acetylation diminished in the 786-M-R cells. However, the addition of VPA dramatically upregulated histone H3 acetylation, increased the sensibility of AKT and inhibited pSMAD3/SMAD4, letting the combination of VPA and metformin remarkably reappear the anti-tumour effects of metformin in 786-M-R cells. CONCLUSIONS VPA not only exhibits synergistic cytotoxicity with metformin but also counteracts resistance to metformin in renal cell carcinoma cell. The re-sensitization to metformin induced by VPA in metformin-resistant cells may help treat renal cell carcinoma patients.
Collapse
Affiliation(s)
- Muyun Wei
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jingsi Road, Jinan, 250001, Shandong Province, China
| | - Shaowei Mao
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Guoliang Lu
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Liang Li
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Xiaopeng Lan
- Department of Urology, Qingdao center Hospital, Qingdao, 266042, Shandong Province, China
| | - Zhongxian Huang
- Department of Urology, Jinan center Hospital, Jinan, 250001, Shandong Province, China
| | - Yougen Chen
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Miaoqing Zhao
- Department of pathology, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jingwu weiqi Road, Jinan, 250001, Shandong Province, China
| | - Yueran Zhao
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jingsi Road, Jinan, 250001, Shandong Province, China
| | - Qinghua Xia
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China.
| |
Collapse
|
17
|
Lu Y, Shi C, Qiu S, Fan Z. Identification and validation of COX-2 as a co-target for overcoming cetuximab resistance in colorectal cancer cells. Oncotarget 2018; 7:64766-64777. [PMID: 27074568 PMCID: PMC5323114 DOI: 10.18632/oncotarget.8649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/26/2016] [Indexed: 01/05/2023] Open
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR)-blocking antibody, was approved for treatment of metastatic colorectal cancer over a decade ago; however, patients' responses to cetuximab vary substantially due to intrinsic and acquired resistance to cetuximab. Here, we report our findings using Affymetrix HG-U133A array to examine changes in global gene expression between DiFi, a human colorectal cancer cell line that is highly sensitive to cetuximab, and two other cell lines: DiFi5, a DiFi subline with acquired resistance to cetuximab, and DiFi-AG, a DiFi subline with acquired resistance to the EGFR tyrosine kinase inhibitor AG1478 but sensitivity to cetuximab. We identified prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2 (COX-2), as the gene with the greatest difference between the cetuximab-resistant DiFi5 cells and the cetuximab-sensitive DiFi cells and DiFi-AG cells. Reverse transcription polymerase chain reaction and Western blotting validated upregulation of COX-2 in DiFi5 but not in DiFi or DiFi-AG cells. We developed COX-2 knockdown stable clones from DiFi5 cells and demonstrated that genetic knockdown of COX-2 partially re-sensitized DiFi5 cells to cetuximab. We further confirmed that cetuximab in combination with a COX-2 inhibitor led to cell death via apoptosis or autophagy not only in DiFi5 cells but also in another colorectal cancer cell line naturally resistant to cetuximab. Our findings support further evaluation of the strategy of combining cetuximab and a COX-2 inhibitor for treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunmei Shi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Li L, Chen X, Gu H. The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 2018; 7:50682-50697. [PMID: 27191982 PMCID: PMC5226613 DOI: 10.18632/oncotarget.9330] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy.
Collapse
Affiliation(s)
- Li Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
19
|
Xiao Y, Ye J, Zhou Y, Huang J, Liu X, Huang B, Zhu L, Wu B, Zhang G, Cai Y. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Arch Biochem Biophys 2018; 640:37-46. [PMID: 29331689 DOI: 10.1016/j.abb.2018.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is a central regulator of multiple metabolic pathways. It has been shown that activation of AMPK could inhibit fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby suppressing cardiac fibrosis. Baicalin, the major component found in skullcap, possesses multiple protective effects on the cardiovascular system. However, little is known about the effect of baicalin on cardiac fibrosis and the molecular mechanism by which baicalin exerts its anti-fibrotic effects has not been investigated. In this study, we revealed that baicalin could inhibit cell proliferation, collagen synthesis, fibronectin (FN) and Connective tissue growth factor (CTGF) protein expression in cardiac fibroblasts induced by angiotensin Ⅱ (Ang Ⅱ). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, baicalin inhibited transforming growth factor-β (TGF-β)/Smads signaling pathway stimulated with Ang Ⅱ through activating AMPK. Subsequently, we also demonstrated that baicalin attenuated Ang Ⅱ-induced Smad3 nuclear translocation, and interaction with transcriptional coactivator p300, but promoted the interaction of p300 and AMPK. Taken together, these results provide the first evidence that the effect of baicalin against cardiac fibrosis may be attributed to its regulation on AMPK/TGF-β/Smads signaling, suggesting the therapeutic potential of baicalin on the prevention of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yichuan Xiao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Ying Zhou
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Junjun Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Xiawen Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Biyun Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Liu Zhu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| | - Genshui Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China.
| |
Collapse
|
20
|
Lanning NJ, Castle JP, Singh SJ, Leon AN, Tovar EA, Sanghera A, MacKeigan JP, Filipp FV, Graveel CR. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities. Cancer Metab 2017; 5:6. [PMID: 28852500 PMCID: PMC5568171 DOI: 10.1186/s40170-017-0168-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Background Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities. Methods We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects. Results TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases. Conclusions Similar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer promise for effective therapeutic targeting for TNBC patients. Electronic supplementary material The online version of this article (doi:10.1186/s40170-017-0168-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan J Lanning
- California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032 USA
| | - Joshua P Castle
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA
| | - Simar J Singh
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Andre N Leon
- California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032 USA
| | - Elizabeth A Tovar
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA
| | - Amandeep Sanghera
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Jeffrey P MacKeigan
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA.,College of Human Medicine, Michigan State University, 15 Michigan St. NE, Grand Rapids, MI 49503 USA
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Carrie R Graveel
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA
| |
Collapse
|
21
|
AP1G1 is involved in cetuximab-mediated downregulation of ASCT2-EGFR complex and sensitization of human head and neck squamous cell carcinoma cells to ROS-induced apoptosis. Cancer Lett 2017; 408:33-42. [PMID: 28823958 DOI: 10.1016/j.canlet.2017.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
In this study, we expanded our recent work showing that ASCT2, a Na+-dependent neutral amino acid transporter that plays a major role in glutamine uptake in cancer cells, is physically associated with EGFR in human head and neck squamous cell carcinoma cells and in several other types of cancer cells. We found in our current study that ASCT2 can be downregulated by cetuximab, an approved anti-EGFR therapeutic antibody, via cetuximab-induced EGFR endocytosis independently of cetuximab-mediated inhibition of EGFR tyrosine kinase. We further found that ASCT2-EGFR association involves the adaptor-related protein complex 1 gamma 1 subunit (AP1G1), a subunit of clathrin-associated adaptor protein complex 1, which plays a role in membrane protein sorting in endosomes after receptor-mediated endocytosis. We found that AP1G1 is physically associated with both ASCT2 and EGFR and, together with those molecules, forms a heterotrimeric molecular complex. Knockdown of AP1G1 lowered the level of ASCT2-EGFR association, inhibited cetuximab-mediated internalization of ASCT2-EGFR complex, and decreased intracellular glutamine uptake and glutathione biosynthesis. These findings suggest a new therapeutic strategy to overcome cetuximab resistance in cancer cells through combination of cetuximab, which co-targets ASCT2 along with EGFR, with an ROS-inducing agent.
Collapse
|
22
|
Luo J, Hong Y, Tao X, Wei X, Zhang L, Li Q. An indispensable role of CPT-1a to survive cancer cells during energy stress through rewiring cancer metabolism. Tumour Biol 2016; 37:10.1007/s13277-016-5382-6. [PMID: 27739027 DOI: 10.1007/s13277-016-5382-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022] Open
Abstract
Unlike normal cells, cancer cells are recently identified to rely on aerobic glycolysis for energy production called the Warburg effect. Several attempts are being made to target this metabolic reprogramming pathway in treating cancers; however, the successful rate is very limited. In this study, we investigated the functional roles of fatty acid oxidation key enzyme carnitine palmitoyl transferase 1a (CPT-1a), during the metabolic programming of pancreatic ductal adenocarcinoma (PDAC) cells induced by glucose deprivation. Knockdown of CPT-1a decreased the intracellular nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) generation, increased reactive oxygen species (ROS) production, and induced sensitivity to glucose deprivation, whereas upregulation of CPT-1a increased the intracellular ATP required for cell survival. Further investigation showed that CPT-1a inhibitor etomoxir (ETO) can restore the sensitivity of PDAC cells to gemcitabine and regress xenograft tumors in vivo. Finally, overexpression of CPT-1a expression is associated with chemoresistance in tumor specimens. Our data suggest that CPT-1a plays a key role in reprogramming cancer metabolism to escape from energy stress.
Collapse
Affiliation(s)
- Jingtao Luo
- The Department of Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Hong
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, China
| | - Xiaoan Tao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, China
| | - Xi Wei
- The Department of Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Lun Zhang
- The Department of Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Qiang Li
- The Department of Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
23
|
Luo J, Hong Y, Lu Y, Qiu S, Chaganty BKR, Zhang L, Wang X, Li Q, Fan Z. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett 2016; 384:39-49. [PMID: 27693630 DOI: 10.1016/j.canlet.2016.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent.
Collapse
Affiliation(s)
- Jingtao Luo
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Hong
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat K R Chaganty
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lun Zhang
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xudong Wang
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Qiang Li
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Liu J, Pan C, Guo L, Wu M, Guo J, Peng S, Wu Q, Zuo Q. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. J Hematol Oncol 2016; 9:76. [PMID: 27581375 PMCID: PMC5007850 DOI: 10.1186/s13045-016-0302-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background Trastuzumab, a humanized antibody targeting HER2, exhibits remarkable therapeutic efficacy against HER2-positive gastric cancer. However, recurrent therapeutic resistance presents revolutionary claims. Warburg effect and AKT signaling pathway was involved in the resistance to trastuzumab. Our previous studies have demonstrated that overexpression of metastasis associated with the colon cancer 1 (MACC1) predicted poor prognosis of GC and promoted tumor cells proliferation and invasion. In this study, we found that MACC1 was significantly upregulated in trastuzumab-resistant cell lines. Besides, downregulation of MACC1 reversed this resistance. Methods The effect of trastuzumab and glycolysis inhibitor combination on cell viability, apoptosis, and cell metabolism was investigated in vitro using established trastuzumab-resistant GC cell lines. We assessed the impact of trastuzumab combined with oxamate on tumor growth and metabolism in an established xenograft model of HER2-positive GC cell lines. Results Here, we found that MACC1 was significantly upregulated in trastuzumab-resistant cell lines. Besides, downregulation of MACC1 in trastuzumab-resistant cells reversed this resistance. Overexpression of MACC1-induced trastuzumab resistance, enhanced the Warburg effect, and activated the PI3K/AKT signaling pathway, while downregulation of MACC1 presented the opposite effects. Moreover, when the PI3K/AKT signaling pathway was inhibited, the effects of MACC1 on resistance and glycolysis were diminished. Our findings indicated that MACC1 promoted the Warburg effect mainly through the PI3K/AKT signaling pathway, which further enhanced GC cells trastuzumab resistance. Conclusions Our results indicate that co-targeting of HER2 and the Warburg effect reversed trastuzumab resistance in vitro and in vivo, suggesting that the combination might overcome trastuzumab resistance in MACC1-overexpressed, HER2-positive GC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0302-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lihong Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mengwan Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sheng Peng
- Department of ICU, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qianying Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
25
|
Li Q, Qin Y, Wei P, Lian P, Li Y, Xu Y, Li X, Li D, Cai S. Gas1 Inhibits Metastatic and Metabolic Phenotypes in Colorectal Carcinoma. Mol Cancer Res 2016; 14:830-40. [PMID: 27401611 DOI: 10.1158/1541-7786.mcr-16-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Growth arrest-specific 1 (Gas1) plays a critical role in growth suppression. Previous study indicated that Gas1 was closely associated with survival in patients with colorectal cancer; however, the underlying molecular mechanism remains unclear. In this study, we sought to determine the role of Gas1 in tumorigenesis and metastasis, and elucidate the possible mechanism. First, Gas1 was determined as a negative regulator of oncogenesis and metastasis in colorectal cancer. Mechanistically, Gas1 negatively regulated the aerobic glycolysis, a process that contributed to tumor progression and metastasis by providing energy source and building blocks for macromolecule synthesis. To further consolidate the role of Gas1 in glycolysis, the impact of Gas1 in the transcription of key glycolytic enzymes for glucose utilization was examined. As expected, GLUT4, HK2, and LDHB exhibited a decreased expression pattern. Consistent with this observation, an in vivo subcutaneous xenograft mouse model also confirmed the hypothesis that Gas1 is a negative regulator of glycolysis as reflected by the decreased 18FDG uptake in PET/CT system. Moreover, Gas1 negatively regulated the AMPK/mTOR/p70S6K signaling axis, a well-established cascade that regulates malignant cancer cell behaviors including proliferation, metastasis, and aberrant cancer metabolism. In the end, it was determined that Gas1 is a transcriptional target of FOXM1, whose role in colorectal cancer has been widely studied. Taken together, these studies establish Gas1 as a negative regulator in colorectal cancer. IMPLICATIONS Gas1 suppresses cell proliferation, invasion, and aerobic glycolysis of colorectal cancer both in vitro and in vivo Mechanistically, Gas1 inhibited EMT and the Warburg effect via AMPK/mTOR/p70S6K signaling, and Gas1 itself was directly regulated by the transcription factor FOXM1. Mol Cancer Res; 14(9); 830-40. ©2016 AACR.
Collapse
Affiliation(s)
- Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peng Lian
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Tan Z, Luo X, Xiao L, Tang M, Bode AM, Dong Z, Cao Y. The Role of PGC1α in Cancer Metabolism and its Therapeutic Implications. Mol Cancer Ther 2016; 15:774-82. [DOI: 10.1158/1535-7163.mct-15-0621] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
|
27
|
Li X, Roife D, Kang Y, Dai B, Pratt M, Fleming JB. Extracellular lumican augments cytotoxicity of chemotherapy in pancreatic ductal adenocarcinoma cells via autophagy inhibition. Oncogene 2016; 35:4881-90. [PMID: 26876211 DOI: 10.1038/onc.2016.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/27/2015] [Accepted: 12/04/2015] [Indexed: 12/17/2022]
Abstract
Lumican, an extracellular matrix proteoglycan overexpressed by pancreatic stellate cells (PSCs) and pancreatic ductal adenocarcinoma cells (PDACs), drives the formation of a tumor-specific microenvironment. We recently showed that extracellular lumican inhibits pancreatic cancer cell growth and is associated with prolonged survival after surgery. Here we investigated the role of extracellular lumican in chemotherapy-mediated cancer therapy. Lumican secretion was increased by chemotherapeutic agents in PDAC, and especially in PSCs, and appeared to be linked to the extent of cells' response to chemotherapy-induced growth inhibition. In multiple PDAC models, including cell lines, patient-derived xenografts and lumican knockout mice, lumican significantly increased antitumor effect of chemotherapy. This effect was associated with DNA damage, apoptosis and inhibition of cell viability, glucose consumption, lactate production and vascular endothelial growth factor secretion. In PDAC cells, chemotherapeutic agents triggered autophagosome formation and increased LC3 expression through the reactive oxygen species-mediated AMP-activated kinase (AMPK) signaling pathway. Inhibition of gemcitabine-induced autophagy in cancer cells by treatment with AMPK inhibitor compound C, lysosomal inhibitor chloroquine or autophagy inhibitor 3MA enhanced gemcitabine-induced apoptosis, suggesting that autophagy is a protective cellular response to gemcitabine treatment. Importantly, lumican dramatically decreased AMPK activity, inhibiting chemotherapy-induced autophagy in both in vitro and in vivo PDAC models. Co-treatment of PDAC cells with lumican and gemcitabine increased mitochondrial damage, reactive oxygen species (ROS) production and cytochrome c release, indicating that lumican-induced disruption of mitochondrial function may be the mechanism of sensitization to gemcitabine. Together, our findings demonstrate that extracellular lumican augments cytotoxicity of chemotherapy in PDAC cells through inhibition of chemotherapeutic agent-induced autophagy.
Collapse
Affiliation(s)
- X Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Roife
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Pratt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Cancer Lett 2016; 373:36-44. [PMID: 26801746 DOI: 10.1016/j.canlet.2016.01.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells toward mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer.
Collapse
|