1
|
Zhao Y, Liu H, Zhan Q, Jin H, Wang Y, Wang H, Huang B, Huang F, Jia X, Wang Y, Wang X. Oncolytic adenovirus encoding LHPP exerts potent antitumor effect in lung cancer. Sci Rep 2024; 14:13108. [PMID: 38849383 PMCID: PMC11161505 DOI: 10.1038/s41598-024-63325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
LHPP has been shown to be a new tumor suppressor, and has a tendency to be under-expressed in a variety of cancers. Oncolytic virotheray is a promising therapeutics for lung cancer in recent decade years. Here we successfully constructed a new recombinant oncolytic adenovirus GD55-LHPP and investigated the effect of GD55-LHPP on the growth of lung cancer cells in vitro and in vivo. The results showed that LHPP had lower expression in either lung cancer cells or clinical lung cancer tissues compared with normal cells or tissues, and GD55-LHPP effectively mediated LHPP expression in lung cancer cells. GD55-LHPP could effectively inhibit the proliferation of lung cancer cell lines and rarely affected normal cell growth. Mechanically, the oncolytic adenovirus GD55-LHPP was able to induce stronger apoptosis of lung cancer cells compared with GD55 through the activation of caspase signal pathway. Notably, GD55-LHPP also activated autophagy-related signal pathway. Further, GD55-LHPP efficiently inhibited tumor growth in lung cancer xenograft in mice and prolonged animal survival rate compared with the control GD55 or PBS. In conclusion, the novel construct GD55-LHPP provides a valuable strategy for lung cancer-targeted therapy and develop the role of tumor suppress gene LHPP in lung cancer gene therapy.
Collapse
Affiliation(s)
- Yaru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Huihui Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Zhan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiqiang Wang
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoyan Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China.
| |
Collapse
|
2
|
Zhu L, Lei Y, Huang J, An Y, Ren Y, Chen L, Zhao H, Zheng C. Recent advances in oncolytic virus therapy for hepatocellular carcinoma. Front Oncol 2023; 13:1172292. [PMID: 37182136 PMCID: PMC10169724 DOI: 10.3389/fonc.2023.1172292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly refractory cancer and the fourth leading cause of cancer-related mortality worldwide. Despite the development of a detailed treatment strategy for HCC, the survival rate remains unsatisfactory. Oncolytic virus has been extensively researched as a new cancer therapeutic agent in the treatment of HCC. Researchers have designed a variety of recombinant viruses based on natural oncolytic diseases, which can increase the targeting of oncolytic viruses to HCC and their survival in tumors, as well as kill tumor cells and inhibit the growth of HCC through a variety of mechanisms. The overall efficacy of oncolytic virus therapy is known to be influenced by anti-tumor immunity, toxic killing effect and inhibition of tumor angiogenesis, etc. Therefore, a comprehensive review of the multiple oncolytic mechanisms of oncolytic viruses in HCC has been conducted. So far, a large number of relevant clinical trials are under way or have been completed, and some encouraging results have been obtained. Studies have shown that oncolytic virus combined with other HCC therapies may be a feasible method, including local therapy, chemotherapy, molecular targeted therapy and immunotherapy. In addition, different delivery routes for oncolytic viruses have been studied so far. These studies make oncolytic virus a new and attractive drug for the treatment of HCC.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahang An
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huangxuan Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wang C, Li Q, Xiao B, Fang H, Huang B, Huang F, Wang Y. Luteolin enhances the antitumor efficacy of oncolytic vaccinia virus that harbors IL-24 gene in liver cancer cells. J Clin Lab Anal 2021; 35:e23677. [PMID: 33274495 PMCID: PMC7957971 DOI: 10.1002/jcla.23677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interleukin 24 (IL-24) is an IL-10 family member and a secreted cytokine characterized by cancer-targeted toxicity and can activate apoptosis by sensitizing cancer cells to chemotherapy. Cytotoxic effects of luteolin on different types of cancer cells suppress their growth by acting on the components of the apoptosis signaling cascade. Therefore, our study aimed to prove whether oncolytic vaccinia virus (VV) that harbors IL-24 (VV-IL-24) combine with luteolin exerts a synergistic inhibitory effect in liver cancer cells. METHODS Impacts on cell viability of VV-IL-24 and luteolin were assessed by MTT in various liver cancer cell lines. Then, liver cancer cell apoptosis was analyzed via flow cytometry and Western blotting. Besides, the MHCC97-H xenograft mouse model was employed as a means of assessing in vivo antitumor efficacy. RESULTS MTT assay confirmed that the combination treatment decreased liver cancer cells viability to a greater degree than treatment with VV-IL-24 or luteolin alone. Flow cytometry and Western blot assay proved that VV-IL-24 plus luteolin induced more liver cancer cells apoptosis than single treatment. Furthermore, in the MHCC97-H xenograft model, 15 days of treatment with VV-IL-24 plus luteolin inhibited tumor growth significantly more than single treatment. CONCLUSION These data confirm that the synergistic mechanism of VV-IL-24 and luteolin elicits a stronger tumor growth inhibition than any single therapy. Thus, the combination of VV-IL-24 and luteolin could provide the basis for preclinical research in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chunming Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Qiang Li
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Boduan Xiao
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Huiling Fang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Biao Huang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fang Huang
- Department of PathologyZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Yigang Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
4
|
Yang D, Yao M, Yan Y, Liu Y, Wen X, Chen X, Lu F. Deoxycholic Acid Upregulates Serum Golgi Protein 73 through Activating NF-κB Pathway and Destroying Golgi Structure in Liver Disease. Biomolecules 2021; 11:205. [PMID: 33540642 PMCID: PMC7913056 DOI: 10.3390/biom11020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Golgi protein 73 (GP73) is upregulated in a variety of liver diseases, yet the detailed mechanism is poorly characterized. We analyzed GP73 in a retrospective cohort including 4211 patients with chronic liver disease (CLD) or hepatocellular carcinoma (HCC). The effect of deoxycholic acid (DCA) and nuclear factor-kappa B (NF-κB) on expression and release of GP73 in Huh-7 and SMMC7721 cells were studied. A mouse study was used to confirm our findings in vivo. A positive correlation was found between serum GP73 and total bile acid (TBA) in cirrhotic patients (r = 0.540, p < 0.001), higher than that in non-cirrhotic CLD (r = 0.318, p < 0.001) and HCC (r = 0.353, p < 0.001) patients. In Huh-7 and SMMC7721 cells, DCA upregulated the expression and release of GP73 in a dose- and time-dependent manner. After overexpressing NF-κB p65, the promoter activity, GP73 messenger RNA (mRNA) level, and supernatant GP73 level were increased. The promotion effect of DCA on GP73 release was attenuated after inhibiting the NF-κB pathway. Mutating the binding sites of NF-κB in the sequence of the GP73 promoter led to a declined promoting effect of DCA on GP73. The upregulation role of DCA in GP73 expression through the NF-κB pathway was confirmed in vivo. In addition, exposure to DCA caused disassembly of Golgi apparatus. In summary, DCA upregulates the expression and release of GP73 via activating the NF-κB pathway and destroying the Golgi structure.
Collapse
Affiliation(s)
- Danli Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; (D.Y.); (Y.Y.); (Y.L.); (X.W.)
| | - Mingjie Yao
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Yan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; (D.Y.); (Y.Y.); (Y.L.); (X.W.)
| | - Yanna Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; (D.Y.); (Y.Y.); (Y.L.); (X.W.)
| | - Xiajie Wen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; (D.Y.); (Y.Y.); (Y.L.); (X.W.)
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; (D.Y.); (Y.Y.); (Y.L.); (X.W.)
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China; (D.Y.); (Y.Y.); (Y.L.); (X.W.)
- Hepatology Institute, Peking University People’s Hospital, Beijing 100044, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Henan 450052, China
| |
Collapse
|
5
|
Oncolytic Adenovirus CD55-Smad4 Suppresses Cell Proliferation, Metastasis, and Tumor Stemness in Colorectal Cancer by Regulating Wnt/β-Catenin Signaling Pathway. Biomedicines 2020; 8:biomedicines8120593. [PMID: 33322272 PMCID: PMC7763845 DOI: 10.3390/biomedicines8120593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
During the past few decades, colorectal cancer (CRC) incidence and mortality have significantly increased, and CRC has become the leading cause of cancer-related death worldwide. Thus, exploring novel effective therapies for CRC is imperative. In this study, we investigated the effect of oncolytic adenovirus CD55-Smad4 on CRC cell growth. Cell viability assay, animal experiments, flow cytometric analysis, cell migration, and invasion assays, and Western blotting were used to detect the proliferation, apoptosis, migration, and invasion of CRC cells. The oncolytic adenovirus CD55-Smad4 was successfully constructed and effectively suppressed CRC cell proliferation in vivo and in vitro. Notably, CD55-Smad4 activated the caspase signaling pathway, inducing the apoptosis of CRC cells. Additionally, the generated oncolytic adenovirus significantly suppressed migration and invasion of CRC cells by overexpressing Smad4 and inhibiting Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling pathway. Moreover, CRC cells treated with CD55-Smad4 formed less and smaller spheroid colonies in serum-free culture than cells in control groups, suggesting that CD55-Smad4 suppressed the stemness of CRC cells by inhibiting the Wnt/β-catenin pathway. Together, the results of this study provide valuable information for the development of a novel strategy for cancer-targeting gene-virotherapy and provide a deeper understanding of the critical significance of Smad4 in gene therapy of CRC.
Collapse
|
6
|
Yang J, Xu QC, Wang ZY, Lu X, Pan LK, Wu J, Wang C. Integrated Analysis of an lncRNA-Associated ceRNA Network Reveals Potential Biomarkers for Hepatocellular Carcinoma. J Comput Biol 2020; 28:330-344. [PMID: 33185458 DOI: 10.1089/cmb.2019.0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide. In this study, we aimed to explore the potential biomarkers and key regulatory pathways related to HCC using integrated bioinformatic analysis and validation. The microarray data of GSE12717 and GSE54238 were downloaded from the Gene Expression Omnibus database. A competing endogenous RNA (ceRNA) network was constructed based on potential long-noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA interactions. A total of 191 mRNAs, 8 miRNAs, and 5 lncRNAs were selected to construct the ceRNA network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to predict their biological functions. The PI3K-Akt signaling pathway was significantly enriched. Kaplan-Meier survival analysis based on the Gene Expression Profiling Interactive Analysis (GEPIA) database was conducted for the weighted mRNAs and lncRNAs. The results showed that SRC, GMPS, CDK2, FEN1, EZH2, ZWINT, MTHFD1L, GINS2, and MAPKAPK5-AS1 were significantly upregulated in tumor tissues. The relative expression levels of these genes were significantly upregulated in HCC patients based on the StarBase database. For further validation, the expression levels of these genes were detected by real-time quantitative reverse transcription-polymerase chain reaction in 20 HCC tumor tissues and paired paracancerous tissues. Receiver operating characteristic analysis revealed that CDK2, MTHFD1L, SRC, ZWINT, and MAPKAPK5-AS1 had significant diagnostic value in HCC, but further studies are needed to explore their mechanisms in HCC.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Qing-Chun Xu
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Zhen-Yu Wang
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Xun Lu
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Liu-Kui Pan
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Jun Wu
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Chen Wang
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| |
Collapse
|
7
|
Xiao B, Ying C, Chen Y, Huang F, Wang B, Fang H, Guo W, Liu T, Zhou X, Huang B, Liu X, Wang Y. Doxorubicin hydrochloride enhanced antitumour effect of CEA-regulated oncolytic virotherapy in live cancer cells and a mouse model. J Cell Mol Med 2020; 24:13431-13439. [PMID: 33251723 PMCID: PMC7701578 DOI: 10.1111/jcmm.15966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Oncolytic adenovirus (OA) has attracted increasing attention due to their specific proliferation in tumour cells and resulting in lysis of tumour cells. To further improve the antitumour effect of OA, in this study, we combined CD55-TRAIL-IETD-MnSOD (CD55-TMn), a CEA-controlled OA constructed previously, and chemotherapy to investigate their synergistic effect and possible mechanisms. MTT assay was performed to detect antitumour effects. Hoechst 33 342 and flow cytometric analysis were used to examine cell apoptosis. Western blotting was performed to examine cell pyroptosis and apoptosis mechanism. Animal experiment was used to detect antitumour effect of doxorubicin hydrochloride (Dox) combined with CD55-TMn in vivo. We firstly found that Dox promotes gene expression mediated by CEA-regulated OA and virus progeny replication by activating phosphorylation of Smad3, and Dox can enhance antitumour effect of CEA-regulated CD55-TMn by promoting cell apotopsis and cell pyroptosis. Thus, our results provide an experimental and theoretical basis on tumour therapy by combination treatment of the oncolytic virotherapy and chemotherapy and it is expected to become a novel strategy for liver cancer therapy.
Collapse
Affiliation(s)
- Boduan Xiao
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Chang Ying
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yongyi Chen
- Institute of cancer research and basic medical sciences of Chinese Academy of SciencesCancer hospital of University of Chinese Academy of SciencesZhejiang cancer hospitalHangzhouChina
| | - Fang Huang
- Department of PathologyZhejiang Provincial People’s HospitalHangzhouChina
| | - Binrong Wang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Huiling Fang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Wan Guo
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Tao Liu
- Department of OtolaryngologyGuangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Biao Huang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yigang Wang
- Xinyuan Institute of Medicine and BiotechnologySchool of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
8
|
Zhang Y, Ye M, Huang F, Wang S, Wang H, Mou X, Wang Y. Oncolytic Adenovirus Expressing ST13 Increases Antitumor Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Against Pancreatic Ductal Adenocarcinoma. Hum Gene Ther 2020; 31:891-903. [PMID: 32475172 DOI: 10.1089/hum.2020.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncolytic adenoviruses (OAds) are promising agents for cancer therapy, representing a novel therapeutic strategy for pancreatic ductal adenocarcinoma (PDAC). However, there are challenges associated with the successful use of an OAd alone, involving the security of the viral vector and screening of an effective antitumor gene. In the present study, a novel OAd CD55-ST13-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was constructed in which the dual therapeutic genes ST13 and TRAIL were inserted, featuring the carcinoembryonic antigen (CEA) as a promoter to control E1A and deletion of the 55 kDa E1B gene. ST13, known as a colorectal cancer suppressor gene, exhibited lower expression in PDAC than in tumor-adjacent tissues and was associated with poor prognosis in PDAC patients. In vitro studies demonstrated that CD55-ST13-TRAIL was effective in promoting the expression of ST13 and TRAIL in CEA-positive pancreatic cancer cells. Moreover, CD55-ST13-TRAIL exhibited a synergistic effect toward tumor cell death compared with CD55-ST13 alone or CD55-TRAIL alone, and inhibited tumor cell proliferation and induced cell apoptosis dependent on caspase pathways in PDAC cells. Furthermore, xenograft experiments in a mouse model indicated that CD55-ST13-TRAIL significantly inhibited tumor growth and improved the survival of animals with xenografts. The findings demonstrate that oncolytic virotherapy under the control of the promoter CEA enables safe and efficient treatment of PDAC, and suggest that it represents a promising candidate for the treatment of metastatic diseases.
Collapse
Affiliation(s)
- Youni Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Miaojuan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
9
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common liver malignancies and is a leading cause of cancer-related deaths. Most HCC patients are diagnosed at an advanced stage and current treatments show poor therapeutic efficacy. It is particularly urgent to explore early diagnosis methods and effective treatments of HCC. There are a growing number of studies that show GOLM1 is one of the most promising markers for early diagnosis and prognosis of HCC. It is also involved in immune regulation, activation and degradation of intracellular signaling factors and promotion of epithelial-mesenchymal transition. GOLM1 can promote HCC progression and metastasis. The understanding of the GOLM1 regulation mechanism may provide new ideas for the diagnosis, monitoring and treatment of HCC.
Collapse
Affiliation(s)
- Jiuliang Yan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Binghai Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Lei Guo
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qinghai Ye
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| |
Collapse
|
10
|
Bai YH, Yun XJ, Xue Y, Zhou T, Sun X, Gao YJ. A novel oncolytic adenovirus inhibits hepatocellular carcinoma growth. J Zhejiang Univ Sci B 2020; 20:1003-1013. [PMID: 31749347 DOI: 10.1631/jzus.b1900089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the inhibitory role of a novel oncolytic adenovirus (OA), GP73-SphK1sR-Ad5, on the growth of hepatocellular carcinoma (HCC). METHODS GP73-SphK1sR-Ad5 was constructed by integrating Golgi protein 73 (GP73) promoter and sphingosine kinase 1 (SphK1)-short hairpin RNA (shRNA) into adenovirus serotype 5 (Ad5), and transfecting into HCC Huh7 cells and normal human liver HL-7702 cells. The expression of SphK1 and adenovirus early region 1 (E1A) was detected by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Cell viability was detected by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, and apoptotic rate was determined by flow cytometry. An Huh7 xenograft model was established in mice injected intratumorally with GP73-SphK1sR-Ad5. Twenty days after injection, the tumor volume and weight, and the survival time of the mice were recorded. The histopathological changes in tumor tissues were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). RESULTS Transfection of GP73-SphK1sR-Ad5 significantly upregulated E1A and downregulated SphK1 in Huh7 cells, but not in HL7702 cells. GP73-SphK1sR-Ad5 transfection significantly decreased the viability and increased the apoptotic rate of Huh7 cells, but had no effect on HL7702 cells. Intratumoral injection of GP73-SphK1sR-Ad5 into the Huh7 xenograft mouse model significantly decreased tumor volume and weight, and prolonged survival time. It also significantly decreased the tumor infiltration area and blood vessel density, and increased the percentages of cells with nucleus deformation and cells with condensed chromatin in tumor tissues. CONCLUSIONS GP73-SphK1sR-Ad5 serves as a novel OA and can inhibit HCC progression with high specificity and efficacy.
Collapse
Affiliation(s)
- Yu-Huan Bai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Xiao-Jing Yun
- Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Yan Xue
- Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Ting Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xin Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yan-Jing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
11
|
Li Y, Shen Y, Zhao R, Samudio I, Jia W, Bai X, Liang T. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? Cancer Med 2020; 9:2943-2959. [PMID: 32130786 PMCID: PMC7196045 DOI: 10.1002/cam4.2949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibits potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | | | | | - William Jia
- Virogin Biotech Canada Ltd, Vancouver, Canada
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
12
|
Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic Adenovirus-A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Front Oncol 2019; 9:1182. [PMID: 31781493 PMCID: PMC6857090 DOI: 10.3389/fonc.2019.01182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide, particularly in China. Despite the development of HCC treatment strategies, the survival rate remains unpleasant. Gene-targeted oncolytic viral therapy (GTOVT) is an emerging treatment modality-a kind of cancer-targeted therapy-which creates viral vectors armed with anti-cancer genes. The adenovirus is a promising agent for GAOVT due to its many advantages. In spite of the oncolytic adenovirus itself, the host immune response is the determining factor for the anti-cancer efficacy. In this review, we have summarized recent developments in oncolytic adenovirus engineering and the development of novel therapeutic genes utilized in HCC treatment. Furthermore, the diversified roles the immune response plays in oncolytic adenovirus therapy and recent attempts to modulate immune responses to enhance the anti-cancer efficacy of oncolytic adenovirus have been discussed.
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Wei C, Yang X, Liu N, Geng J, Tai Y, Sun Z, Mei G, Zhou P, Peng Y, Wang C, Zhang X, Zhang P, Geng Y, Wang Y, Zhang X, Liu X, Zhang Y, Wu F, He X, Zhong H. Tumor Microenvironment Regulation by the Endoplasmic Reticulum Stress Transmission Mediator Golgi Protein 73 in Mice. Hepatology 2019; 70:851-870. [PMID: 30723919 DOI: 10.1002/hep.30549] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) signal in tumor cells activates UPR signaling in neighboring macrophages, which leads to tumor-promoting inflammation by up-regulating UPR target genes and proinflammatory cytokines. However, the molecular basis of this endoplasmic reticulum (ER) stress transmission remains largely unclear. Here, we identified the secreted form of Golgi protein 73 (GP73), a Golgi-associated protein functional critical for hepatocellular carcinoma (HCC) growth and metastasis, is indispensable for ER stress transmission. Notably, ER stressors increased the cellular secretion of GP73. Through GRP78, the secreted GP73 stimulated ER stress activation in neighboring macrophages, which then released cytokines and chemokines involved in the tumor-associated macrophage (TAM) phenotype. Analysis of HCC patients revealed a positive correlation of GP73 with glucose-regulated protein 78 (GRP78) expression and TAM density. High GP73 and CD206 expression was associated with poor prognosis. Blockade of GP73 decreased the density of TAMs, inhibited tumor growth, and prolonged survival in two mouse HCC models. Conclusion: Our findings provide insight into the molecular mechanisms of extracellular GP73 in the amplification and transmission of ER stress signals.
Collapse
Affiliation(s)
- Congwen Wei
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xiaoli Yang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Ning Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China.,Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Jin Geng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, P.R. China
| | - Yanhong Tai
- Department of Pathology, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Zhenyu Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Gangwu Mei
- Wecyte Biotehnology Company, Beijing, P.R. China
| | - Pengyu Zhou
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yumeng Peng
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Chenbin Wang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xiaoli Zhang
- Department of Clinical Laboratory, the Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, P.R. China
| | - Pingping Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yunqi Geng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yujie Wang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xiaotong Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Xin Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China.,Department of Colorectal Surgery, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Yanhong Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Feixiang Wu
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Xiang He
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Hui Zhong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, P.R. China
| |
Collapse
|
14
|
Liu C, Wen C, Wang X, Wei Y, Xu C, Mu X, Zhang L, Wang X, Tian J, Ma P, Meng F, Zhang Q, Zhao N, Yu B, Gong T, Guo R, Wang H, Xie J, Sun G, Li G, Zhang H, Qin Q, Xu J, Dong X, Wang L. Golgi membrane protein GP73 modified-liposome mediates the antitumor effect of survivin promoter-driven HSVtk in hepatocellular carcinoma. Exp Cell Res 2019; 383:111496. [PMID: 31306654 DOI: 10.1016/j.yexcr.2019.111496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide, and there is currently no effective therapeutic strategy in clinical practice. Gene therapy has great potential for decreasing tumor-induced mortality but has been clinically limited because of the lack of tumor-specific targets and insufficient gene transfer. The study of targeted transport of therapeutic genes in HCC treatment seems to be very important. In this study, we evaluated a gene therapy approach targeting HCC using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system in HCC cell lines and in an in vivo human HCC xenograft mouse model. GP73-modified liposomes targeted gene delivery to the tumor tissue, and the survivin promoter drove HSVtk expression in the HCC cells. Our results showed that the survivin promoter was specifically activated in tumor cells and HSVtk was expressed selectively in tumor cells. Combined with GCV treatment, HSVtk expression resulted in suppression of HCC cell proliferation via enhancing apoptosis. Moreover, tail vein injection of GP73-HSVtk significantly suppressed the growth of xenograft tumors through an apoptosis-dependent pathway and extended the survival of tumor-bearing mice without damaging the mice liver functions. Taken together, this study demonstrates an effective cancer-specific gene therapy strategy using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system for HCC that can be further developed for future clinical trials.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chaochao Wen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xi Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunyang Xu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiuli Mu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lina Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xuan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiubo Tian
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Peiyuan Ma
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fanxiu Meng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Na Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hailong Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Gongqin Sun
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - Gaopeng Li
- Department of General Surgery, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hongwei Zhang
- Department of Haematology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qin Qin
- Central Laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi, China
| | - Jun Xu
- Department of General Surgery, Shanxi Dayi Hospital, Taiyuan, 030001, Shanxi, China.
| | - Xiushan Dong
- Department of General Surgery, Shanxi Dayi Hospital, Taiyuan, 030001, Shanxi, China
| | - Lumei Wang
- Department of Dermatology, Dong Guan People's Hospital, Dongguan, 523018, Guangdong, China.
| |
Collapse
|
15
|
Wang Y, Wang B, Liang J, Cui C, Ying C, Huang F, Ma B, Zhou X, Chu L. Oncolytic viro-chemotherapy exhibits antitumor effect in laryngeal squamous cell carcinoma cells and mouse xenografts. Cancer Manag Res 2019; 11:3285-3294. [PMID: 31114365 PMCID: PMC6489678 DOI: 10.2147/cmar.s196304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/17/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Oncolytic virus can specifically replicate in and then lyse tumor cells, but seldom in normal cells. Further studies have shown the significant therapeutic effect of oncolytic virotherapy combining with other strategies, such as chemo-, radio-, and immunotherapy et al. In this study, we investigated the combinational effect of oncolytic virus ZD55-TRAIL and chemotherapy drug doxorubicin (DOX) on human laryngeal squamous cell carcinoma (LSCC). Methods: The effect of ZD55-TRAIL combined with DOX on cell growth was assessed in LSCC Hep2 cells and normal cells by MTT assay. Hochest 33342 staining was performed to observe cell morphological changes. Western blot was used to detect the expression of apoptotic activation proteins. The in vivo antitumor efficacy of combination treatment was estimated in laryngeal cancer xenograft models. Results: The combination of ZD55-TRAIL and DOX exhibited enhanced inhibitory effects on laryngocarcinoma cell growth, and had few side effects to normal cells in vitro. Chemotherapy drug increased the inducement of tumor cell apoptosis mediated by oncolytic virus. In vivo experiment confirmed that the combination treatment significantly inhibited Hep2 laryngocarcinoma xenografts growth in mice. Conclusion: The oncolytic viro-chemotherapy is a potent therapeutic approach for in vitro cytotoxicity evaluation of Hep2 cells and xenograft growth in vivo.
Collapse
Affiliation(s)
- Yigang Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Binrong Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Caixia Cui
- Department of Otorhinolaryngology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, People's Republic of China
| | - Chang Ying
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincal People's Hospital, Hangzhou 310014, People's Republic of China
| | - Buyun Ma
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiumei Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
16
|
Jin J, Zhao Y, Guo W, Wang B, Wang Y, Liu X, Xu C. Thiocoraline mediates drug resistance in MCF-7 cells via PI3K/Akt/BCRP signaling pathway. Cytotechnology 2019; 71:401-409. [PMID: 30689149 DOI: 10.1007/s10616-019-00301-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/19/2019] [Indexed: 01/17/2023] Open
Abstract
Thiocoraline, a depsipeptide bisintercalator with potent antitumor activity, was first isolated from marine actinomycete Micromonospora marina. It possesses an intense toxicity to MCF-7 cells at nanomolar concentrations in a dose-dependent manner evaluated by MTT assay and crystal violet staining. We established a human breast thiocoraline-resistant cancer subline of MCF-7/thiocoraline (MCF-7/T) to investigate the expression variation of breast cancer resistance proteins (BCRP) and its subsequent influence on drug resistance. Colony-forming assay showed that the MCF-7 cells proliferated faster than the MCF-7/T cells in vitro. Western blot analysis demonstrated that thiocoraline increased the phosphorylation of Akt. Additionally, the sensitivity of tumor cells to thiocoraline was reduced with a concurrent rise in phosphorylation level of Akt and of BCRP expression.These studies indicated that thiocoraline probably mediated the drug resistance via PI3K/Akt/BCRP signaling pathway. MK-2206 dihydrochloride, a selective phosphorylation inhibitor of Akt, significantly decreased MCF-7 cell viability under exposure to thiocoraline compared to the control. However, it was not obviously able to decrease MCF-7/T cell viability when cells were exposed to thiocoraline.
Collapse
Affiliation(s)
- Jin Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Yujia Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Wan Guo
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Bingrong Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Yigang Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
| | - Xinyuan Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chuanlian Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China.
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China.
| |
Collapse
|
17
|
Liang R, Liu Z, Piao X, Zuo M, Zhang J, Liu Z, Li Y, Lin Y. Research progress on GP73 in malignant tumors. Onco Targets Ther 2018; 11:7417-7421. [PMID: 30425529 PMCID: PMC6204869 DOI: 10.2147/ott.s181239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cancer is one of the most serious diseases that currently endanger human health. As most tumors are diagnosed at an advanced stage, the current treatments show poor therapeutic efficacy, and the patients have poor prognosis. However, a 5-year survival rate higher than 80% could be achieved if tumors are diagnosed at an early stage. Therefore, early diagnosis and treatment play important roles in the prevention and treatment of malignant tumors, and serum tumor markers are important for the early diagnosis of malignant cancers. Recent studies have shown that GP73, a transmembrane protein, has greater diagnostic value in primary liver cancer than in other types of cancers, and research on the regulation of GP73 expression has unveiled broad prospects in anticancer targeted therapy. Thus, GP73, as a new tumor marker, deserves further study.
Collapse
Affiliation(s)
- Rong Liang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Ziyu Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Xuemin Piao
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Mingtang Zuo
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Zhihui Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| |
Collapse
|
18
|
Yokoda R, Nagalo BM, Arora M, Egan JB, Bogenberger JM, DeLeon TT, Zhou Y, Ahn DH, Borad MJ. Oncolytic virotherapy in upper gastrointestinal tract cancers. Oncolytic Virother 2018; 7:13-24. [PMID: 29616200 PMCID: PMC5870634 DOI: 10.2147/ov.s161397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Bolni M Nagalo
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mansi Arora
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Jan B Egan
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ.,Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.,Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
19
|
Abstract
Gastrointestinal malignancies are challenging cancers with considerable economic and societal impacts on health care systems worldwide. While advances in surgical approaches have provided benefits to a proportion of patients, only modest improvements have been attained in the treatment of patients with advanced disease, resulting in limited improvement in survival rates in these patients. Oncolytic adenoviruses are being developed to address gastrointestinal malignancies. Each platform has evolved to maximize tumor-cell killing potency while minimizing toxicities. Tumor-specific bioengineered adenoviruses using chimeric promoters, prodrug convertase enzymes, lethal genes, tumor suppressor genes, and pseudo-typed capsids can provide the innovations for eventual success of oncolytic virotherapy. This article will review the developments in adenoviral platforms in the context of specific gastrointestinal cancers. From the bench to the implementation of clinical trials, this review aims to highlight advances in the field from its early days to the current state of affairs as it pertains to the application of adenoviral oncolytic therapy to gastrointestinal cancers.
Collapse
Affiliation(s)
- Raquel T Yokoda
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85205, USA.
| | - Bolni M Nagalo
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85205, USA.
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85205, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
- Mayo Clinic Cancer Center, 5881 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
20
|
Cheng T, Song Y, Zhang Y, Zhang C, Yin J, Chi Y, Zhou D. A novel oncolytic adenovirus based on simian adenovirus serotype 24. Oncotarget 2018; 8:26871-26885. [PMID: 28460470 PMCID: PMC5432303 DOI: 10.18632/oncotarget.15845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Among the oncolytic virotherapy, an emerging treatment for tumor, adenoviruses are widely used at present in preclinical and clinical trials. Traditionally, oncolytic adenoviruses were developed based on the human adenovirus serotype 5 (AdHu5). However, AdHu5 has the drawbacks of preexisting anti-AdHu5 immunity in most populations, and extensive sequestration of Adhu5 by the liver through hexon, blood coagulation factor X (FX), and FX receptor interactions. To tackle these problems, we explored a novel oncolytic adenovirus AdC7-SP/E1A-ΔE3 for cancer treatment. AdC7-SP/E1A-ΔE3 was constructed by replacing the E1A promoter with tumor specific promoter survivin promoter and deleting E3 region using direct cloning methods based on simian adenovirus serotype 24 (namely AdC7). We showed that AdC7-SP/E1A-ΔE3 significantly killed tumor cell lines NCI-H508 and Huh7, and inhibited tumor growth in both NCI-H508 and Huh7 xenograft tumor models. Importantly, AdC7-SP/E1A-ΔE3 exhibited the antitumor efficacy via systemic administration. Mechanistically, infected cells were killed by AdC7-SP/E1A-ΔE3 via the p53-independent mitochondrial apoptosis pathway in which phosphorylation of BAD markedly declined and the expresses of Bik significantly went up. Therefore, AdC7-SP/E1A-ΔE3 is a promising candidate for liver and colon tumor treatment.
Collapse
Affiliation(s)
- Tao Cheng
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai 200031, China
| | - Yufeng Song
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai 200031, China
| | - Yan Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai 200031, China
| | - Chao Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai 200031, China
| | - Jieyun Yin
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai 200031, China
| | - Yudan Chi
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai 200031, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai 200031, China
| |
Collapse
|
21
|
Ying C, Xiao BD, Qin Y, Wang BR, Liu XY, Wang RW, Fang L, Yan H, Zhou XM, Wang YG. GOLPH2-regulated oncolytic adenovirus, GD55, exerts strong killing effect on human prostate cancer stem-like cells in vitro and in vivo. Acta Pharmacol Sin 2018; 39:405-414. [PMID: 28880012 DOI: 10.1038/aps.2017.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
GOLPH2 (also called GP73) is a Golgi glycoprotein, which has been identified as a novel tumor marker upregulated in various cancers, including prostate cancer (PCa). GD55 is a novel GOLPH2-regulated oncolytic adenovirus that exhibits a strong killing effect on hepatoma cells. Here, we investigate the antitumor effect of GD55 on prostate cancer stem cell (CSC)-like cells in vitro and in vivo. Prostate CSC-like sphere cells were acquired and enriched by culturing DU145, LNCap or P3 prostate cancer cells in suspension. The prostate CSC-like sphere cells were capable of self-renewal, differentiation and quiescence, displaying tumorigenic feature and chemo-resistance to 5-FU, doxorubicin and DDP. Treatment with GD55 (1, 5, 10 MOI) dose-dependently suppressed the viability of DU145 sphere cells, which was a more pronounced compared to its cytotoxic action on the parental DU145 cells. In a mouse xenograft prostate CSC-like model, intratumoral injection of GD55 markedly suppressed the growth rate of xenograft tumors and induced higher levels of cell death and necrosis within the tumor tissues. Our results demonstrate that GD55 infection exerts strong anticancer effects on prostate CSC-like cells in vitro and in vivo, and has a potential to be used in the clinical therapy of PCa.
Collapse
|
22
|
Xiao B, Qin Y, Ying C, Ma B, Wang B, Long F, Wang R, Fang L, Wang Y. Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model. Mol Med Rep 2017; 16:9375-9382. [PMID: 29039580 PMCID: PMC5779991 DOI: 10.3892/mmr.2017.7784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, oncolytic viruses have attracted increasing interest due to their potent antitumor effects. Luteolin, a natural product, has additionally been observed to exhibit various pharmacological antitumor activities. Previously, a novel dual-targeting oncolytic adenovirus, complement decay-accelerating factor (CD55)-tumor necrosis factor ligand superfamily member 10 (TRAIL), was constructed, which exhibited significant growth inhibitory effects in various types of tumor cell. The present study investigated whether the combination of luteolin and CD55-TRAIL was able to exert a synergistic antitumor effect in colorectal carcinoma (CRC) cells. The cytotoxicity and tumor cell apoptosis mediated by combination treatment in CRC cells were detected via an MTT assay, Hoechst staining and western blotting, respectively. Tumor growth in vivo was examined in a CRC mouse xenograft model following various treatments. The results demonstrated that the addition of luteolin enhanced oncolytic adenovirus-mediated enhanced green fluorescent protein, early region 1A and TRAIL expression. The combination of CD55-TRAIL with luteolin synergistically inhibited tumor growth and promoted CRC cellular apoptosis in vitro and in vivo. Additionally, the combination of CD55-TRAIL with luteolin significantly decreased cytotoxicity in lung/bronchial normal epithelial cells, compared with single treatment. Therefore, the combination of CD55-TRAIL with luteolin may be a novel efficient therapeutic strategy for CRC in the future.
Collapse
Affiliation(s)
- Boduan Xiao
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yun Qin
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Chang Ying
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Buyun Ma
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Binrong Wang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Fei Long
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ruwei Wang
- Zhejiang Conba Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P.R. China
| | - Ling Fang
- Zhejiang Conba Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P.R. China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
23
|
Zhang J, Lai W, Li Q, Yu Y, Jin J, Guo W, Zhou X, Liu X, Wang Y. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models. Biochem Biophys Res Commun 2017; 491:469-477. [PMID: 28698142 DOI: 10.1016/j.bbrc.2017.07.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), which are highly differentiated and self-renewing, play an important role in the occurrence, therapeutic resistant and metastasis of hepatacellular carcinoma (HCC). Oncolytic adenoviruses have targeted killing effect on tumor cells, and are invoked as candidate drugs for cancer treatment. We designed a dual-regulated oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 that targets Wnt and Rb signaling pathways respectively, and carries the tumor suppressor gene, TSLC1. Previous studies have demonstrated that oncolytic adenovirus mediated TSLC1can target liver cancer and exhibit significant cytotoxicity. However, whether Ad.wnt-E1A(△24bp)-TSLC1 can effectively eliminate liver CSCs remains to be explored. We first used the spheroid culture to enrich the liver CSCs-like cells, and detected the self-renewal capacity, differentiation, drug resistance and tumorigenicity. The results showed that Ad-wnt-E1A(△24bp)-TSLC1 could effectively lead to autophagic death. In addition, recombinant adenovirus effectively induced the apoptosis, inhibit metastasis of hepatic CSCs-like cells in vivo. Further animal experiments indicated that Ad-wnt-E1A(△24bp)-TSLC1could effectively inhibit the growth of transplanted tumor of hepatic CSCs and prolong the survival time of mice. Therefore, the novel oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 has potential application as a therapeutic target for HCC stem cells.
Collapse
Affiliation(s)
- Jian Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Weijie Lai
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Qiang Li
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Yang Yu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Jin Jin
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Wan Guo
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
24
|
Zhang Y, Hu W, Wang L, Han B, Lin R, Wei N. Association of GOLPH2 expression with survival in non-small-cell lung cancer: clinical implications and biological validation. Biomark Med 2017; 11:967-977. [PMID: 28880107 DOI: 10.2217/bmm-2017-0199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM We investigated the role of GOLPH2 in non-small-cell lung cancer (NSCLC). METHODS We analyzed the relationship between the expression of GOLPH2 and the clinical pathological characteristics of patients with NSCLC. The function of GOLPH2 in NSCLC cell lines was also explored through overexpression and knockdown studies. RESULTS The positive expression rate of GOLPH2 protein in NSCLC tissue was higher than that of normal lung tissue. We found that positive GOLPH2 expression was closely associated with unfavorable features of patients with NSCLC. The GOLPH2 expression was an independent predictor of the prognosis of patients with NSCLC. That GOLPH2 can promote the proliferation and invasion of NSCLC cells. CONCLUSION The GOLPH2 is a novel marker for NSCLC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wenteng Hu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Liwei Wang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ruijiang Lin
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ning Wei
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
25
|
Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem 2017; 437:13-36. [DOI: 10.1007/s11010-017-3092-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
26
|
Ahn DH, Bekaii-Saab T. The Continued Promise and Many Disappointments of Oncolytic Virotherapy in Gastrointestinal Malignancies. Biomedicines 2017; 5:E10. [PMID: 28536353 PMCID: PMC5423495 DOI: 10.3390/biomedicines5010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Oncolytic virotherapy represents a novel therapeutic strategy in the treatment of gastrointestinal malignancies. Oncolytic viruses, including genetically engineered and naturally occurring viruses, can selectively replicate in and induce tumor cell apoptosis without harming normal tissues, thus offering a promising tool in the armamentarium for cancer therapy. While this approach has garnered much interest over the past several decades, there has not been significant headway across various tumor types. The recent approval of talimogene laherparepvec, a second-generation oncolytic herpes simplex virus type-1, for the treatment of metastatic melanoma, confirms the therapeutic potential of oncolytic viral therapy. Herein, we will highlight and review the role of oncolytic viral therapy in gastrointestinal malignancies while discussing its limitations and potential alternative mechanisms to improve its treatment efficacy.
Collapse
Affiliation(s)
- Daniel H Ahn
- Division of Hematology/Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA.
| | - Tanios Bekaii-Saab
- Division of Hematology/Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
27
|
Huang F, Liu Q, Xie S, Xu J, Huang B, Wu Y, Xia D. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis. Int J Mol Sci 2016; 17:ijms17060885. [PMID: 27322250 PMCID: PMC4926419 DOI: 10.3390/ijms17060885] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.
Collapse
Affiliation(s)
- Fang Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Qiaoyun Liu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Shujun Xie
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Jian Xu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Bo Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Yihua Wu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| |
Collapse
|
28
|
Zhang X, Meng S, Zhang R, Ma B, Liu T, Yang Y, Xie W, Liu X, Huang F, Liu T, Zhou X, Liu X, Wang Y. GP73-regulated oncolytic adenoviruses possess potent killing effect on human liver cancer stem-like cells. Oncotarget 2016; 7:29346-58. [PMID: 27121064 PMCID: PMC5045400 DOI: 10.18632/oncotarget.8830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are highly metastatic, chemo-resistant and tumorigenic, and are critical for cancer development, maintenance and recurrence. Oncolytic adenovirus could targetedly kill CSCs and has been acted as a promising anticancer agent. Currently, a novel GP73-regulated oncolytic adenovirus GD55 was constructed to specifically treat liver cancer and exhibited obvious cytotoxicity effect. However, there remains to be confirmed that whether GD55 could effectively eliminate liver CSCs. We first utilized the suspension culture to enrich the liver CSCs-like cells, which acquires the properties of liver CSCs in self-renewal, differentiation, quiescence, chemo-resistance and tumorigenicity. The results indicated that GD55 elicited more significant cytotoxicity and stronger oncolytic effect in liver CSC-like cells compared to common oncolytic virus ZD55. Additionally, GD55 possessed the greater efficacy in suppressing the growth of implanted tumors derived from liver CSC-like cells than ZD55. Furthermore, GD55 induced remarkable apoptosis of liver CSC-like cells in vitro and in vivo, and inhibited the propogation of cells and angiogenesis in xenograft tumor tissues. Thus, GD55 may virtually represent an attractive therapeutic agent for targeting liver CSCs to achieve better clinical outcomes for HCC patients.
Collapse
Affiliation(s)
- Xinmin Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shulin Meng
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rong Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Buyun Ma
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam 3015, Netherlands
| | - Tao Liu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Yang
- Central China Normal University, Wuhan 430079, China
| | - Wenjie Xie
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianglei Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fang Huang
- School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Tao Liu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
29
|
Zhang R, Zhang X, Ma B, Xiao B, Huang F, Huang P, Ying C, Liu T, Wang Y. Enhanced antitumor effect of combining TRAIL and MnSOD mediated by CEA-controlled oncolytic adenovirus in lung cancer. Cancer Gene Ther 2016; 23:168-77. [PMID: 27080225 DOI: 10.1038/cgt.2016.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
Lung cancer, especially adenocarcinoma, is one of the leading causes of death in the world. Carcinoembryonic antigen (CEA), a superb non-small-cell lung cancer marker candidate, showed a beneficial effect in cancer therapy with oncolytic adenovirus in recent studies. Cancer-targeting dual gene-virotherapy delivers two therapeutic genes, linked by a connexon, in the replication-deficient vector instead of one gene so that they can work in common. In this study, we constructed a tumor-specific oncolytic adenovirus, CD55-TRAIL-IETD-MnSOD. The virus has the fusion protein complementary DNAs for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and for manganese superoxide dismutase (MnSOD) complementary DNA linked through a 4-amino acid caspase-8 cleavage site (IETD), and uses a CEA promoter to control virus E1A express. This is the first work to use a CEA promoter-regulated oncolytic adenovirus carrying two therapeutic genes for cancer research. Its targeting and anticancer capacity was evaluated by in vitro and in vivo experiments. The results indicated that CD55-TRAIL-IETD-MnSOD caused more cell apoptosis than CD55-TRAIL or CD55-MnSOD alone, or their combination in vitro, with low cytotoxicity of normal cells. In the A549 tumor xenograft model in nude mice, data showed that CD55-TRAIL-IETD-MnSOD could effectively suppress tumor growth than single gene groups, with no histological damage in liver, spleen or kidney tissues. Thus, the CEA-regulated dual-gene oncolytic virus CD55-TRAIL-IETD-MnSOD may be a novel potential therapy for lung cancer.
Collapse
Affiliation(s)
- R Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - X Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - B Ma
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China.,Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - B Xiao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - F Huang
- School of Public health, Zhejiang University, Hangzhou, People's Republic of China
| | - P Huang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - C Ying
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - T Liu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Y Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|