1
|
Chocarro-Calvo A, Jociles-Ortega M, García-Martinez JM, Louphrasitthiphol P, Carvalho-Marques S, Vivas-García Y, Ramírez-Sánchez A, Chauhan J, Fiuza MC, Duran M, Sánchez-Danés A, Goding CR, García-Jiménez C. Fatty acid uptake activates an AXL-CAV1-β-catenin axis to drive melanoma progression. Genes Dev 2025; 39:463-489. [PMID: 40015991 PMCID: PMC11960706 DOI: 10.1101/gad.351985.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Interaction between the tumor microenvironment and cancer cell plasticity drives intratumor phenotypic heterogeneity and underpins disease progression and nongenetic therapy resistance. Phenotype-specific expression of the AXL receptor tyrosine kinase is a pivotal player in dormancy, invasion, and resistance to treatment. However, although the AXL ligand GAS6 is present within tumors, how AXL is activated in metastasizing cells remains unclear. Here, using melanoma as a model, we reveal that AXL is activated by exposure to human adipocytes and to oleic acid, a monounsaturated fatty acid abundant in lymph and in adipocytes. AXL activation triggers SRC-dependent formation and nuclear translocation of a β-catenin-CAV1 complex required for melanoma invasiveness. Remarkably, only undifferentiated AXLHigh melanoma cells engage in symbiosis with human adipocytes, in part by triggering WNT5a-mediated lipolysis, leading to AXL-dependent, but FATP-independent, fatty acid uptake and nuclear localization of the β-catenin-CAV1 complex. Significantly, human melanomas in the vicinity of adipocytes exhibit high levels of nuclear CAV1. The results unveil an AXL- and CAV1-dependent mechanism through which a nutritional input drives phenotype-specific activation of a prometastasis program. Given the key role of AXL in a broad range of cancers, the results offer major insights into the mechanisms of cancer cell dormancy and therapy resistance.
Collapse
Affiliation(s)
- Ana Chocarro-Calvo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Area of Physiology, Faculty Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid 28922, Spain
| | - Miguel Jociles-Ortega
- Area of Physiology, Faculty Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid 28922, Spain
| | | | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | | | - Yurena Vivas-García
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ana Ramírez-Sánchez
- Area of Physiology, Faculty Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid 28922, Spain
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - M Carmen Fiuza
- Department of Surgery, University Hospital Fundación Alcorcón, Alcorcón, Madrid 28922, Spain
| | - Manuel Duran
- Department of General Surgery, University Hospital Rey Juan Carlos, Móstoles, Madrid 28933, Spain
| | - Adriana Sánchez-Danés
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom;
| | - Custodia García-Jiménez
- Area of Physiology, Faculty Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid 28922, Spain;
| |
Collapse
|
2
|
Papadopoulos KI, Papadopoulou A, Aw TC. Anexelekto (AXL) no more: microRNA-155 (miR-155) controls the "Uncontrolled" in SARS-CoV-2. Hum Cell 2024; 37:582-592. [PMID: 38472734 DOI: 10.1007/s13577-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
AXL is the gene that encodes the Anexelekto (AXL) receptor tyrosine kinase that demonstrates significant roles in various cellular processes, including cell growth, survival, and migration. Anexelekto is a Greek word meaning excessive and uncontrolled, semantically implying the crucial involvement of AXL in cancer and immune biology, and in promoting cancer metastasis. AXL overexpression appears to drive epithelial to mesenchymal transition, tumor angiogenesis, decreased antitumor immune response, and resistance to therapeutic agents. Recently, AXL has been reported to play important roles in several viral infections, including SARS-CoV-2. We have previously outlined the importance of microRNAs (miRNAs, miRs) and especially miR-155 in SARS-CoV-2 pathophysiology through regulation of the Renin-Angiotensin Aldosterone System (RAAS) and influence on several aspects of host innate immunity. MiRNAs are negative regulators of gene expression, decreasing the stability of target RNAs or limiting their translation and, enthrallingly, miR-155 is also involved in AXL homeostasis-both endogenously and pharmaceutically using repurposed drugs (e.g., metformin)-highlighting thrifty evolutionary host innate immunity mechanisms that successfully can thwart viral entry and replication. Cancer, infections, and immune system disturbances will increasingly involve miRNA diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- K I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd, Wangthonglang, Bangkok, 10310, Thailand.
| | - A Papadopoulou
- Feelgood Lund, Occupational and Environmental Health Services, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - T C Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
3
|
Zainodini N, Abolhasani M, Mohsenzadegan M, Farajollahi MM, Rismani E. Overexpression of Transmembrane Phosphatase with Tensin homology (TPTE) in prostate cancer is clinically significant, suggesting its potential as a valuable biomarker. J Cancer Res Clin Oncol 2024; 150:165. [PMID: 38546751 PMCID: PMC10978697 DOI: 10.1007/s00432-024-05694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE Cancer testis antigens (CTAs) are a family of proteins typically expressed in male testicles but overexpressed in various cancer cell types. Transmembrane Phosphatase with Tensin homology (TPTE) is expressed only in the testis of healthy individuals and is a member of the family of CTAs. The current study, for the first time, examined the significance of TPTE expression in prostate cancer (PCa) tissues by generating a novel antibody marker targeting TPTE protein. METHODS Polyclonal antibodies were prepared for TPTE-p1 and TPTE-p2 peptides, which are derived from the extracellular domains of TPTE. Anti-TPTE-p2 antibody was then used to study the extent and pattern of TPTE expression in 102 PCa and 48 benign prostatic hyperplasia (BPH) tissue samples by immunohistochemistry. The viability of cancer cell lines (PC-3 and MCF-7 cells) was also evaluated in the presence of anti-TPTE-p2 antibody using the MTT test. RESULTS The immunohistochemical analysis demonstrated a significant increase in cytoplasmic and membrane TPTE expression in the PCa samples compared to the BPH group (both P < 0.0001). Cytoplasmic TPTE expression was positively correlated with Gleason score and PSA levels (P = 0.03 and P = 0.001, respectively). Significant correlations were identified between the levels of PSA and perineural invasion and the membrane expression (P = 0.01, P = 0.04, respectively). Moreover, anti-TPTE-p2 antibody inhibited PC-3 and MCF-7 cells proliferation compared to the control group for 24 h (P < 0.001 and P = 0.001, respectively) as well as for 48 h (P = 0.001 and P = 0.001, respectively). CONCLUSION Our findings indicate that increased TPTE expression is associated with progression of disease. The ability of anti-TPTE-p2 antibody to recognize and target the TPTE protein makes it a potential biomarker to assess and/or target the PCa.
Collapse
Affiliation(s)
- Nahid Zainodini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran
| | - Maryam Abolhasani
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran.
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran.
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Chocarro-Calvo A, Jociles-Ortega M, García-Martinez JM, Louphrasitthiphol P, Garcia YV, Ramírez-Sánchez A, Chauhan J, Fiuza MC, Duran M, García-Jiménez C, Goding CR. Phenotype-specific melanoma uptake of fatty acid from human adipocytes activates AXL and CAV1-dependent β-catenin nuclear accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576568. [PMID: 38328032 PMCID: PMC10849526 DOI: 10.1101/2024.01.21.576568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Phenotypic diversity of cancer cells within tumors generated through bi-directional interactions with the tumor microenvironment has emerged as a major driver of disease progression and therapy resistance. Nutrient availability plays a critical role in determining phenotype, but whether specific nutrients elicit different responses on distinct phenotypes is poorly understood. Here we show, using melanoma as a model, that only MITF Low undifferentiated cells, but not MITF High cells, are competent to drive lipolysis in human adipocytes. In contrast to MITF High melanomas, adipocyte-derived free fatty acids are taken up by undifferentiated MITF Low cells via a fatty acid transporter (FATP)-independent mechanism. Importantly, oleic acid (OA), a monounsaturated long chain fatty acid abundant in adipose tissue and lymph, reprograms MITF Low undifferentiated melanoma cells to a highly invasive state by ligand-independent activation of AXL, a receptor tyrosine kinase associated with therapy resistance in a wide range of cancers. AXL activation by OA then drives SRC-dependent formation and nuclear translocation of a β-catenin-CAV1 complex. The results highlight how a specific nutritional input drives phenotype-specific activation of a pro-metastasis program with implications for FATP-targeted therapies.
Collapse
|
5
|
Wiesehöfer M, Raczinski BBG, Wiesehöfer C, Dankert JT, Czyrnik ED, Spahn M, Kruithof-de Julio M, Wennemuth G. Epiregulin expression and secretion is increased in castration-resistant prostate cancer. Front Oncol 2023; 13:1107021. [PMID: 36994208 PMCID: PMC10040687 DOI: 10.3389/fonc.2023.1107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionIn prostate cancer, long-term treatment directed against androgens often leads to the development of metastatic castration-resistant prostate cancer, which is more aggressive and not curatively treatable. Androgen deprivation results in elevated epiregulin expression in LNCaP cells which is a ligand of EGFR. This study aims to reveal the expression and regulation of epiregulin in different prostate cancer stages enabling a more specific molecular characterization of different prostate carcinoma types.MethodsFive different prostate carcinoma cell lines were used to characterize the epiregulin expression on the RNA and protein levels. Epiregulin expression and its correlation with different patient conditions were further analyzed using clinical prostate cancer tissue samples. Additionally, the regulation of epiregulin biosynthesis was examined at transcriptional, post-transcriptional and release level.ResultsAn increased epiregulin secretion is detected in castration-resistant prostate cancer cell lines and prostate cancer tissue samples indicating a correlation of epiregulin expression with tumor recurrence, metastasis and increased grading. Analysis regarding the activity of different transcription factors suggests the involvement of SMAD2/3 in the regulation of epiregulin expression. In addition, miR-19a, -19b, and -20b are involved in post-transcriptional epiregulin regulation. The release of mature epiregulin occurs via proteolytic cleavage by ADAM17, MMP2, and MMP9 which are increased in castration-resistant prostate cancer cells.DiscussionThe results demonstrate epiregulin regulation by different mechanism and suggest a potential role as a diagnostic tool to detect molecular alterations in prostate cancer progression. Additionally, although EGFR inhibitors false in prostate cancer, epiregulin could be a therapeutic target for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | - Martin Spahn
- Department of Urology, Lindenhofspital Bern, Bern, Switzerland
- Department of Urology, University Duisburg-Essen, Essen, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Translation Organoid Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, Essen, Germany
- *Correspondence: Gunther Wennemuth,
| |
Collapse
|
6
|
Zhang J, Li S, Zhang J, Zhang W, Jiang J, Wu H, Wu E, Feng Y, Yang L, Li Z. Docetaxel resistance-derived LINC01085 contributes to the immunotherapy of hormone-independent prostate cancer by activating the STING/MAVS signaling pathway. Cancer Lett 2022; 545:215829. [PMID: 35868534 DOI: 10.1016/j.canlet.2022.215829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
Acquired docetaxel (doc) resistance, one of the major reasons for unfavorable prognosis in patients with aggressive hormone-independent prostate cancer (HIPC), is a major obstacle for patient treatment. Dysregulation of long non-coding RNAs promotes or suppresses chemoresistance in multiple cancers; however, the specific molecular mechanisms underlying HIPC remain unknown. In this study, we found that the LINC01085, as a tumor-suppressor, which showed significant clinically relevant in HIPC patients with doc-resistance. Mechanistically, in docetaxel-sensitive cells, LINC01085 could specifically bind to both TANK-binding kinase 1 (TBK1) and glycogen synthase kinase 3β (GSK3β), and higher LINC01085 RNA levels could inhibit TBK1 dimerization. Whereas, in doc-resistant cells, lower LINC01085 RNA level lost the strong binding with both, meanwhile, the interaction between TBK1 and GSK3β enhanced which accelerated TBK1 phosphorylation at the Ser-172 site, resulting in decreased expression levels of PD-L1 and NF-κB as well as the secretion of type I/III interferons. Thus, Overexpression of LINC01085 combined with immune checkpoint blockade is an effective strategy for the treatment of HIPC patients.
Collapse
Affiliation(s)
- Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 201620, China
| | - Jianian Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Wen Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yutao Feng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Vanli N, Sheng J, Li S, Xu Z, Hu GF. Ribonuclease 4 is associated with aggressiveness and progression of prostate cancer. Commun Biol 2022; 5:625. [PMID: 35752711 PMCID: PMC9233706 DOI: 10.1038/s42003-022-03597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Prostate specific antigen screening has resulted in a decrease in prostate cancer-related deaths. However, it also has led to over-treatment affecting the quality of life of many patients. New biomarkers are needed to distinguish prostate cancer from benign prostate hyperplasia (BPH) and to predict aggressiveness of the disease. Here, we report that ribonuclease 4 (RNASE4) serves as such a biomarker as well as a therapeutic target. RNASE4 protein level in the plasma is elevated in prostate cancer patients and is positively correlated with disease stage, grade, and Gleason score. Plasma RNASE4 level can be used to predict biopsy outcome and to enhance diagnosis accuracy. RNASE4 protein in prostate cancer tissues is enhanced and can differentiate prostate cancer and BPH. RNASE4 stimulates prostate cancer cell proliferation, induces tumor angiogenesis, and activates receptor tyrosine kinase AXL as well as AKT and S6K. An RNASE4-specific monoclonal antibody inhibits the growth of xenograft human prostate cancer cell tumors in athymic mice.
Collapse
Affiliation(s)
- Nil Vanli
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Jinghao Sheng
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuping Li
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
8
|
Majumder A, Hosseinian S, Stroud M, Adhikari E, Saller JJ, Smith MA, Zhang G, Agarwal S, Creixell M, Meyer BS, Kinose F, Bowers K, Fang B, Stewart PA, Welsh EA, Boyle TA, Meyer AS, Koomen JM, Haura EB. Integrated Proteomics-Based Physical and Functional Mapping of AXL Kinase Signaling Pathways and Inhibitors Define Its Role in Cell Migration. Mol Cancer Res 2022; 20:542-555. [PMID: 35022314 PMCID: PMC8983558 DOI: 10.1158/1541-7786.mcr-21-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.
Collapse
Affiliation(s)
- Anurima Majumder
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Sina Hosseinian
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mia Stroud
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Emma Adhikari
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - James J. Saller
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Matthew A. Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shruti Agarwal
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - Benjamin S. Meyer
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kiah Bowers
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- Department of Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric A. Welsh
- Department of Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Theresa A. Boyle
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
9
|
AXL inhibition improves BRAF-targeted treatment in melanoma. Sci Rep 2022; 12:5076. [PMID: 35332208 PMCID: PMC8948193 DOI: 10.1038/s41598-022-09078-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
More than half of metastatic melanoma patients receiving standard therapy fail to achieve a long-term survival due to primary and/or acquired resistance. Tumor cell ability to switch from epithelial to a more aggressive mesenchymal phenotype, attributed with AXLhigh molecular profile in melanoma, has been recently linked to such event, limiting treatment efficacy. In the current study, we investigated the therapeutic potential of the AXL inhibitor (AXLi) BGB324 alone or in combination with the clinically relevant BRAF inhibitor (BRAFi) vemurafenib. Firstly, AXL was shown to be expressed in majority of melanoma lymph node metastases. When treated ex vivo, the largest reduction in cell viability was observed when the two drugs were combined. In addition, a therapeutic benefit of adding AXLi to the BRAF-targeted therapy was observed in pre-clinical AXLhigh melanoma models in vitro and in vivo. When searching for mechanistic insights, AXLi was found to potentiate BRAFi-induced apoptosis, stimulate ferroptosis and inhibit autophagy. Altogether, our findings propose AXLi as a promising treatment in combination with standard therapy to improve therapeutic outcome in metastatic melanoma.
Collapse
|
10
|
Morale MG, Tamura RE, Rubio IGS. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules 2022; 12:357. [PMID: 35327549 PMCID: PMC8945547 DOI: 10.3390/biom12030357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Metformin is the most used drug for type 2 diabetes (T2DM). Its antitumor activity has been described by clinical studies showing reduced risk of cancer development in T2DM patients, as well as management of T2DM compared with those receiving other glucose-lowering drugs. Metformin has a plethora of molecular actions in cancer cells. This review focused on in vitro data on the action mechanisms of metformin on thyroid, prostate and head and neck cancer. AMPK activation regulating specific downstream targets is a constant antineoplastic activity in different types of cancer; however, AMPK-independent mechanisms are also relevant. In vitro evidence makes it clear that depending on the type of tumor, metformin has different actions; its effects may be modulated by different cell conditions (for instance, presence of HPV infection), or it may regulate tissue-specific factors, such as the Na+/I- symporter (NIS) and androgen receptors. The hallmarks of cancer are a set of functional features acquired by the cell during malignant development. In vitro studies show that metformin regulates almost all the hallmarks of cancer. Interestingly, metformin is one of these therapeutic agents with the potential to synergize with other chemotherapeutic agents, with low cost, low side effects and high positive consequences. Some questions are still challenging: Are metformin in vitro data able to translate from bench to bedside? Does metformin affect drug resistance? Can metformin be used as a generic anticancer drug for all types of tumors? Which are the specific actions of metformin on the peculiarities of each type of cancer? Several clinical trials are in progress or have been concluded for repurposing metformin as an anticancer drug. The continuous efforts in the field and future in vitro studies will be essential to corroborate clinical trials results and to elucidate the raised questions.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| | - Rodrigo Esaki Tamura
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| | - Ileana Gabriela Sanchez Rubio
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
- Thyroid Molecular Sciences Laboratory, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| |
Collapse
|
11
|
Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:5639. [PMID: 34830794 PMCID: PMC8616094 DOI: 10.3390/cancers13225639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
MERTK and AXL are members of the TAM family of receptor tyrosine kinases and are abnormally expressed in 69% and 93% of non-small cell lung cancers (NSCLCs), respectively. Expression of MERTK and/or AXL provides a survival advantage for NSCLC cells and correlates with lymph node metastasis, drug resistance, and disease progression in patients with NSCLC. The TAM receptors on host tumor infiltrating cells also play important roles in the immunosuppressive tumor microenvironment. Thus, MERTK and AXL are attractive biologic targets for NSCLC treatment. Here, we will review physiologic and oncologic roles for MERTK and AXL with an emphasis on the potential to target these kinases in NSCLCs with activating EGFR mutations.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| |
Collapse
|
12
|
Zhang H, Peng X, Dai Y, Shao J, Ji Y, Sun Y, Liu B, Cheng X, Ai J, Duan W. Discovery of a Pyrimidinedione Derivative as a Potent and Orally Bioavailable Axl Inhibitor. J Med Chem 2021; 64:3956-3975. [PMID: 33733758 DOI: 10.1021/acs.jmedchem.0c02093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The receptor tyrosine kinase Axl plays important roles in promoting cancer progression, metastasis, and drug resistance and has been identified as a promising target for anticancer therapeutics. We used molecular modeling-assisted structural optimization starting with the low micromolar potency compound 9 to discover compound 13c, a highly potent and orally bioavailable Axl inhibitor. Selectivity profiling showed that 13c could inhibit the well-known oncogenic kinase Met with equal potency to its inhibition of Axl superfamily kinases. Compound 13c significantly inhibited cellular Axl and Met signaling, suppressed Axl- and Met-driven cell proliferation, and restrained Gas6/Axl-mediated cancer cell migration or invasion. Furthermore, 13c exhibited significant antitumor efficacy in Axl-driven and Met-driven tumor xenograft models, causing tumor stasis or regression at well-tolerated doses. All these favorable data make 13c a promising therapeutic candidate for cancer treatment.
Collapse
Affiliation(s)
- Hefeng Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Yang Dai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Jingwei Shao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Yiming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Bo Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Xu Cheng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Chen J, Huang Y, Tang Z, Li M, Ling X, Liao J, Zhou X, Fang S, Zhao H, Zhong W, Yuan X. Genome-Scale CRISPR-Cas9 Transcriptional Activation Screening in Metformin Resistance Related Gene of Prostate Cancer. Front Cell Dev Biol 2021; 8:616332. [PMID: 33575255 PMCID: PMC7870801 DOI: 10.3389/fcell.2020.616332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Metformin is a classic type II diabetes drug which possesses anti-tumor properties for various cancers. However, different cancers do not respond to metformin with the same effectiveness or acquire resistance. Thus, searching for vulnerabilities of metformin-resistant prostate cancer is a promising strategy to improve the therapeutic efficiency of the drug. A genome-scale CRISPR-Cas9 activation library search targeting 23,430 genes was conducted to identify the genes that confer resistance to metformin in prostate cancer cells. Candidate genes were selected by total reads of sgRNA and sgRNA diversity, and then a CCK8 assay was used to verify their resistance to metformin. Interestingly, we discovered that the activation of ECE1, ABCA12, BPY2, EEF1A1, RAD9A, and NIPSNAP1 contributed to in vitro resistance to metformin in DU145 and PC3 cell lines. Notably, a high level of RAD9A, with poor prognosis in PCa, was the most significant gene in the CCK8 assay. Furthermore, we discerned the tumor immune microenvironment with RAD9A expression by CIBERSORT. These results suggested that a high level of RAD9A may upregulate regulatory T cells to counterbalance metformin in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Yaqiang Huang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan, China
| | - Zhenfeng Tang
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maozhang Li
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiaohui Ling
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, China
| | - Jinxian Liao
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiaobo Zhou
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Shumin Fang
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Haibo Zhao
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weide Zhong
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China.,Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xia Yuan
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China
| |
Collapse
|
14
|
Yılmaz Y, Batur T, Korhan P, Öztürk M, Atabey N. Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. LIVER CANCER IN THE MIDDLE EAST 2021:333-364. [DOI: 10.1007/978-3-030-78737-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Ghayour-Mobarhan M, Ferns GA, Moghbeli M. Genetic and molecular determinants of prostate cancer among Iranian patients: An update. Crit Rev Clin Lab Sci 2020; 57:37-53. [PMID: 31895010 DOI: 10.1080/10408363.2019.1657061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common age-related cancers among men. Various environmental and genetic factors are involved in the development and progression of PCa. In most cases, the primary symptoms of disease are not severe. Therefore, it is common for patients to be referred with severe clinical manifestations at advanced stages of disease. Since this malignancy is age related and Iran will face a significant increase in the number of seniors, it is expected that the prevalence of PCa among Iranian men will rise. PCa progression has been observed to be associated with genetic and ethnic factors. It may therefore be clinically useful to determine a panel of genetic markers, in addition to routine diagnostic methods, to detect tumors in the early stages. In the present review, we have summarized the reported genetic markers in PCa Iranian patients to pave the way for the determination of an ethnic specific genetic marker panel for the early detection of PCa. To understand the genetic and molecular biology of PCa among Iranians, we have categorized these genetic markers based on their cellular functions.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Gas6/TAM Receptors in Systemic Lupus Erythematosus. DISEASE MARKERS 2019; 2019:7838195. [PMID: 31360267 PMCID: PMC6652053 DOI: 10.1155/2019/7838195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease associated with impaired immune system regulation. The exact mechanisms of SLE development remain to be elucidated. TAM receptor tyrosine kinases (RTKs) are important for apoptotic cell clearance, immune homeostasis, and resolution of immune responses. TAM deficiency leads to lupus-like autoimmune diseases. Activation of TAM receptors leads to proteolytic cleavage of the receptors, generating soluble forms of TAM. Circulating TAM receptors have an immunoregulatory function and may also serve as biomarkers for disease prognosis. Here, we review the biological function and signaling of TAM RTKs in the development and pathogenesis of lupus and lupus nephritis. Targeting Gas6/TAM pathways may be of therapeutic benefit. A discussion of potential TAM activation and inhibition in the treatment of lupus and lupus nephritis is included.
Collapse
|
17
|
Axl Inhibitor R428 Enhances TRAIL-Mediated Apoptosis Through Downregulation of c-FLIP and Survivin Expression in Renal Carcinoma. Int J Mol Sci 2019; 20:ijms20133253. [PMID: 31269715 PMCID: PMC6651098 DOI: 10.3390/ijms20133253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
R428, a selective small molecule Axl inhibitor, is known to have anti-cancer effects, such as inhibition of invasion and proliferation and induction of cell death in cancer cells. The Axl receptor tyrosine kinase is highly expressed in cancer cells and the level of Axl expression is associated with survival, metastasis, and drug resistance of many cancer cells. However, the effect of Axl inhibition on overcoming anti-cancer drugs resistance is unclear. Therefore, we investigated the capability of Axl inhibition as a therapeutic agent for the induction of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) sensitivity. In this study, R428 markedly sensitized cancer cells to TRAIL-induced apoptotic cell death, but not in normal human skin fibroblast (HSF) and human umbilical vein cells (EA.hy926). Moreover, knockdown of Axl by siRNA also increased TRAIL-induced apoptosis. R428 decreased c-FLIP proteins levels via induction of miR-708 expression and survivin protein levels at the post-translational level, and we found that knockdown of Axl also decreased both c-FLIP and survivin protein expression. Overexpression of c-FLIP and survivin markedly inhibited R428 plus TRAIL-induced apoptosis. Furthermore, R428 sensitized cancer cells to multiple anti-cancer drugs-mediated cell death. Our results provide that inhibition of Axl could improve sensitivity to TRAIL through downregulation of c-FLIP and survivin expression in renal carcinoma cells. Taken together, Axl may be a tempting target to overcome TRAIL resistance.
Collapse
|
18
|
Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2019; 36:115-130. [PMID: 31250347 DOI: 10.1007/s10565-019-09483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers and the second leading cause of cancer death among US males. When diagnosed in an early disease stage, primary tumors of PCa may be treated with surgical resection or radiation, sometimes combined with androgen deprivation therapy, with favorable outcomes. Unfortunately, the treatment efficacy of each approach decreases significantly in later stages of PCa that involve metastasis to soft tissues and bone. Metastatic PCa is a heterogeneous disease containing host cells, mature cancer cells, and subpopulation of cancer stem cells (CSC). CSCs are highly tumorigenic due to their self-renewing and differentiating potential, clinically resulting in recurrence and resistance to standard therapies. Therefore, there is a large unmet clinical need to develop therapies, which target CSC activity. In this review, we summarize the main signaling pathways that are implicated in the current pre-clinical and clinical studies of recurrent metastatic PCa within the bone microenvironment targeting CSCs and discuss the trajectory of therapeutics moving forward.
Collapse
Affiliation(s)
- Clara H Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Periodontology, University of Alabama Birmingham School of Dentistry, Birmingham, Alabama, USA.
| |
Collapse
|
19
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer 2019; 18:94. [PMID: 31088471 PMCID: PMC6515593 DOI: 10.1186/s12943-019-1022-2] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages are an abundant cell type in the tumor microenvironment. These macrophages serve as a promising target for treatment of cancer due to their roles in promoting cancer progression and simultaneous immunosuppression. The TAM receptors (Tyro3, Axl and MerTK) are promising therapeutic targets on tumor-associated macrophages. The TAM receptors are a family of receptor tyrosine kinases with shared ligands Gas6 and Protein S that skew macrophage polarization towards a pro-tumor M2-like phenotype. In macrophages, the TAM receptors also promote apoptotic cell clearance, a tumor-promoting process called efferocytosis. The TAM receptors bind the "eat-me" signal phosphatidylserine on apoptotic cell membranes using Gas6 and Protein S as bridging ligands. Post-efferocytosis, macrophages are further polarized to a pro-tumor M2-like phenotype and secrete increased levels of immunosuppressive cytokines. Since M2 polarization and efferocytosis are tumor-promoting processes, the TAM receptors on macrophages serve as exciting targets for cancer therapy. Current TAM receptor-directed therapies in preclinical development and clinical trials may have anti-cancer effects though impacting macrophage phenotype and function in addition to the cancer cells.
Collapse
Affiliation(s)
- Kayla V. Myers
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Sarah R. Amend
- 0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Kenneth J. Pienta
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
21
|
Tissue-Specific Monoallelic Expression of Bovine AXL is Associated with DNA Methylation of Promoter DMR. Biochem Genet 2019; 57:801-812. [PMID: 31073794 DOI: 10.1007/s10528-019-09925-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
Abstract
The AXL protein is a receptor tyrosine kinase and is often implicated in proliferation, migration and therapy resistance in various cancers. The AXL gene in humans is maternally expressed and paternally imprinted with differentially methylated regions (DMR) surrounding the promoter region. However, the imprinting status and epigenetic regulation of AXL gene in cattle remain unclear. Therefore, we explored the molecular structure along with the patterns of allelic expression and DNA methylation of the bovine AXL gene. First, the complete cDNA sequence of bovine AXL was gathered by Sanger method, from transcripts obtained from RT-PCR, 5' and 3' -RACE. In silico BLAST alignments showed that the longest mRNA sequence of bovine AXL consists of 19 exons and encodes a protein of 887 amino acids. We further analyzed the allelic expression of bovine AXL by employing single-nucleotide polymorphism (SNP)-based sequencing method. A SNP site (GenBank Accession no: rs210020651) found in exon 7 allowed us to distinguish the two parental alleles. Monoallelic expression of AXL was observed in four adult bovine tissues (heart, liver, spleen and fat), while biallelic expression was found in the other adult tissues such as the lung, kidney, muscle, brain and placenta. To determine whether the DNA methylation played a role in the tissue-specific imprinting of bovine AXL, we performed bisulfite sequencing of two regions: region 1 was a CpG island (CGI) in AXL promoter, mapping to 643 bp upstream of the transcription start site of AXL 5'-v1 transcripts, while region two was homologous to the region of human AXL DMR, with 10 CpG sites overlapping the first translation start site (TSS1) of bovine AXL. In region 2, DNA from both monoallelic and biallelic expressed tissues were mostly found to be completely unmethylated. However, tissue-specific differential methylation patterns were found in monoallelic expressed tissues such as the heart and liver while hypomethylation was noted in the promoter CpG island in biallelic expressed tissues such as the lung. These observations demonstrated that the tissue-specific monoallelic expression of bovine AXL is dependent on the DNA methylation of its promoter region.
Collapse
|
22
|
Paccez JD, Duncan K, Sekar D, Correa RG, Wang Y, Gu X, Bashin M, Chibale K, Libermann TA, Zerbini LF. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis 2019; 8:14. [PMID: 30783079 PMCID: PMC6381097 DOI: 10.1038/s41389-019-0122-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/16/2018] [Accepted: 01/28/2019] [Indexed: 01/24/2023] Open
Abstract
Axl expression is deregulated in several cancer types, predicts poor overall patient survival and is linked to resistance to drug therapy. Here, we evaluated a library of natural compounds for inhibitors of Axl and identified dihydroartemisinin, the active principle of the anti-malarial drug artemisinin, as an Axl-inhibitor in prostate cancer. Dihydroartemisinin blocks Axl expression leading to apoptosis, decrease in cell proliferation, migration, and tumor development of prostate cancer cells. Dihydroartemisinin treatment synergizes with docetaxel, a standard of care in metastatic prostate cancer increasing overall survival of mice with human xenografts. Dihydroartemisinin control of miR-34a and miR-7 expression leads to inhibition of Axl expression in a process at least partially dependent on regulation of chromatin via methylation of histone H3 lysine 27 residues by Jumonji, AT-rich interaction domain containing 2 (JARID2), and the enhancer of zeste homolog 2. Our discovery of a previously unidentified miR-34a/miR-7/JARID2 pathway controlling dihydroartemisinin effects on Axl expression and inhibition of cancer cell proliferation, migration, invasion, and tumor formation provides new molecular mechanistic insights into dihydroartemisinin anticancer effect on prostate cancer with potential therapeutic implications.
Collapse
Affiliation(s)
- Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Kristal Duncan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Durairaj Sekar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Manoj Bashin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kelly Chibale
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Towia A Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
23
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|
24
|
Lin JZ, Wang ZJ, De W, Zheng M, Xu WZ, Wu HF, Armstrong A, Zhu JG. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget 2018; 8:41064-41077. [PMID: 28455956 PMCID: PMC5522277 DOI: 10.18632/oncotarget.17026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/01/2017] [Indexed: 01/29/2023] Open
Abstract
Resistance to docetaxel is a major clinical problem in advanced prostate cancer. The overexpression of AXL receptor tyrosine kinase (AXL) has been correlated with chemotherapeutic drug resistance. However, the role of AXL expression in docetaxel resistance in prostate cancer is yet unclear. In this study, we demonstrate that AXL is overexpressed and activated independent of Gas6 in docetaxel-resistant prostate cancer cells (PC3-DR and DU145-DR). Moreover, we show that forced overexpression of AXL in PC3 and DU145 cells is sufficient to induce resistance to docetaxel in these cell lines. Notably, genetic or pharmacologic inhibition of AXL in the resistant models suppressed cell proliferation, migration, invasion, and tumor growth, and these effects were significantly augmented when AXL inhibition was combined with docetaxel treatment. Mechanistically, we found that AXL inhibition led to reversion of the epithelial-mesenchymal transition (EMT) phenotype and decreased the expression of ATP-binding cassette B1 (ABCB1). Overall, our results identify AXL as an important mediator of docetaxel resistance in prostate cancer. We propose that AXL-targeted therapy, in combination with docetaxel, has the potential to improve the response to docetaxel therapy and reduce resistance induced by prolonged docetaxel therapy in prostate cancer.
Collapse
Affiliation(s)
- Jian-Zhong Lin
- Department of Urology, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Zeng-Jun Wang
- Department of Urology, The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei De
- Department of Biochemistry and Molecular biology, Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei-Zhang Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-Fei Wu
- Department of Urology, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Alex Armstrong
- Department of Pharmacology, University of Manchester, Manchester, England
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med 2018; 24:203-212. [DOI: 10.1038/nm.4472] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023]
|
26
|
Cantor DJ, David G. The potential of targeting Sin3B and its associated complexes for cancer therapy. Expert Opin Ther Targets 2017; 21:1051-1061. [PMID: 28956957 DOI: 10.1080/14728222.2017.1386655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Sin3B serves as a scaffold for chromatin-modifying complexes that repress gene transcription to regulate distinct biological processes. Sin3B-containing complexes are critical for cell cycle withdrawal, and abrogation of Sin3B-dependent cell cycle exit impacts tumor progression. Areas covered: In this review, we discuss the biochemical characteristics of Sin3B-containing complexes and explore how these complexes regulate gene transcription. We focus on how Sin3B-containing complexes, through the association of the Rb family of proteins, repress the expression of E2F target genes during quiescence, differentiation, and senescence. Finally, we speculate on the potential benefits of the inhibition of Sin3B-containing complexes for the treatment of cancer. Expert opinion: Further identification and characterization of specific Sin3B-containing complexes provide a unique opportunity to prevent the pro-tumorigenic effects of the senescence-associated secretory phenotype, and to abrogate cancer stem cell quiescence and the associated resistance to therapy.
Collapse
Affiliation(s)
- David J Cantor
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Gregory David
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA.,b Department of Urology.,c NYU Cancer Institute , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
27
|
Kozar I, Cesi G, Margue C, Philippidou D, Kreis S. Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells. Biochim Biophys Acta Gen Subj 2017; 1861:2980-2992. [PMID: 28408301 DOI: 10.1016/j.bbagen.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. METHODS To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. Subsequently, microarray analyses were performed followed by RT-qPCR validations. RESULTS Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes (e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in two drug-resistant cell lines that might be regulated by miRNAs. CONCLUSION Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance. GENERAL SIGNIFICANCE Thus far, only little information is available on the significance and role of miRNAs with respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ines Kozar
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Giulia Cesi
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Christiane Margue
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Demetra Philippidou
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Stephanie Kreis
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
28
|
Kimani SG, Kumar S, Bansal N, Singh K, Kholodovych V, Comollo T, Peng Y, Kotenko SV, Sarafianos SG, Bertino JR, Welsh WJ, Birge RB. Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity. Sci Rep 2017; 7:43908. [PMID: 28272423 PMCID: PMC5341070 DOI: 10.1038/srep43908] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
TAM receptors (Tyro-3, Axl, and Mertk) are a family of three homologous type I receptor tyrosine kinases that are implicated in several human malignancies. Overexpression of TAMs and their major ligand Growth arrest-specific factor 6 (Gas6) is associated with more aggressive staging of cancers, poorer predicted patient survival, acquired drug resistance and metastasis. Here we describe small molecule inhibitors (RU-301 and RU-302) that target the extracellular domain of Axl at the interface of the Ig-1 ectodomain of Axl and the Lg-1 of Gas6. These inhibitors effectively block Gas6-inducible Axl receptor activation with low micromolar IC50s in cell-based reporter assays, inhibit Gas6-inducible motility in Axl-expressing cell lines, and suppress H1299 lung cancer tumor growth in a mouse xenograft NOD-SCIDγ model. Furthermore, using homology models and biochemical verifications, we show that RU301 and 302 also inhibit Gas6 inducible activation of Mertk and Tyro3 suggesting they can act as pan-TAM inhibitors that block the interface between the TAM Ig1 ectodomain and the Gas6 Lg domain. Together, these observations establish that small molecules that bind to the interface between TAM Ig1 domain and Gas6 Lg1 domain can inhibit TAM activation, and support the further development of small molecule Gas6-TAM interaction inhibitors as a novel class of cancer therapeutics.
Collapse
Affiliation(s)
- Stanley G Kimani
- Rutgers University, New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, 205 South Orange Ave, Newark, NJ 07103, USA
| | - Sushil Kumar
- Rutgers University, New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, 205 South Orange Ave, Newark, NJ 07103, USA
| | - Nitu Bansal
- Rutgers University, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Kamalendra Singh
- Department of Molecular Microbiology and Immunology, and Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Vladyslav Kholodovych
- Rutgers University, Office of Advanced Research Computing, 96 Frelinghuysen Road, Piscataway, NJ 08854, USA.,Rutgers University, Robert Wood Johnson Medical Center, Department of Pharmacology, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Thomas Comollo
- Rutgers University, New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, 205 South Orange Ave, Newark, NJ 07103, USA
| | - Youyi Peng
- Rutgers University, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Sergei V Kotenko
- Rutgers University, New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, 205 South Orange Ave, Newark, NJ 07103, USA
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, and Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Joseph R Bertino
- Rutgers University, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - William J Welsh
- Rutgers University, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.,Rutgers University, Robert Wood Johnson Medical Center, Department of Pharmacology, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Raymond B Birge
- Rutgers University, New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, 205 South Orange Ave, Newark, NJ 07103, USA
| |
Collapse
|
29
|
Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev 2017; 54:24-33. [DOI: 10.1016/j.ctrv.2017.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/23/2022]
|
30
|
Manna A, Banerjee S, Khan P, Bhattacharya A, Das T. Contribution of nuclear events in generation and maintenance of cancer stem cells: revisiting chemo-resistance. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0193-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
31
|
Peter SC, Mannu J, Mathur PP. In Silico Approach to Identify Potential Inhibitors for Axl-Gas6 Signaling. Methods Mol Biol 2017; 1549:221-229. [PMID: 27975295 DOI: 10.1007/978-1-4939-6740-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Axl-Gas6 signaling plays an important role in numerous cancers. Axl kinase, a member of receptor tyrosine kinase family is activated by different mechanisms with Gas6 as its major activator. Targeting the Axl with inhibitors may block the binding of Gas6 and further hinders the activation of Axl. This in turn inhibits the Axl-Gas6 signaling. Thus, inhibitors of the Axl kinase may serve as ideal drug candidates for treating many human cancers. In this study we carried out virtual screening of drug-like molecules from ZINC database to identify potential inhibitors for Axl kinase. Our virtual screening study showed that ZINC83758120, ZINC34079369, and ZINC83758121 are potential drug-like lead molecules to inhibit Axl kinase.
Collapse
Affiliation(s)
- Swathik Clarancia Peter
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Premendu P Mathur
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
32
|
Hankinson SJ, Fam M, Patel NN. A review for clinicians: Prostate cancer and the antineoplastic properties of metformin. Urol Oncol 2016; 35:21-29. [PMID: 27836248 DOI: 10.1016/j.urolonc.2016.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/11/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Metformin has numerous antineoplastic effects including an AMP-activated protein kinase-dependent mechanism, AMP-activated protein kinase-independent mechanisms, alteration of insulin and insulin-like growth factor signaling pathways, and suppression of androgen signaling pathways that trigger prostate cancer growth and proliferation. In contrast to other malignancies that are associated with increased incidence among patients with obesity and type II diabetes mellitus (T2DM), epidemiological studies suggest that obesity and T2DM may impart a protective effect on prostate cancer incidence by creating a set of metabolic conditions that lower androgen levels. METHODS AND MATERIALS The PubMed and Web of Science databases were searched using the terms "prostate cancer," "metformin," "antineoplastic," "antitumorigenic," and "diabetes" up to the first week of August 2016. Articles regarding metformin's antineoplastic properties on prostate cancer were reviewed. RESULTS Treating T2DM with metformin may reverse the metabolic conditions that suppress androgen levels, thereby enabling higher levels of androgens to stimulate prostate growth, proliferation, and tumorigenesis. Thus, the antineoplastic properties of metformin may not be appreciable in the early stages of prostate cancer development because metformin corrects for the metabolic conditions of T2DM that impart a protective effect on prostate cancer. These findings, although inconclusive, do not support the use of metformin as a preventive agent for prostate cancer. However, the future appears bright for metformin as either a monotherapy or an adjunct to androgen deprivation therapy, external-beam radiation therapy, prostatectomy, or chemotherapy. Support for this includes meta-analyses that suggest a mortality benefit to patients with prostate cancer on metformin, a clinical trial that demonstrates metformin leads to significant improvement in metabolic syndrome parameters for patients with prostate cancer on androgen deprivation therapy, and a clinical trial that shows metformin has modest activity in the treatment of some patients with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. CONCLUSIONS This review summarizes the literature regarding the antineoplastic mechanisms, clinical implications, and future trajectory of clinical research for metformin in prostate cancer.
Collapse
Affiliation(s)
| | - Mina Fam
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Nitin N Patel
- Division of Urology, Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
33
|
Tan L, Zhang Z, Gao D, Luo J, Tu ZC, Li Z, Peng L, Ren X, Ding K. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. J Med Chem 2016; 59:6807-25. [PMID: 27379978 DOI: 10.1021/acs.jmedchem.6b00608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Tan
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhang Zhang
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Donglin Gao
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengqiu Li
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
34
|
Wang C, Jin H, Wang N, Fan S, Wang Y, Zhang Y, Wei L, Tao X, Gu D, Zhao F, Fang J, Yao M, Qin W. Gas6/Axl Axis Contributes to Chemoresistance and Metastasis in Breast Cancer through Akt/GSK-3β/β-catenin Signaling. Am J Cancer Res 2016; 6:1205-19. [PMID: 27279912 PMCID: PMC4893646 DOI: 10.7150/thno.15083] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance in breast cancer has been of great interest in past studies. However, the development of rational therapeutic strategies targeting chemoresistant cells is still a challenge in clinical oncology. By integrating data from global differences of gene expression and phospho-receptor tyrosine kinases between sensitive parental cells (MCF-7) and doxorubicin-resistant cells (MCF-7/ADR), we identified Axl as a potential target for chemoresistance and metastasis in multidrug resistant breast cancer cells. We analyzed Axl expression in 57 breast cancer cell lines and detected a dramatic increase in its expression level in mesenchymal breast cancer cell lines. Axl silencing suppressed invasive and metastatic potentials of chemoresistant breast cancer cells as well as increased elimination of cancer cells when combined with doxorubicin. Furthermore, in preclinical assays, an Axl inhibitor R428 showed increased cell death upon doxorubicin treatment. Additionally, using phospho-kinase array based proteomic analysis, we identified that Akt/GSK-3β/β-catenin cascade was responsible for Axl-induced cell invasion. Nuclear translocation of β-catenin then induced transcriptional upregulation of ZEB1, which in turn regulated DNA damage repair and doxorubicin-resistance in breast cancer cells. Most importantly, Axl was correlated with its downstream targets in tumor samples and was associated with poor prognosis in breast cancer patients. These results demonstrate that Gas6/Axl axis confers aggressiveness in breast cancer and may represent a therapeutic target for chemoresistance and metastasis.
Collapse
|
35
|
Roos L, van Dongen J, Bell CG, Burri A, Deloukas P, Boomsma DI, Spector TD, Bell JT. Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 2016; 8:7. [PMID: 26798410 PMCID: PMC4721070 DOI: 10.1186/s13148-016-0172-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic (MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip. Results We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium, thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10−7) in an intergenic region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695 (near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03). Conclusions We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1, COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis, highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0172-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jenny van Dongen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Christopher G Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK ; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ; Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK ; Epigenomic Medicine, Centre for Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK
| | - Andrea Burri
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|