1
|
Giusti V, Miserocchi G, Sbanchi G, Pannella M, Hattinger CM, Cesari M, Fantoni L, Guerrieri AN, Bellotti C, De Vita A, Spadazzi C, Donati DM, Torsello M, Lucarelli E, Ibrahim T, Mercatali L. Xenografting Human Musculoskeletal Sarcomas in Mice, Chick Embryo, and Zebrafish: How to Boost Translational Research. Biomedicines 2024; 12:1921. [PMID: 39200384 PMCID: PMC11352184 DOI: 10.3390/biomedicines12081921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Musculoskeletal sarcomas pose major challenges to researchers and clinicians due to their rarity and heterogeneity. Xenografting human cells or tumor fragments in rodents is a mainstay for the generation of cancer models and for the preclinical trial of novel drugs. Lately, though, technical, intrinsic and ethical concerns together with stricter regulations have significantly curbed the employment of murine patient-derived xenografts (mPDX). In alternatives to murine PDXs, researchers have focused on embryonal systems such as chorioallantoic membrane (CAM) and zebrafish embryos. These systems are time- and cost-effective hosts for tumor fragments and near-patient cells. The CAM of the chick embryo represents a unique vascularized environment to host xenografts with high engraftment rates, allowing for ease of visualization and molecular detection of metastatic cells. Thanks to the transparency of the larvae, zebrafish allow for the tracking of tumor development and metastatization, enabling high-throughput drug screening. This review will focus on xenograft models of musculoskeletal sarcomas to highlight the intrinsic and technically distinctive features of the different hosts, and how they can be exploited to elucidate biological mechanisms beneath the different phases of the tumor's natural history and in drug development. Ultimately, the review suggests the combination of different models as an advantageous approach to boost basic and translational research.
Collapse
Affiliation(s)
- Veronica Giusti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Giulia Sbanchi
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Marilena Cesari
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Davide Maria Donati
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Monica Torsello
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| |
Collapse
|
2
|
Fan Z, Dong S, Wang N, Khawar MB, Wang J, Sun H. Unlocking epigenetics for precision treatment of Ewing's sarcoma. Chin J Cancer Res 2024; 36:322-340. [PMID: 38988487 PMCID: PMC11230886 DOI: 10.21147/j.issn.1000-9604.2024.03.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 07/12/2024] Open
Abstract
Ewing's sarcoma (EWS) is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults. Despite the efficacy of chemoradiotherapy in some cases, the cure rate for patients with metastatic and recurrent disease remains low. Therefore, there is an urgent need for innovative therapeutic approaches to address the challenges associated with EWS treatment. Epigenetic regulation, a crucial factor in physiological processes, plays a significant role in controlling cell proliferation, maintaining gene integrity, and regulating transcription. Recent studies highlight the importance of abnormal epigenetic regulation in the initiation and progression of EWS. A comprehensive understanding of the intricate interactions between EWS and aberrant epigenetic regulation is essential for advancing clinical drug development. This review aims to provide a comprehensive overview of both epigenetic targets implicated in EWS, integrating various therapeutic modalities to offer innovative perspectives for the clinical diagnosis and treatment of EWS.
Collapse
Affiliation(s)
- Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Shuangshuang Dong
- Department of Pathology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, China
| |
Collapse
|
3
|
Kyriazoglou A, Moutafi M, Zografos E, Konteles V, Sofianidis G, Mahaira L, Papakosta A, Tourkantoni N, Patereli A, Stefanaki K, Tzotzola V, Mpaka M, Polychronopoulou S, Dimitriadis E, Kattamis A. Expression of DNA Repair Genes in Ewing Sarcoma. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:231-238. [PMID: 38707718 PMCID: PMC11062174 DOI: 10.21873/cdp.10313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 05/07/2024]
Abstract
Background/Aim Ewing sarcoma is an aggressive mesenchymal malignancy commonly affecting children and young adolescents. The molecular basis of this neoplasia is well reported with the formation of the EWSR1/FLI1 fusion gene being the most common genetic finding. However, this fusion gene has not been targeted therapeutically nor is being used as a prognostic marker. Its relevance regarding the molecular steps leading to Ewing sarcoma genesis are yet to be defined. The generation of the oncogenic EWSR1/FLI1 fusion gene, can be attributed to the simultaneous introduction of two DNA double-strand breaks (DSBs). The scope of this study is to detect any association between DNA repair deficiency and the clinicopathological aspects of Ewing's sarcoma disease. Patients and Methods We have conducted an expression analysis of 35 patients diagnosed with Ewing sarcoma concerning the genes involved in non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways. We have analyzed the expression levels of 6 genes involved in NHEJ (XRCC4, XRCC5, XRCC6, POLλ, POLμ) and 9 genes involved in HR (RAD51, RAD52, RAD54, BRCA1, BRCA2, FANCC, FANCD, DNTM1, BRIT1) using real time PCR. Age, sex, location of primary tumor, tumor size, KI67, mitotic count, invasion of adjacent tissues and treatment were the clinicopathological parameters included in the statistical analysis. Results Our results show that both these DNA repair pathways are deregulated in Ewing sarcoma. In addition, low expression of the xrcc4 gene has been associated with better overall survival probability (p=0.032). Conclusion Our results, even though retrospective and in a small number of patients, highlight the importance of DSBs repair and propose a potential therapeutic target for this type of sarcoma.
Collapse
Affiliation(s)
- Anastasios Kyriazoglou
- Second Department of Internal Medicine, Oncology Unit, University Hospital Attikon, Athens, Greece
| | - Myrto Moutafi
- Second Department of Internal Medicine, Oncology Unit, University Hospital Attikon, Athens, Greece
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Georgios Sofianidis
- Motor Control and Learning Laboratory, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Louisa Mahaira
- Department of Genetics, Aghios Savvas Hospital, Athens, Greece
| | | | - Natalia Tourkantoni
- Division of Pediatric Oncology, First Department of Pediatrics, Aghia Sofia Children's Hospital, Athens, Greece
- 'Aghia Sofia' Children's Hospital ERN-PaedCan Center, Athens, Greece
| | - Amalia Patereli
- Department of Pathology, Aghia Sofia Children's Hospital, Athens, Greece
| | - Kalliopi Stefanaki
- Department of Pathology, Aghia Sofia Children's Hospital, Athens, Greece
| | - Vasiliki Tzotzola
- 'Aghia Sofia' Children's Hospital ERN-PaedCan Center, Athens, Greece
- Department of Pediatric Oncology, Aghia Sofia Children's Hospital, Athens, Greece
| | - Margarita Mpaka
- Department of Pediatric Oncology, Panagiotis and Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Sofia Polychronopoulou
- 'Aghia Sofia' Children's Hospital ERN-PaedCan Center, Athens, Greece
- Department of Pediatric Oncology, Aghia Sofia Children's Hospital, Athens, Greece
| | | | - Antonis Kattamis
- Division of Pediatric Oncology, First Department of Pediatrics, Aghia Sofia Children's Hospital, Athens, Greece
- 'Aghia Sofia' Children's Hospital ERN-PaedCan Center, Athens, Greece
| |
Collapse
|
4
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|
5
|
Povo-Retana A, Landauro-Vera R, Alvarez-Lucena C, Cascante M, Boscá L. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment-Progresses in Their Use in Combined Cancer Therapy. Molecules 2024; 29:331. [PMID: 38257245 PMCID: PMC10820391 DOI: 10.3390/molecules29020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
6
|
Slotkin EK, Ortiz MV, Glade Bender JL. Pediatric DDR inhibitor combinations: Are WEE1 there yet? Cancer 2023; 129:2132-2134. [PMID: 37081596 DOI: 10.1002/cncr.34785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A phase 2 study of the WEE1 inhibitor adavosertib in combination with irinotecan in children demonstrates an intriguing positive signal of efficacy in neuroblastoma, a pediatric tumor characterized by replication stress. Further pediatric development of adavosertib and related compounds targeting DNA damage response will be challenged by appropriate patient selection, fit‐for‐filing trial design, and ongoing access to agents, likely to be predicated on success in adult malignancy.
Collapse
Affiliation(s)
- Emily K Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
7
|
Chavan M, Dhakal S, Singh A, Rai V, Arora S, C Mallipeddi M, Das A. Ewing sarcoma genomics and recent therapeutic advancements. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
8
|
Attenuation of Tumor Burden in Response to Rucaparib in Lung Adenocarcinoma: The Contribution of Oxidative Stress, Apoptosis, and DNA Damage. Int J Mol Sci 2023; 24:ijms24032580. [PMID: 36768904 PMCID: PMC9916668 DOI: 10.3390/ijms24032580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
In cancer, overactivation of poly (ADPribose) polymerases (PARP) plays a relevant role in DNA repair. We hypothesized that treatment with the PARP inhibitor rucaparib may reduce tumor burden via several biological mechanisms (apoptosis and oxidative stress) in mice. In lung tumors (LP07 lung adenocarcinoma) of mice treated/non-treated (control animals) with PARP inhibitor (rucaparib,150 mg/kg body weight/24 h for 20 day), PARP activity and expression, DNA damage, apoptotic nuclei, cell proliferation, and redox balance were measured using immunoblotting and immunohistochemistry. In lung tumors of rucaparib-treated mice compared to non-treated animals, tumor burden, PARP activity, and cell proliferation decreased, while DNA damage, TUNEL-positive nuclei, protein oxidation, and superoxide dismutase content (SOD)2 increased. In this experiment on lung adenocarcinoma, the pharmacological PARP inhibitor rucaparib elicited a significant improvement in tumor size, probably through a reduction in cell proliferation as a result of a rise in DNA damage and apoptosis. Oxidative stress and SOD2 also increased in response to treatment with rucaparib within the tumor cells of the treated mice. These results put the line forward to the contribution of PARP inhibitors to reduced tumor burden in lung adenocarcinoma. The potential implications of these findings should be tested in clinical settings of patients with lung tumors.
Collapse
|
9
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
10
|
Zhang S, Li E, Liu Z, Shang H, Chen Y, Jing H. Nanoparticle-based Olaparib delivery enhances its effect, and improves drug sensitivity to cisplatin in triple negative breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Maki RG, Grohar PJ, Antonescu CR. Ewing sarcoma and related FET family translocation-associated round cell tumors: A century of clinical and scientific progress. Genes Chromosomes Cancer 2022; 61:509-517. [PMID: 35443099 PMCID: PMC9197982 DOI: 10.1002/gcc.23050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
The year 2021 marked the centenary of the first publication of a cancer termed diffuse endothelioma of bone by James Ewing. Its unique features were apparent even in the first case series he described. This new diagnosis was clearly distinct from osteogenic sarcoma and myeloma, which were already well recognized at the time. We undertake this summary to better understanding Ewing sarcoma, contrasting the logarithmic evolution of the standard of care of systemic therapy for this and related diagnoses to the exponential understanding of the molecular biology of this family of tumors. We also outline in this manuscript how the finding of genomic relatives within Ewing sarcoma itself and related tumors, first noted nearly 40 years ago, helps us appreciate the need to find therapeutic plans that are specific for each small round blue cell tumor subtype. The advent of next generation sequencing regarding previously unknown small round blue cell tumor subtypes in many ways puts us back in the shoes of James Ewing in 1921, searching anew for clues leading to better treatments for increasingly rare cancer subsets.
Collapse
Affiliation(s)
- Robert G Maki
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick J Grohar
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Kirsanov K, Fetisov T, Antoshina E, Trukhanova L, Gor'kova T, Vlasova O, Khitrovo I, Lesovaya E, Kulbachevskaya N, Shcherbakova T, Belitsky G, Yakubovskaya M, Švedas V, Nilov D. Toxicological Properties of 7-Methylguanine, and Preliminary Data on its Anticancer Activity. Front Pharmacol 2022; 13:842316. [PMID: 35873588 PMCID: PMC9299380 DOI: 10.3389/fphar.2022.842316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
7-Methylguanine (7-MG) competitively inhibits the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) and RNA-modifying enzyme tRNA-guanine transglycosylase (TGT) and represents a potential anticancer drug candidate. Furthermore, as a natural compound, it could escape the serious side effects characteristic for approved synthetic PARP inhibitors. Here we present a comprehensive study of toxicological and carcinogenic properties of 7-MG. It was demonstrated that 7-MG does not induce mutations or structural chromosomal abnormalities, and has no blastomogenic activity. A treatment regimen with 7-MG has been established in mice (50 mg/kg per os, 3 times per week), exerting no adverse effects or changes in morphology. Preliminary data on the 7-MG anticancer activity obtained on transplantable tumor models support our conclusions that 7-MG can become a promising new component of chemotherapy.
Collapse
Affiliation(s)
- Kirill Kirsanov
- Blokhin Cancer Research Center, Moscow, Russia.,Peoples' Friendship University of Russia, Moscow, Russia
| | | | | | | | | | | | | | - Ekaterina Lesovaya
- Blokhin Cancer Research Center, Moscow, Russia.,Pavlov Ryazan State Medical University, Ryazan, Russia
| | | | - Tatiana Shcherbakova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Vytas Švedas
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Vuelta E, Ordoñez JL, Sanz DJ, Ballesteros S, Hernández-Rivas JM, Méndez-Sánchez L, Sánchez-Martín M, García-Tuñón I. CRISPR/Cas9-Directed Gene Trap Constitutes a Selection System for Corrected BCR/ABL Leukemic Cells in CML. Int J Mol Sci 2022; 23:ijms23126386. [PMID: 35742831 PMCID: PMC9224210 DOI: 10.3390/ijms23126386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is a haematological neoplasm driven by the BCR/ABL fusion oncogene. The monogenic aspect of the disease and the feasibility of ex vivo therapies in haematological disorders make CML an excellent candidate for gene therapy strategies. The ability to abolish any coding sequence by CRISPR-Cas9 nucleases offers a powerful therapeutic opportunity to CML patients. However, a definitive cure can only be achieved when only CRISPR-edited cells are selected. A gene-trapping approach combined with CRISPR technology would be an ideal approach to ensure this. Here, we developed a CRISPR-Trap strategy that efficiently inserts a donor gene trap (SA-CMV-Venus) cassette into the BCR/ABL-specific fusion point in the CML K562 human cell line. The trapping cassette interrupts the oncogene coding sequence and expresses a reporter gene that enables the selection of edited cells. Quantitative mRNA expression analyses showed significantly higher level of expression of the BCR/Venus allele coupled with a drastically lower level of BCR/ABL expression in Venus+ cell fractions. Functional in vitro experiments showed cell proliferation arrest and apoptosis in selected Venus+ cells. Finally, xenograft experiments with the selected Venus+ cells showed a large reduction in tumour growth, thereby demonstrating a therapeutic benefit in vivo. This study represents proof of concept for the therapeutic potential of a CRISPR-Trap system as a novel strategy for gene elimination in haematological neoplasms.
Collapse
Affiliation(s)
- Elena Vuelta
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José L. Ordoñez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - David J. Sanz
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Sandra Ballesteros
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Jesús M. Hernández-Rivas
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Lucía Méndez-Sánchez
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| | - Ignacio García-Tuñón
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| |
Collapse
|
14
|
Management of Unresectable Localized Pelvic Bone Sarcomas: Current Practice and Future Perspectives. Cancers (Basel) 2022; 14:cancers14102546. [PMID: 35626150 PMCID: PMC9139258 DOI: 10.3390/cancers14102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Some locally advanced pelvic bone tumors are deemed unresectable and, as such, not suitable for curative surgery. In this setting, treatment options are generally limited and not unanimous, with decisions being made on an individual basis after multidisciplinary discussion. Ultimately, and notwithstanding the bright prospects raised by novel therapeutic approaches, treatment should be patient-tailored, weighing a panoply of patient- and tumor-related factors. Abstract Bone sarcomas (BS) are rare mesenchymal tumors usually located in the extremities and pelvis. While surgical resection is the cornerstone of curative treatment, some locally advanced tumors are deemed unresectable and hence not suitable for curative intent. This is often true for pelvic sarcoma due to anatomic complexity and proximity to vital structures, making treatment options for these tumors generally limited and not unanimous, with decisions being made on an individual basis after multidisciplinary discussion. Several studies have been published in recent years focusing on innovative treatment options for patients with locally advanced sarcoma not amenable to local surgery. The present article reviews the evidence regarding the treatment of patients with locally advanced and unresectable pelvic BS, with the goal of providing an overview of treatment options for the main BS histologic subtypes involving this anatomic area and exploring future therapeutic perspectives. The management of unresectable localized pelvic BS represents a major challenge and is hampered by the lack of comprehensive and standardized guidelines. As such, the optimal treatment needs to be individually tailored, weighing a panoply of patient- and tumor-related factors. Despite the bright prospects raised by novel therapeutic approaches, the role of each treatment option in the therapeutic armamentarium of these patients requires solid clinical evidence before becoming fully established.
Collapse
|
15
|
Alemi F, Malakoti F, Vaghari-Tabari M, Soleimanpour J, Shabestani N, Sadigh AR, Khelghati N, Asemi Z, Ahmadi Y, Yousefi B. DNA damage response signaling pathways as important targets for combination therapy and chemotherapy sensitization in osteosarcoma. J Cell Physiol 2022; 237:2374-2386. [PMID: 35383920 DOI: 10.1002/jcp.30721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Osteosarcoma (OS) is the most common bone malignancy that occurs most often in young adults, and adolescents with a survival rate of 20% in its advanced stages. Nowadays, increasing the effectiveness of common treatments used in OS has become one of the main problems for clinicians due to cancer cells becoming resistant to chemotherapy. One of the most important mechanisms of resistance to chemotherapy is through increasing the ability of DNA repair because most chemotherapy drugs damage the DNA of cancer cells. DNA damage response (DDR) is a signal transduction pathway involved in preserving the genome stability upon exposure to endogenous and exogenous DNA-damaging factors such as chemotherapy agents. There is evidence that the suppression of DDR may reduce chemoresistance and increase the effectiveness of chemotherapy in OS. In this review, we aim to summarize these studies to better understand the role of DDR in OS chemoresistance in pursuit of overcoming the obstacles to the success of chemotherapy.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Shabestani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin R Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Khelghati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Yasin Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Science, Komar University of Science and Technology, Soleimania, Kurdistan Region, Iraq
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Poveda A, Lopez-Reig R, Oaknin A, Redondo A, Rubio MJ, Guerra E, Fariñas-Madrid L, Gallego A, Rodriguez-Freixinos V, Fernandez-Serra A, Juan O, Romero I, Lopez-Guerrero JA. Phase 2 Trial (POLA Study) of Lurbinectedin plus Olaparib in Patients with Advanced Solid Tumors: Results of Efficacy, Tolerability, and the Translational Study. Cancers (Basel) 2022; 14:915. [PMID: 35205662 PMCID: PMC8870416 DOI: 10.3390/cancers14040915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
We hypothesized that the combination of olaparib and lurbinectedin maximizes DNA damage, thus increasing its efficacy. The POLA phase 1 trial established the recommended phase 2 dose of lurbinectedin as being 1.5 mg (day 1) and that of olaparib as being 250 mg/12 h (days 1-5) for a 21-day cycle. In phase 2, we explore the efficacy of the combination in terms of clinical response and its correlation with mutations in the HRR genes and the genomic instability (GI) parameters. Results: A total of 73 patients with high-grade ovarian (n = 46), endometrial (n = 26), and triple-negative breast cancer (n = 1) were treated with lurbinectedin and olaparib. Most patients (62%) received ≥3 lines of prior therapy. The overall response rate (ORR) and disease control rate (DCR) were 9.6% and 72.6%, respectively. The median progression-free survival (PFS) was 4.54 months (95% CI 3.0-5.2). Twelve (16.4%) patients were considered long-term responders (LTR), with a median PFS of 13.3 months. No clinical benefit was observed for cases with HRR gene mutation. In ovarian LTRs, although a direct association with GI and a total loss of heterozygosity (LOH) events was observed, the association did not reach statistical significance (p = 0.055). Globally, the total number of LOHs might be associated with the ORR (p =0.074). The most common grade 3-4 toxicities were anemia and thrombocytopenia, in 6 (8.2%) and 3 (4.1%) patients, respectively. Conclusion: The POLA study provides evidence that the administration of lurbinectedin and olaparib is feasible and tolerable, with a DCR of 72.6%. Different GI parameters showed associations with better responses.
Collapse
Affiliation(s)
- Andres Poveda
- Oncogynecologic Department, Initia Oncology, Hospital Quironsalud, Avda Blasco Ibañez, 14, 46010 Valencia, Spain
| | - Raquel Lopez-Reig
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.L.-R.); (A.F.-S.); (J.A.L.-G.)
- IVO-CIPF Joint Research Unit of Cancer, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Ana Oaknin
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d´Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (A.O.); (L.F.-M.); (V.R.-F.)
| | - Andres Redondo
- Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain; (A.R.); (A.G.)
| | - Maria Jesus Rubio
- Medical Oncology Department, Universitary Hospital Reina Sofia, 14004 Cordoba, Spain;
| | - Eva Guerra
- Medical Oncology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Lorena Fariñas-Madrid
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d´Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (A.O.); (L.F.-M.); (V.R.-F.)
| | - Alejandro Gallego
- Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain; (A.R.); (A.G.)
| | - Victor Rodriguez-Freixinos
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d´Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (A.O.); (L.F.-M.); (V.R.-F.)
- Department of Medical Oncology and Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Antonio Fernandez-Serra
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.L.-R.); (A.F.-S.); (J.A.L.-G.)
- IVO-CIPF Joint Research Unit of Cancer, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Oscar Juan
- Medical Oncology, Pivotal SLU, 28023 Madrid, Spain;
| | - Ignacio Romero
- Medical Oncology, Fundacion Instituto Valenciano de Oncologia, 46009 Valencia, Spain;
| | - Jose A. Lopez-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.L.-R.); (A.F.-S.); (J.A.L.-G.)
- IVO-CIPF Joint Research Unit of Cancer, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Department of Pathology, School of Medicine, Catholic University of Valencia ‘San Vicente Mártir’, 46001 Valencia, Spain
| |
Collapse
|
17
|
Dong S, Sun K, Xie L, Xu J, Sun X, Ren T, Huang Y, Yang R, Tang X, Yang F, Gu J, Guo W. Quality of life and Q-TWiST were not adversely affected in Ewing sarcoma patients treated with combined anlotinib, irinotecan, and vincristine: (Peking University People's Hospital Ewing sarcoma trial-02, PKUPH-EWS-02). Medicine (Baltimore) 2021; 100:e28078. [PMID: 34941047 PMCID: PMC8702230 DOI: 10.1097/md.0000000000028078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Combined treatment with anlotinib, irinotecan, as well as vincristine for advanced Ewing sarcoma (EWS) has been verified been effective in the prospective trial of Peking University People's Hospital EWS trial-02. We aimed to assess the dynamic changes in health-related quality of life (QoL) and the benefit-risk in quality-adjusted survival in current study. METHODS Twelve "pediatric" patients and 23 "adult" patients were enrolled. QoL was assessed with the EORTC QLQ-C30 for adults and PedsQL 3.0 Cancer Module for children and adolescents. The quality-adjusted time without symptoms of disease progression or toxicity of treatment (Q-TWiST) analysis was used to describe treatment results. RESULTS Progression-free survival was not accompanied by diminished QoL. Differences in scores on the QoL global health status and specific functioning before, during, and after treatment were not significantly different with time (P = .14 for adults and .91 for children). During treatment, there was a statistically insignificant trend towards improved QoL with reduced tumor burden (P = .14 for adults and .10 for children), but QoL significantly declined with progression of disease (P = .05 for adults and .04 for children). The most common adverse events were neutropenia (12.1%), leukopenia (16.6%), anemia (12.7%), and diarrhea (4.93%). Results across the trial analyses showed that the median time of Q-TWiST was 0.73 (interquartile range, 0-1.57) months, whereas the median time with toxicity before disease progression was 3.9 (interquartile range, 2.3, 6.1). CONCLUSION QoL exhibited a trend towards improvement in accordance with high objective response in this trial with the receipt of combination therapy of anlotinib, vinsristine, and irinotecan for advanced EWS. The toxicity profile did not translate into significantly worse overall scores during treatment.
Collapse
Affiliation(s)
- Sen Dong
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Kunkun Sun
- Pathology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Rongli Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Fan Yang
- Radiologic Department, Peking University Shqougang Hospital, Beijing, 100144, China
| | - Jin Gu
- Surgical Oncology, Peking University Shougang Hospital, Beijing, 100144, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
18
|
Pignochino Y, Crisafulli G, Giordano G, Merlini A, Berrino E, Centomo ML, Chiabotto G, Brusco S, Basiricò M, Maldi E, Pisacane A, Leuci V, Sangiolo D, D’Ambrosio L, Aglietta M, Kasper B, Bardelli A, Grignani G. PARP1 Inhibitor and Trabectedin Combination Does Not Increase Tumor Mutational Burden in Advanced Sarcomas-A Preclinical and Translational Study. Cancers (Basel) 2021; 13:cancers13246295. [PMID: 34944915 PMCID: PMC8699802 DOI: 10.3390/cancers13246295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Immunotherapy has revolutionized cancer treatment, but not for all tumor types. Indeed, sarcomas are considered “immune-cold” tumors, which are relatively unresponsive to immunotherapy. One strategy to potentiate immunotherapy efficacy is to increase tumor immunogenicity, for instance by boosting the number of candidate targets (neoantigens) to be recognized by the immune system. Tumor mutational burden indicates the number of somatic mutations identified in the tumor and normalized per megabase. Tumor mutational burden is considered as an acceptable, measurable surrogate of tumor neoantigens. Here, we explored whether the combination of two DNA-damaging agents, trabectedin and olaparib, could increase tumor mutational burden in sarcomas, to prime subsequent immunotherapy. We found no variation in tumor mutational burden after trabectedin + olaparib in preclinical and clinical samples. Therefore, other aspects should be considered to increase sarcoma immunogenicity, by exploiting different pathways such as the potential modulation of the tumor microenvironment induced by trabectedin + olaparib. Abstract Drug-induced tumor mutational burden (TMB) may contribute to unleashing the immune response in relatively “immune-cold” tumors, such as sarcomas. We previously showed that PARP1 inhibition perpetuates the DNA damage induced by the chemotherapeutic agent trabectedin in both preclinical models and sarcoma patients. In the present work, we explored acquired genetic changes in DNA repair genes, mutational signatures, and TMB in a translational platform composed of cell lines, xenografts, and tumor samples from patients treated with trabectedin and olaparib combination, compared to cells treated with temozolomide, an alkylating agent that induces hypermutation. Whole-exome and targeted panel sequencing data analyses revealed that three cycles of trabectedin and olaparib combination neither affected the mutational profiles, DNA repair gene status, or copy number alterations, nor increased TMB both in homologous recombinant-defective and proficient cells or in xenografts. Moreover, TMB was not increased in tumor specimens derived from trabectedin- and olaparib-treated patients (5–6 cycles) when compared to pre-treatment biopsies. Conversely, repeated treatments with temozolomide induced a massive TMB increase in the SJSA-1 osteosarcoma model. In conclusion, a trabectedin and olaparib combination did not show mutagenic effects and is unlikely to prime subsequent immune-therapeutic interventions based on TMB increase. On the other hand, these findings are reassuring in the increasing warning of treatment-induced hematologic malignancies correlated to PARP1 inhibitor use.
Collapse
Affiliation(s)
- Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
- Correspondence: ; Tel.: +39-0119933623
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Medical Sciences, University of Torino, 10100 Torino, Italy;
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, 10100 Torino, Italy;
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Marco Basiricò
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Alberto Pisacane
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Bernd Kasper
- Sarcoma Unit, Mannheim University Medical Center, University of Heidelberg, 68167 Mannheim, Germany;
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| |
Collapse
|
19
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
20
|
Chan CY, Tan KV, Cornelissen B. PARP Inhibitors in Cancer Diagnosis and Therapy. Clin Cancer Res 2021; 27:1585-1594. [PMID: 33082213 DOI: 10.1158/1078-0432.ccr-20-2766] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
Targeting of PARP enzymes has emerged as an effective therapeutic strategy to selectively target cancer cells with deficiencies in homologous recombination signaling. Currently used to treat BRCA-mutated cancers, PARP inhibitors (PARPi) have demonstrated improved outcome in various cancer types as single agents. Ongoing efforts have seen the exploitation of PARPi combination therapies, boosting patient responses as a result of drug synergisms. Despite great successes using PARPi therapy, selecting those patients who will benefit from single agent or combination therapy remains one of the major challenges. Numerous reports have demonstrated that the presence of a BRCA mutation does not always result in synthetic lethality with PARPi therapy in treatment-naïve tumors. Cancer cells can also develop resistance to PARPi therapy. Hence, combination therapy may significantly affect the treatment outcomes. In this review, we discuss the development and utilization of PARPi in different cancer types from preclinical models to clinical trials, provide a current overview of the potential uses of PARP imaging agents in cancer therapy, and discuss the use of radiolabeled PARPi as radionuclide therapies.
Collapse
Affiliation(s)
- Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kel Vin Tan
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
A phase I dose-finding, pharmacokinetics and genotyping study of olaparib and lurbinectedin in patients with advanced solid tumors. Sci Rep 2021; 11:4433. [PMID: 33627685 PMCID: PMC7904806 DOI: 10.1038/s41598-021-82671-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
The poly (ADP-Ribose) polymerase (PARP) inhibitor olaparib has shown antitumor activity in patients with ovarian or breast cancer with or without BRCA1/2 mutations. Lurbinectedin is an ecteinascidin that generates DNA double-strand breaks. We hypothesized that the combination of olaparib and lurbinectedin maximizes the DNA damage increasing the efficacy. A 3 + 3 dose-escalation study examined olaparib tablets with lurbinectedin every 21 days. The purpose of this phase I study is to determine the dose-limiting toxicities (DLTs) of the combination, to investigate the maximum tolerated dose (MTD), the recommended phase II dose (RP2D), efficacy, pharmacokinetics, in addition to genotyping and translational studies. In total, 20 patients with ovarian and endometrial cancers were included. The most common adverse events were asthenia, nausea, vomiting, constipation, abdominal pain, neutropenia, anemia. DLT grade 4 neutropenia was observed in two patients in dose level (DL) 5, DL4 was defined as the MTD, and the RP2D was lurbinectedin 1.5 mg/m2 + olaparib 250 mg twice a day (BID). Mutational analysis revealed a median of 2 mutations/case, 53% of patients with mutations in the homologous recombination (HR) pathway. None of the patients reached a complete or partial response; however, 60% of stable disease was achieved. In conclusion, olaparib in combination with lurbinectedin was well tolerated with a disease control rate of 60%. These results deserve further evaluation of the combination in a phase II trial.
Collapse
|
22
|
Domenici G, Eduardo R, Castillo-Ecija H, Orive G, Montero Carcaboso Á, Brito C. PDX-Derived Ewing's Sarcoma Cells Retain High Viability and Disease Phenotype in Alginate Encapsulated Spheroid Cultures. Cancers (Basel) 2021; 13:cancers13040879. [PMID: 33669730 PMCID: PMC7922076 DOI: 10.3390/cancers13040879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Ewing’s Sarcoma (ES) is the second most frequent bone tumour in children and young adults, with very aggressive behaviour and significant disease recurrence. To better study the disease and find new therapies, experimental models are needed. Recently, patient-derived xenografts (PDX), obtained by implanting patient tumour samples in immunodeficient mice, have been developed. However, when ES cells are extracted from the patient’s tumour or from PDX and placed on plasticware surfaces, they lose their original 3D configuration, cell identity and function. To overcome these issues, we implemented cultures of PDX-derived ES cells, by making them aggregate to form ES cell spheroids and then encapsulating these 3D spheroids into a hydrogel, alginate, to stabilize the culture. We show that this methodology maintained ES cell viability and intrinsic characteristics of the original ES tumour cells for at least one month and that it is suitable for study the effect of anticancer drugs. Abstract Ewing’s Sarcoma (ES) is the second most frequent malignant bone tumour in children and young adults and currently only untargeted chemotherapeutic approaches and surgery are available as treatment, although clinical trials are on-going for recently developed ES-targeted therapies. To study ES pathobiology and develop novel drugs, established cell lines and patient-derived xenografts (PDX) are the most employed experimental models. Nevertheless, the establishment of ES cell lines is difficult and the extensive use of PDX raises economic/ethical concerns. There is a growing consensus regarding the use of 3D cell culture to recapitulate physiological and pathophysiological features of human tissues, including drug sensitivity. Herein, we implemented a 3D cell culture methodology based on encapsulation of PDX-derived ES cell spheroids in alginate and maintenance in agitation-based culture systems. Under these conditions, ES cells displayed high proliferative and metabolic activity, while retaining the typical EWSR1-FLI1 chromosomal translocation. Importantly, 3D cultures presented reduced mouse PDX cell contamination compared to 2D cultures. Finally, we show that these 3D cultures can be employed in drug sensitivity assays, with results similar to those reported for the PDX of origin. In conclusion, this novel 3D cell culture method involving ES-PDX-derived cells is a suitable model to study ES pathobiology and can assist in the development of novel drugs against this disease, complementing PDX studies.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Helena Castillo-Ecija
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Ángel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
23
|
Oza J, Doshi SD, Hao L, Musi E, Schwartz GK, Ingham M. Homologous recombination repair deficiency as a therapeutic target in sarcoma. Semin Oncol 2020; 47:380-389. [DOI: 10.1053/j.seminoncol.2020.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
|
24
|
Waters T, Goss KL, Koppenhafer SL, Terry WW, Gordon DJ. Eltrombopag inhibits the proliferation of Ewing sarcoma cells via iron chelation and impaired DNA replication. BMC Cancer 2020; 20:1171. [PMID: 33256675 PMCID: PMC7706234 DOI: 10.1186/s12885-020-07668-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background The treatment of Ewing sarcoma, an aggressive bone and soft tissue sarcoma, is associated with suboptimal outcomes and significant side-effects. Consequently, there is an urgent need to identify novel therapies that will improve outcomes for children and adults with Ewing sarcoma tumors while also decreasing treatment-related toxicities. Methods We analyzed data from the PRISM drug repurposing screen, which tested the activity of 4518 drugs across 578 cancer cell lines, to identify drugs that selectively inhibit the growth of Ewing sarcoma cell lines. We then tested the effects of a top hit from the screen on cell proliferation, cell cycle progression, and activation of the DNA damage pathway using Ewing sarcoma cell lines. We also used a CRISPR/Cas9 gene knockout approach to investigate the role of Schlafen 11 (SLFN11), a restriction factor for DNA replication stress that is overexpressed in Ewing sarcoma tumors, in mediating the sensitivity of Ewing sarcoma cells to the drug. Results We found that eltrombopag, an FDA-approved thrombopoietin-receptor agonist (TPO-RA) that is currently being evaluated as a treatment for chemotherapy-induced thrombocytopenia, inhibits the growth of Ewing sarcoma cell lines in vitro in proliferation and colony formation assays. However, from a mechanistic standpoint, the thrombopoietin receptor is not expressed in Ewing sarcoma cells and we show that eltrombopag impairs DNA replication and causes DNA damage in Ewing sarcoma cells by chelating iron, a known “off-target” effect of the drug. We also found that the sensitivity of Ewing sarcoma cells to eltrombopag is mediated, in part, by SLFN11, which regulates the cellular response to DNA replication stress. Conclusions Ewing sarcoma cell lines are sensitive to eltrombopag and this drug could improve outcomes for patients with Ewing sarcoma tumors by both targeting the tumor, via chelation of iron and inhibition of DNA replication, and reducing chemotherapy-induced thrombocytopenia, via stimulation of the thrombopoietin receptor. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12885-020-07668-6.
Collapse
Affiliation(s)
- Torin Waters
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, 25 S Grand Avenue, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
25
|
Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment. Signal Transduct Target Ther 2020; 5:195. [PMID: 32963243 PMCID: PMC7508862 DOI: 10.1038/s41392-020-00246-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosphorylation is a sensitive marker for double strand breaks and has recently emerged as biomarker of DNA damage for new drug development. In this study, we explored the role of H2AX phosphorylation at Ser139 alone or in combination with MAP17 protein, an inducer of DNA damage through ROS increase, as prognostic biomarkers in sarcoma tumors. Next, we proposed doxorubicin and olaparib combination as potential therapeutic strategies against sarcomas displaying high level of both markers. We evaluate retrospectively the levels of pH2AX (Ser139) and MAP17 in a cohort of 69 patients with different sarcoma types and its relationship with clinical and pathological features. We found that the levels of pH2AX and MAP17 were related to clinical features and poor survival. Next, we pursued PARP1 inhibition with olaparib to potentiate the antitumor effect of DNA damaging effect of the DNA damaging agent doxorubicin to achieve an optimal synergy in sarcoma. We demonstrated that the combination of olaparib and doxorubicin was synergistic in vitro, inhibiting cell proliferation and enhancing pH2AX intranuclear accumulation, as a result of DNA damage. The synergism was corroborated in patient-derived xenografts (PDX) where the combination was effective in tumors with high levels of pH2AX and MAP17, suggesting that both biomarkers might potentially identify patients who better benefit from this combined therapy.
Collapse
|
26
|
Guo C, Zhang F, Wu X, Yu X, Wu X, Shi D, Wang L. BTH-8, a novel poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor, causes DNA double-strand breaks and exhibits anticancer activities in vitro and in vivo. Int J Biol Macromol 2020; 150:238-245. [DOI: 10.1016/j.ijbiomac.2020.02.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
|
27
|
Bexelius TS, Wasti A, Chisholm JC. Mini-Review on Targeted Treatment of Desmoplastic Small Round Cell Tumor. Front Oncol 2020; 10:518. [PMID: 32373525 PMCID: PMC7186354 DOI: 10.3389/fonc.2020.00518] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a devastating disease which most commonly affects adolescents, with a male predominance. Despite the best multimodality treatment efforts, most patients will ultimately not survive more than 3-5 years after diagnosis. Some research trials in soft-tissue sarcoma and Ewing sarcoma include DSRCT patients but few studies have been tailored to the specific clinical needs and underlying cytogenetic abnormalities characterizing this disease such as the typical EWSR1-WT1 gene fusion. Downstream activation of EWSR1-WT1 gene fusion includes signaling pathways of platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and insulin growth factor (IGF)-1. Other biological pathways that are activated and expressed in DSRCT cells include endothelial growth factor receptor (EGFR), androgen receptor pathway, c-KIT, MET, and transforming growth factor (TGF) beta. Investigation of somatic mutations, copy number alterations (CNA), and chromosomes in DSRCT samples suggests that deregulation of mesenchymal-epithelial reverse transition (MErT)/epithelial-mesenchymal transition (EMT) and DNA damage repair (DDR) may be important in DSRCT. This mini review looks at known druggable targets in DSRCT and existing clinical evidence for targeted treatments, particularly multityrosine kinase inhibitors such as pazopanib, imatinib, and sorafenib alone or in combination with other agents such as mTOR (mammalian target of rapamycin) inhibitors. The aim is to increase shared knowledge about current available treatments and identify gaps in research to further efforts toward clinical development of targeted agents.
Collapse
Affiliation(s)
- Tomas S. Bexelius
- Children and Young People's Unit, Royal Marsden Hospital NHS Foundation Trust, Sutton, United Kingdom
- Department of Women and Children Health at Karolinska Institutet, Stockholm, Sweden
| | - Ajla Wasti
- Department of Pediatric Oncology, Seattle Children's Hospital, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Julia C. Chisholm
- Children and Young People's Unit, Royal Marsden Hospital NHS Foundation Trust, Sutton, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
28
|
van Erp AEM, van Houdt L, Hillebrandt-Roeffen MHS, van Bree NFHN, Flucke UE, Mentzel T, Shipley J, Desar IME, Fleuren EDG, Versleijen-Jonkers YMH, van der Graaf WTA. Olaparib and temozolomide in desmoplastic small round cell tumors: a promising combination in vitro and in vivo. J Cancer Res Clin Oncol 2020; 146:1659-1670. [PMID: 32279088 PMCID: PMC7256072 DOI: 10.1007/s00432-020-03211-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
Abstract
Purpose Desmoplastic small round cell tumors (DSRCTs) are highly malignant and very rare soft tissue sarcomas with a high unmet need for new therapeutic options. Therefore, we examined poly(ADP-ribose) polymerase 1 (PARP1) and Schlafen-11 (SLFN11) expression in DSRCT tumor tissue and the combination of PARP inhibitor olaparib with the alkylating agent temozolomide (TMZ) in a preclinical DSRCT model. Methods PARP1 and SLFN11 have been described as predictive biomarkers for response to PARP inhibition. Expression of PARP1 and SLFN11 was assessed in 16 and 12 DSRCT tumor tissue samples, respectively. Effects of single-agent olaparib, and olaparib and TMZ combination treatment were examined using the preclinical JN-DSRCT-1 model. In vitro, single-agent and combination treatment effects on cell viability, the cell cycle, DNA damage and apoptosis were examined. Olaparib and TMZ combination treatment was also assessed in vivo. Results PARP1 and SLFN11 expression was observed in 100% and 92% of DSRCT tumor tissues, respectively. Olaparib treatment reduced cell viability and cell migration in a dose-dependent manner in vitro. Drug synergy between olaparib and TMZ was observed in vitro and in vivo. Combination treatment led to a cell-cycle arrest and induction of DNA damage and apoptosis, even when combined at low dosages. Conclusion We show high PARP1 and SLFN11 expression in DSRCT tumor material and antitumor effects following olaparib and TMZ combination treatment in a preclinical DSRCT model. This suggests that olaparib and TMZ combination treatment could be a potential treatment option for DSRCTs. Electronic supplementary material The online version of this article (10.1007/s00432-020-03211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anke E M van Erp
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Laurens van Houdt
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Niek F H N van Bree
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Uta E Flucke
- Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Emmy D G Fleuren
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Yvonne M H Versleijen-Jonkers
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Medical Oncology, The Netherlands Cancer Institute-Van Leeuwenhoek, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Current Approaches for Personalized Therapy of Soft Tissue Sarcomas. Sarcoma 2020; 2020:6716742. [PMID: 32317857 PMCID: PMC7152984 DOI: 10.1155/2020/6716742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcomas (STS) are a highly heterogeneous group of cancers of mesenchymal origin with diverse morphologies and clinical behaviors. While surgical resection is the standard treatment for primary STS, advanced and metastatic STS patients are not eligible for surgery. Systemic treatments, including standard chemotherapy and newer chemical agents, still play the most relevant role in the management of the disease. Discovery of specific genetic alterations in distinct STS subtypes allowed better understanding of mechanisms driving their pathogenesis and treatment optimization. This review focuses on the available targeted drugs or drug combinations based on genetic aberration involved in STS development including chromosomal translocations, oncogenic mutations, gene amplifications, and their perspectives in STS treatment. Furthermore, in this review, we discuss the possible use of chemotherapy sensitivity and resistance assays (CSRA) for the adjustment of treatment for individual patients. In summary, current trends in personalized management of advanced and metastatic STS are based on combination of both genetic testing and CSRA.
Collapse
|
30
|
Precision medicine in Ewing sarcoma: a translational point of view. Clin Transl Oncol 2020; 22:1440-1454. [PMID: 32026343 DOI: 10.1007/s12094-020-02298-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Ewing sarcoma is a rare tumor that arises in bones of children and teenagers but, in 15% of the patients it is presented as a primary soft tissue tumor. Balanced reciprocal chimeric translocation t(11;22)(q24;q12), which encodes an oncogenic protein fusion (EWSR1/FLI1), is the most generalized and characteristic molecular event. Using conventional treatments, (chemotherapy, surgery and radiotherapy) long-term overall survival rate is 30% for patients with disseminated disease and 65-75% for patients with localized tumors. Urgent new effective drug development is a challenge. This review summarizes the preclinical and clinical investigational knowledge about prognostic and targetable biomarkers in Ewing sarcoma, finally suggesting a workflow for precision medicine committees.
Collapse
|
31
|
Montaño A, Ordoñez JL, Alonso-Pérez V, Hernández-Sánchez J, Santos S, González T, Benito R, García-Tuñón I, Hernández-Rivas JM. ETV6/ RUNX1 Fusion Gene Abrogation Decreases the Oncogenicity of Tumour Cells in a Preclinical Model of Acute Lymphoblastic Leukaemia. Cells 2020; 9:E215. [PMID: 31952221 PMCID: PMC7017301 DOI: 10.3390/cells9010215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The t(12;21)(p13;q22), which fuses ETV6 and RUNX1 genes, is the most common genetic abnormality in children with B-cell precursor acute lymphoblastic leukaemia. The implication of the fusion protein in leukemogenesis seems to be clear. However, its role in the maintenance of the disease continues to be controversial. METHODS Generation of an in vitroETV6/RUNX1 knock out model using the CRISPR/Cas9 gene editing system. Functional characterization by RNA sequencing, proliferation assays, apoptosis and pharmacologic studies, and generation of edited-cell xenograft model. RESULTS The expression of ETV6/RUNX1 fusion gene was completely eliminated, thus generating a powerful model on which to study the role of the fusion gene in leukemic cells. The loss of fusion gene expression led to the deregulation of biological processes affecting survival such as apoptosis resistance and cell proliferation capacity. Tumour cells showed higher levels of apoptosis, lower proliferation rate and a greater sensitivity to PI3K inhibitors in vitro along as a decrease in tumour growth in xenografts models after ETV6/RUNX1 fusion gene abrogation. CONCLUSIONS ETV6/RUNX1 fusion protein seems to play an important role in the maintenance of the leukemic phenotype and could thus become a potential therapeutic target.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Jose Luis Ordoñez
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
- Department of Biochemistry and Molecular Biology, University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Verónica Alonso-Pérez
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Jesús Hernández-Sánchez
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Sandra Santos
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Teresa González
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
- Department of Hematology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Ignacio García-Tuñón
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
| | - Jesús María Hernández-Rivas
- IBSAL, IBMCC, Cancer Research Center, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain; (A.M.); (J.L.O.); (V.A.-P.); (J.H.-S.); (S.S.); (T.G.); (R.B.)
- Department of Hematology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Medicine, Universidad de Salamanca and CIBERONC, 37007 Salamanca, Spain
| |
Collapse
|
32
|
Knott MML, Hölting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev 2019; 38:625-642. [PMID: 31970591 PMCID: PMC6994515 DOI: 10.1007/s10555-019-09839-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).
Collapse
Affiliation(s)
- Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
33
|
Nanni P, Landuzzi L, Manara MC, Righi A, Nicoletti G, Cristalli C, Pasello M, Parra A, Carrabotta M, Ferracin M, Palladini A, Ianzano ML, Giusti V, Ruzzi F, Magnani M, Donati DM, Picci P, Lollini PL, Scotlandi K. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 2019; 9:12174. [PMID: 31434953 PMCID: PMC6704066 DOI: 10.1038/s41598-019-48634-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient’s tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Service of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Davide Maria Donati
- Third Orthopedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
34
|
Ju HY. Ewing Sarcoma. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2019. [DOI: 10.15264/cpho.2019.26.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Abstract
This chapter describes the procedures for inducing bone sarcoma in mice. Two models based on inoculation of cancer cells in paraosseous and intraosseous site will be described. In addition to providing technical aspects of anesthesia and surgical options, key information of cell preparation and postoperative follow-up will be discussed.
Collapse
|
36
|
Assi T, Kattan J, El Rassy E, Honore C, Dumont S, Mir O, Le Cesne A. A comprehensive review of the current evidence for trabectedin in advanced myxoid liposarcoma. Cancer Treat Rev 2019; 72:37-44. [DOI: 10.1016/j.ctrv.2018.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/15/2022]
|
37
|
Seligson ND, Kautto EA, Passen EN, Stets C, Toland AE, Millis SZ, Meyer CF, Hays JL, Chen JL. BRCA1/2 Functional Loss Defines a Targetable Subset in Leiomyosarcoma. Oncologist 2018; 24:973-979. [PMID: 30541756 DOI: 10.1634/theoncologist.2018-0448] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Soft-tissue sarcomas (STS) describe a heterogeneous group of mesenchymal tumors with limited treatment options. Targeted therapies exist for BRCA1/2 gene alterations, but their prevalence and role have not been fully described in STS. Here, we present the largest effort to characterize the frequency of homologous recombination (HR) DNA repair pathway alterations in STS subtypes and highlight the unique nature of leiomyosarcoma (LMS). MATERIALS AND METHODS DNA sequencing data were analyzed for HR pathway alterations for 1,236 patients with STS. DNA sequencing data from an additional 1,312 patients were used to confirm the prevalence of HR pathway alterations in LMS. Four uterine LMS (uLMS) patients with functional BRCA2 loss were evaluated for response to poly (ADP-ribose) polymerase (PARP) inhibition. RESULTS In an unselected STS study population, BRCA2 alterations were identified in 15 (1%) patients, and homozygous BRCA2 loss was detected in 9 (<1%). However, subset analysis revealed that these BRCA2 alterations were concentrated in uLMS as compared with any other STS subtype. Notably, 10% of uLMS tumors had a BRCA2 alteration. We further report that PARP inhibitors had demonstrated durable clinical benefit in four uLMS patients with BRCA2 loss. CONCLUSION HR pathway alterations are rare in most STS. However, we identify uLMS to be enriched for BRCA2 loss and report the positive outcomes of a series of patients treated with PARP inhibitors. Our data suggest that patients with uLMS should be considered for somatic BRCA2 profiling. Prospective trials are necessary to confirm the efficacy of PARP inhibition in uLMS. IMPLICATIONS FOR PRACTICE Soft-tissue sarcomas are a highly morbid, diverse set of tumors with limited treatment options. This study identifies an increased prevalence of functional BRCA1/2 loss in patients with uterine leiomyosarcoma (uLMS). It also presents four patients with uLMS and BRCA2 loss who achieved durable clinical benefit from poly (ADP-ribose) polymerase inhibition. These data suggest that patients with uLMS in particular should be screened for BRCA1/2 alterations and may benefit from treatment targeted to these alterations.
Collapse
Affiliation(s)
- Nathan D Seligson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Esko A Kautto
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Edward N Passen
- Division of Bioinformatics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Colin Stets
- Division of Bioinformatics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Christian F Meyer
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - John L Hays
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - James L Chen
- Division of Bioinformatics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
38
|
Guenther LM, Dharia NV, Ross L, Conway A, Robichaud AL, Catlett JL, Wechsler CS, Frank ES, Goodale A, Church AJ, Tseng YY, Guha R, McKnight CG, Janeway KA, Boehm JS, Mora J, Davis MI, Alexe G, Piccioni F, Stegmaier K. A Combination CDK4/6 and IGF1R Inhibitor Strategy for Ewing Sarcoma. Clin Cancer Res 2018; 25:1343-1357. [PMID: 30397176 DOI: 10.1158/1078-0432.ccr-18-0372] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Novel targeted therapeutics have transformed the care of subsets of patients with cancer. In pediatric malignancies, however, with simple tumor genomes and infrequent targetable mutations, there have been few new FDA-approved targeted drugs. The cyclin-dependent kinase (CDK)4/6 pathway recently emerged as a dependency in Ewing sarcoma. Given the heightened efficacy of this class with targeted drug combinations in other cancers, as well as the propensity of resistance to emerge with single agents, we aimed to identify genes mediating resistance to CDK4/6 inhibitors and biologically relevant combinations for use with CDK4/6 inhibitors in Ewing. EXPERIMENTAL DESIGN We performed a genome-scale open reading frame (ORF) screen in 2 Ewing cell lines sensitive to CDK4/6 inhibitors to identify genes conferring resistance. Concurrently, we established resistance to a CDK4/6 inhibitor in a Ewing cell line. RESULTS The ORF screen revealed IGF1R as a gene whose overexpression promoted drug escape. We also found elevated levels of phospho-IGF1R in our resistant Ewing cell line, supporting the relevance of IGF1R signaling to acquired resistance. In a small-molecule screen, an IGF1R inhibitor scored as synergistic with CDK4/6 inhibitor treatment. The combination of CDK4/6 inhibitors and IGF1R inhibitors was synergistic in vitro and active in mouse models. Mechanistically, this combination more profoundly repressed cell cycle and PI3K/mTOR signaling than either single drug perturbation. CONCLUSIONS Taken together, these results suggest that IGF1R inhibitors activation is an escape mechanism to CDK4/6 inhibitors in Ewing sarcoma and that dual targeting of CDK4/6 inhibitors and IGF1R inhibitors provides a candidate synergistic combination for clinical application in this disease.
Collapse
Affiliation(s)
- Lillian M Guenther
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts.,Broad Institute, Cambridge, Massachusetts
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Jerrel L Catlett
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Caroline S Wechsler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Elizabeth S Frank
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts.,Broad Institute, Cambridge, Massachusetts
| | | | - Alanna J Church
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Crystal G McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Katherine A Janeway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | | | - Jaume Mora
- Department of Pediatric Oncology and Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mindy I Davis
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts.,Broad Institute, Cambridge, Massachusetts.,Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | | | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts. .,Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
39
|
Heisey DAR, Lochmann TL, Floros KV, Coon CM, Powell KM, Jacob S, Calbert ML, Ghotra MS, Stein GT, Maves YK, Smith SC, Benes CH, Leverson JD, Souers AJ, Boikos SA, Faber AC. The Ewing Family of Tumors Relies on BCL-2 and BCL-X L to Escape PARP Inhibitor Toxicity. Clin Cancer Res 2018; 25:1664-1675. [PMID: 30348635 DOI: 10.1158/1078-0432.ccr-18-0277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/11/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE It was recently demonstrated that the EWSR1-FLI1 t(11;22)(q24;12) translocation contributes to the hypersensitivity of Ewing sarcoma to PARP inhibitors, prompting clinical evaluation of olaparib in a cohort of heavily pretreated Ewing sarcoma tumors. Unfortunately, olaparib activity was disappointing, suggesting an underappreciated resistance mechanism to PARP inhibition in patients with Ewing sarcoma. We sought to elucidate the resistance factors to PARP inhibitor therapy in Ewing sarcoma and identify a rational drug combination capable of rescuing PARP inhibitor activity. EXPERIMENTAL DESIGN We employed a pair of cell lines derived from the same patient with Ewing sarcoma prior to and following chemotherapy, a panel of Ewing sarcoma cell lines, and several patient-derived xenograft (PDX) and cell line xenograft models. RESULTS We found olaparib sensitivity was diminished following chemotherapy. The matched cell line pair revealed increased expression of the antiapoptotic protein BCL-2 in the chemotherapy-resistant cells, conferring apoptotic resistance to olaparib. Resistance to olaparib was maintained in this chemotherapy-resistant model in vivo, whereas the addition of the BCL-2/XL inhibitor navitoclax led to tumor growth inhibition. In 2 PDXs, olaparib and navitoclax were minimally effective as monotherapy, yet induced dramatic tumor growth inhibition when dosed in combination. We found that EWS-FLI1 increases BCL-2 expression; however, inhibition of BCL-2 alone by venetoclax is insufficient to sensitize Ewing sarcoma cells to olaparib, revealing a dual necessity for BCL-2 and BCL-XL in Ewing sarcoma survival. CONCLUSIONS These data reveal BCL-2 and BCL-XL act together to drive olaparib resistance in Ewing sarcoma and reveal a novel, rational combination therapy that may be put forward for clinical trial testing.
Collapse
Affiliation(s)
- Daniel A R Heisey
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Timothy L Lochmann
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Konstantinos V Floros
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Colin M Coon
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Krista M Powell
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Sheeba Jacob
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Marissa L Calbert
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Maninderjit S Ghotra
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Giovanna T Stein
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Steven C Smith
- Division of Anatomic Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | - Sosipatros A Boikos
- Hematology, Oncology and Palliative Care, School of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Anthony C Faber
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia.
| |
Collapse
|
40
|
Mangoni M, Sottili M, Salvatore G, Meattini I, Desideri I, Greto D, Loi M, Becherini C, Garlatti P, Delli Paoli C, Dominici L, Gerini C, Scoccianti S, Bonomo P, Silvano A, Beltrami G, Campanacci D, Livi L. Enhancement of Soft Tissue Sarcoma Cell Radiosensitivity by Poly(ADP-ribose) Polymerase-1 Inhibitors. Radiat Res 2018; 190:464-472. [PMID: 30067444 DOI: 10.1667/rr15035.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soft tissue sarcomas (STS) are aggressive tumors with a poor prognosis. Poly(ADP-ribose) polymerase (PARP)-1 inhibitors (PARPi) enhance the cytotoxic effects of radiation. In this study, we evaluated the effect of PARPi on survival and DNA damage of irradiated STS cells. For clonogenic assays, STS cell lines were irradiated with or without olaparib, iniparib or veliparib pretreatment. The effect of PARP inhibition on γ-H2AX and Rad51 foci formation, on PARP-1, phospho-ERK and cleaved caspase-3 protein expression and on cell cycle progression was evaluated on irradiated rhabdomyosarcoma cells pretreated with olaparib. The results from this work showed that PARPi induced significant radiosensitization in STS cells. Rhabdomyosarcoma cells showed the highest increase in radiosensitivity, with a radiosensitization enhancement ratio at 50% survival (ER50) of 3.41 with veliparib. All PARPi exerted a synergistic effect when combined with radiation. Fibrosarcoma cells showed an ER50 of 2.29 with olaparib. Leiomyosarcoma and liposarcoma cells showed their highest ER50 with veliparib (1.71 and 1.84, respectively). In rhabdomyosarcoma, olaparib enhanced the formation of radiation-induced γ-H2AX/Rad51 foci and PARP-1 cleavage, induced slightly increased expression of cleaved caspase-3 and reduced phospho-ERK expression. Moreover, the combination of olaparib and radiation resulted in a significantly enhanced cell cycle arrest in the G2/M phase compared to the two treatments alone. In conclusion, we have shown that PARPi are potent radiosensitizers of human STS cells. These results support the pursuit of further investigations into the effects of PARPi combined with radiation on STS.
Collapse
Affiliation(s)
- Monica Mangoni
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Mariangela Sottili
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Giulia Salvatore
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Icro Meattini
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Isacco Desideri
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Daniela Greto
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Mauro Loi
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Carlotta Becherini
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Pietro Garlatti
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Camilla Delli Paoli
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Luca Dominici
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Chiara Gerini
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Silvia Scoccianti
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Pierluigi Bonomo
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Angela Silvano
- b Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giovanni Beltrami
- c Department of Orthopaedic Oncology, Azienda Ospedaliera Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy and.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Domenico Campanacci
- c Department of Orthopaedic Oncology, Azienda Ospedaliera Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy and.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| | - Lorenzo Livi
- Department of a Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.,d Istituto Toscano Tumori, via Taddeo Alderotti 26/N, 50139 Florence, Italy
| |
Collapse
|
41
|
The combination of epigenetic drugs SAHA and HCI-2509 synergistically inhibits EWS-FLI1 and tumor growth in Ewing sarcoma. Oncotarget 2018; 9:31397-31410. [PMID: 30140378 PMCID: PMC6101143 DOI: 10.18632/oncotarget.25829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose Epigenetic regulation is crucial in mammalian development and maintenance of tissue-cell specific functions. Perturbation of epigenetic balance may lead to alterations in gene expression, resulting in cellular transformation and malignancy. Previous studies in Ewing sarcoma (ES) have shown that the Nucleosome Remodeling Deacetylase (NuRD) complex binds directly to EWS-FLI1 oncoprotein and modulates its transcriptional activity. The role of EWS-FLI1 as a driver of proliferation and transformation in ES is widely known, but the effect of epigenetic drugs on fusion activity remains poorly described. The present study evaluated the combination effects of the histone deacetylases inhibitor suberoylanilide hydroxamic acid (SAHA) and Lysine-specific demethylase1 inhibitor (HCI-2509) on different biological functions in ES and in comparison to monotherapy treatments. Results The study of proliferation and cell viability showed a synergistic effect in most ES cell lines analyzed. An enhanced effect was also observed in the induction of apoptosis, together with accumulation of cells in G1 phase and a blockage of the migratory capacity of ES cell lines. Treatment, either in monotherapy or in combination, caused a significant decrease of EWS-FLI1 mRNA and protein levels and this effect is mediated in part by fusion gene promoter regulation. The anti-tumor effect of this combination was confirmed in patient-derived xenograft mouse models, in which only the combination treatment led to a statistically significant decrease in tumor volume. Conclusions The combination of SAHA and HCI-2509 is proposed as a novel treatment strategy for ES patients to inhibit the essential driver of this sarcoma and tumor growth.
Collapse
|
42
|
Stolte B, Iniguez AB, Dharia NV, Robichaud AL, Conway AS, Morgan AM, Alexe G, Schauer NJ, Liu X, Bird GH, Tsherniak A, Vazquez F, Buhrlage SJ, Walensky LD, Stegmaier K. Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma. J Exp Med 2018; 215:2137-2155. [PMID: 30045945 PMCID: PMC6080915 DOI: 10.1084/jem.20171066] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/16/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
Stolte et al. use genome-scale CRISPR-Cas9 screening technology to identify druggable targets for TP53 wild-type Ewing sarcoma and discover reactivation of p53 through inhibition of MDM2, MDM4, Wip1, or USP7 as therapeutic strategies for the disease. Ewing sarcoma is a pediatric cancer driven by EWS-ETS transcription factor fusion oncoproteins in an otherwise stable genomic background. The majority of tumors express wild-type TP53, and thus, therapies targeting the p53 pathway would benefit most patients. To discover targets specific for TP53 wild-type Ewing sarcoma, we used a genome-scale CRISPR-Cas9 screening approach and identified and validated MDM2, MDM4, USP7, and PPM1D as druggable dependencies. The stapled peptide inhibitor of MDM2 and MDM4, ATSP-7041, showed anti-tumor efficacy in vitro and in multiple mouse models. The USP7 inhibitor, P5091, and the Wip1/PPM1D inhibitor, GSK2830371, decreased the viability of Ewing sarcoma cells. The combination of ATSP-7041 with P5091, GSK2830371, and chemotherapeutic agents showed synergistic action on the p53 pathway. The effects of the inhibitors, including the specific USP7 inhibitor XL-188, were rescued by concurrent TP53 knockout, highlighting the essentiality of intact p53 for the observed cytotoxic activities.
Collapse
Affiliation(s)
- Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ann M Morgan
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA.,Bioinformatics Graduate Program, Boston University, Boston, MA
| | - Nathan J Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Gregory H Bird
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA .,The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
43
|
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O, Dirksen U. Ewing sarcoma. Nat Rev Dis Primers 2018; 4:5. [PMID: 29977059 DOI: 10.1038/s41572-018-0003-x] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ewing sarcoma is the second most frequent bone tumour of childhood and adolescence that can also arise in soft tissue. Ewing sarcoma is a highly aggressive cancer, with a survival of 70-80% for patients with standard-risk and localized disease and ~30% for those with metastatic disease. Treatment comprises local surgery, radiotherapy and polychemotherapy, which are associated with acute and chronic adverse effects that may compromise quality of life in survivors. Histologically, Ewing sarcomas are composed of small round cells expressing high levels of CD99. Genetically, they are characterized by balanced chromosomal translocations in which a member of the FET gene family is fused with an ETS transcription factor, with the most common fusion being EWSR1-FLI1 (85% of cases). Ewing sarcoma breakpoint region 1 protein (EWSR1)-Friend leukaemia integration 1 transcription factor (FLI1) is a tumour-specific chimeric transcription factor (EWSR1-FLI1) with neomorphic effects that massively rewires the transcriptome. Additionally, EWSR1-FLI1 reprogrammes the epigenome by inducing de novo enhancers at GGAA microsatellites and by altering the state of gene regulatory elements, creating a unique epigenetic signature. Additional mutations at diagnosis are rare and mainly involve STAG2, TP53 and CDKN2A deletions. Emerging studies on the molecular mechanisms of Ewing sarcoma hold promise for improvements in early detection, disease monitoring, lower treatment-related toxicity, overall survival and quality of life.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Eleni M Tomazou
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville/CIBERONC, Seville, Spain
| | - Heinrich Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Poul H Sorensen
- British Columbia Cancer Research Centre and University of British Columbia, Vancouver, Canada
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Uta Dirksen
- German Cancer Research Center, Heidelberg, Germany.,Cooperative Ewing Sarcoma Study group, Essen University Hospital, Essen, Germany.,German Cancer Consortium, partner site Essen, Essen, Germany
| |
Collapse
|
44
|
Soft tissue sarcomas: new opportunity of treatment with PARP inhibitors? Radiol Med 2018; 124:282-289. [PMID: 29582320 DOI: 10.1007/s11547-018-0877-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerases (PARP) are a large family of enzymes involved in several cellular processes, including DNA single-strand break repair via the base-excision repair pathway. PARP inhibitors exert antitumor activity by both catalytic PARP inhibition and PARP-DNA trapping, moreover PARP inhibition represents a potential synthetic lethal approach against cancers with specific DNA-repair defects. Soft tissue sarcoma (STSs) are a heterogeneous group of mesenchymal tumors with locally destructive growth, high risk of recurrence and distant metastasis. OBJECTIVES The purpuse of this review is to provide an overview of the main preclinical and clinical data on use of PARPi in STSs and of effect and safety of combination of PARPi with irradiation. RESULTS Due to numerous genomic alterations in STSs, the DNA damage response pathway can offer an interesting target for biologic therapy. Preclinical and clinical studies showed promising results, with the most robust evidences of PARPi efficacy obtained on Ewing sarcoma bearing EWS-FLI1 or EWS-ERG genomic fusions. The activity of PARP inhibitors resulted potentiated by chemotherapy and radiation. Although mechanisms of synergisms are not completely known, combination of radiation therapy and PARP inhibitors exerts antitumor effect by accumulation of unrepaired DNA damage, arrest in G2/M, activity both on oxic and hypoxic cells, reoxygenation by effect on vessels and promotion of senescence. Early trials have shown a good tolerance profile. CONCLUSIONS The use of PARP inhibitors in advanced stage STSs, alone or combined in multimodal treatments, is of great interest and warrants further investigations.
Collapse
|
45
|
Mutz CN, Schwentner R, Aryee DNT, Bouchard EDJ, Mejia EM, Hatch GM, Kauer MO, Katschnig AM, Ban J, Garten A, Alonso J, Banerji V, Kovar H. EWS-FLI1 confers exquisite sensitivity to NAMPT inhibition in Ewing sarcoma cells. Oncotarget 2018; 8:24679-24693. [PMID: 28160567 PMCID: PMC5421879 DOI: 10.18632/oncotarget.14976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/16/2017] [Indexed: 01/26/2023] Open
Abstract
Ewing sarcoma (EwS) is the second most common bone cancer in children and adolescents with a high metastatic potential. EwS development is driven by a specific chromosomal translocation resulting in the generation of a chimeric EWS-ETS transcription factor, most frequently EWS-FLI1. Nicotinamide adenine dinucleotide (NAD) is a key metabolite of energy metabolism involved in cellular redox reactions, DNA repair, and in the maintenance of genomic stability. This study describes targeting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD synthesis, by FK866 in EwS cells. Here we report that blocking NAMPT leads to exhaustive NAD depletion in EwS cells, followed by a metabolic collapse and cell death. Using conditional EWS-FLI1 knockdown by doxycycline-inducible shRNA revealed that EWS-FLI1 depletion significantly reduces the sensitivity of EwS cells to NAMPT inhibition. Consistent with this finding, a comparison of 7 EwS cell lines of different genotypes with 5 Non-EwS cell lines and mesenchymal stem cells revealed significantly higher FK866 sensitivity of EWS-ETS positive EwS cells, with IC50 values mostly below 1nM. Taken together, our data reveal evidence of an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of EwS cells and suggest NAMPT inhibition as a potential new treatment approach for Ewing sarcoma.
Collapse
Affiliation(s)
- Cornelia N Mutz
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Raphaela Schwentner
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Dave N T Aryee
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Eric D J Bouchard
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Edgard M Mejia
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Maximilian O Kauer
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Anna M Katschnig
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jozef Ban
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Antje Garten
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, ISCIII, Ctra, Madrid, Spain
| | - Versha Banerji
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Heinrich Kovar
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| |
Collapse
|
46
|
García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, Alonso-Pérez V, Álamo-Quijada M, Benito R, Guerrero C, Hernández-Rivas JM, Sánchez-Martín M. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget 2018; 8:26027-26040. [PMID: 28212528 PMCID: PMC5432235 DOI: 10.18632/oncotarget.15215] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/27/2017] [Indexed: 11/25/2022] Open
Abstract
CRISPR/Cas9 technology was used to abrogate p210 oncoprotein expression in the Boff-p210 cell line, a pro-B line derived from interlukin-3-dependent Baf/3, that shows IL-3-independence arising from the constitutive expression of BCR-ABL p210. Using this approach, pools of Boff-p210-edited cells and single edited cell-derived clones were obtained and functionally studied in vitro. The loss of p210 expression in Boff-p210 cells resulted in the loss of ability to grow in the absence of IL-3, as the Baf/3 parental line, showing significantly increased apoptosis levels. Notably, in a single edited cell-derived clone carrying a frame-shift mutation that prevents p210 oncoprotein expression, the effects were even more drastic, resulting in cell death. These edited cells were injected subcutaneously in immunosuppressed mice and tumor growth was followed for three weeks. BCR/ABL-edited cells developed smaller tumors than those originating from unedited Boff-p210 parental cells. Interestingly, the single edited cell-derived clone was unable to develop tumors, similar to what is observed with the parental Baf/3 cell line. CRISPR/Cas9 genomic editing technology allows the ablation of the BCR/ABL fusion gene, causing an absence of oncoprotein expression, and blocking its tumorigenic effects in vitro and in the in vivo xenograft model of CML. The future application of this approach in in vivo models of CML will allow us to more accurately assess the value of CRISPR/Cas9 technology as a new therapeutic tool that overcomes resistance to the usual treatments for CML patients.
Collapse
Affiliation(s)
- Ignacio García-Tuñón
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - María Hernández-Sánchez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - José Luis Ordoñez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Veronica Alonso-Pérez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Miguel Álamo-Quijada
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Rocio Benito
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Carmen Guerrero
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Jesús María Hernández-Rivas
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain.,IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
47
|
Jacques C, Renema N, Lezot F, Ory B, Walkley CR, Grigoriadis AE, Heymann D. Small animal models for the study of bone sarcoma pathogenesis:characteristics, therapeutic interests and limitations. J Bone Oncol 2018; 12:7-13. [PMID: 29850398 PMCID: PMC5966525 DOI: 10.1016/j.jbo.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are the three main entities of bone sarcoma which collectively encompass more than 50 heterogeneous entities of rare malignancies. In contrast to osteosarcoma and Ewing sarcoma which mainly affect adolescents and young adults and exhibit a high propensity to metastasise to the lungs, chondrosarcoma is more frequently observed after 40 years of age and is characterised by a high frequency of local recurrence. The combination of chemotherapy, surgical resection and radiotherapy has contributed to an improved outcome for these patients. However, a large number of patients still suffer significant therapy related toxicities or die of refractory and metastatic disease. To better delineate the pathogenesis of bone sarcomas and to identify and test new therapeutic options, major efforts have been invested over the past decades in the development of relevant pre-clinical animal models. Nowadays, in vivo models aspire to mimic all the steps and the clinical features of the human disease as accurately as possible and should ideally be manipulable. Considering these features and given their small size, their conduciveness to experiments, their affordability as well as their human-like bone-microenvironment and immunity, murine pre-clinical models are interesting in the context of these pathologies. This chapter will provide an overview of the murine models of bone sarcomas, paying specific attention for the models induced by inoculation of tumour cells. The genetically-engineered mouse models of bone sarcoma will also be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Department of Medicine, St. Vincent's Hospital, University of Melbourne, Australia
| | - Agi E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London Guy's Hospital, London, UK
| | - Dominique Heymann
- University of Sheffield, Medical School, Dept of Oncology and Metabolism. INSERM, European Associated laboratory «Sarcoma Research Unit», Beech Hill Road, S10 2RX Sheffield, UK.,Institut de Cancérologie de l'Ouest, INSERM, U1232, University of Nantes, «Tumour Heterogeneity and Precision Medicine», Bld Jacques Monod, 44805 Saint-Herblain cedex, France
| |
Collapse
|
48
|
Iniguez AB, Stolte B, Wang EJ, Conway AS, Alexe G, Dharia NV, Kwiatkowski N, Zhang T, Abraham BJ, Mora J, Kalev P, Leggett A, Chowdhury D, Benes CH, Young RA, Gray NS, Stegmaier K. EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell 2018; 33:202-216.e6. [PMID: 29358035 PMCID: PMC5846483 DOI: 10.1016/j.ccell.2017.12.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/15/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023]
Abstract
Many cancer types are driven by oncogenic transcription factors that have been difficult to drug. Transcriptional inhibitors, however, may offer inroads into targeting these cancers. Through chemical genomics screening, we identified that Ewing sarcoma is a disease with preferential sensitivity to THZ1, a covalent small-molecule CDK7/12/13 inhibitor. The selective CDK12/13 inhibitor, THZ531, impairs DNA damage repair in an EWS/FLI-dependent manner, supporting a synthetic lethal relationship between response to THZ1/THZ531 and EWS/FLI expression. The combination of these molecules with PARP inhibitors showed striking synergy in cell viability and DNA damage assays in vitro and in multiple models of Ewing sarcoma, including a PDX, in vivo without hematopoietic toxicity.
Collapse
Affiliation(s)
- Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Ludwig Maximilians University of Munich, Munich 80539, Germany
| | - Emily Jue Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas Kwiatkowski
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian J Abraham
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jaume Mora
- Development Tumor Biology Laboratory and Department of Pediatric Oncology and Hematology, Hospital Sant Joan de Déu Barcelona, Barcelona 08950, Spain
| | - Peter Kalev
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alan Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cyril H Benes
- Massachusetts General Hospital, Center for Cancer Research, Boston, MA 02114, USA
| | - Richard A Young
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
49
|
Vanden Heuvel JP, Maddox E, Maalouf SW. Replication Study: Systematic identification of genomic markers of drug sensitivity in cancer cells. eLife 2018; 7. [PMID: 29313488 PMCID: PMC5760202 DOI: 10.7554/elife.29747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
In 2016, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Vanden Heuvel et al., 2016), that described how we intended to replicate selected experiments from the paper ‘Systematic identification of genomic markers of drug sensitivity in cancer cells’ (Garnett et al., 2012). Here we report the results. We found Ewing’s sarcoma cell lines, overall, were more sensitive to the PARP inhibitor olaparib than osteosarcoma cell lines; however, while the effect was in the same direction as the original study (Figure 4C; Garnett et al., 2012), it was not statistically significant. Further, mouse mesenchymal cells transformed with either the EWS-FLI1 or FUS-CHOP rearrangement displayed similar sensitivities to olaparib, whereas the Ewing’s sarcoma cell line SK-N-MC had increased olaparib sensitivity. In the original study, mouse mesenchymal cells transformed with the EWS-FLI1 rearrangement and SK-N-MC cells were found to have similar sensitivities to olaparib, whereas mesenchymal cells transformed with the FUS-CHOP rearrangement displayed a reduced sensitivity to olaparib (Figure 4E; Garnett et al., 2012). We also studied another Ewing’s sarcoma cell line, A673: A673 cells depleted of EWS-FLI1 or a negative control both displayed similar sensitivities to olaparib, whereas the original study reported a decreased sensitivity to olaparib when EWS-FLI1 was depleted (Figure 4F; Garnett et al., 2012). Differences between the original study and this replication attempt, such as the use of different sarcoma cell lines and level of knockdown efficiency, are factors that might have influenced the outcomes. Finally, where possible, we report meta-analyses for each result.
Collapse
Affiliation(s)
- John P Vanden Heuvel
- Indigo Biosciences, State College, United States.,Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, United States
| | - Ewa Maddox
- Indigo Biosciences, State College, United States
| | | | | |
Collapse
|
50
|
Heske CM, Davis MI, Baumgart JT, Wilson K, Gormally MV, Chen L, Zhang X, Ceribelli M, Duveau DY, Guha R, Ferrer M, Arnaldez FI, Ji J, Tran HL, Zhang Y, Mendoza A, Helman LJ, Thomas CJ. Matrix Screen Identifies Synergistic Combination of PARP Inhibitors and Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors in Ewing Sarcoma. Clin Cancer Res 2017; 23:7301-7311. [PMID: 28899971 DOI: 10.1158/1078-0432.ccr-17-1121] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/04/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Purpose: Although many cancers are showing remarkable responses to targeted therapies, pediatric sarcomas, including Ewing sarcoma, remain recalcitrant. To broaden the therapeutic landscape, we explored the in vitro response of Ewing sarcoma cell lines against a large collection of investigational and approved drugs to identify candidate combinations.Experimental Design: Drugs displaying activity as single agents were evaluated in combinatorial (matrix) format to identify highly active, synergistic drug combinations, and combinations were subsequently validated in multiple cell lines using various agents from each class. Comprehensive metabolomic and proteomic profiling was performed to better understand the mechanism underlying the synergy. Xenograft experiments were performed to determine efficacy and in vivo mechanism.Results: Several promising candidates emerged, including the combination of small-molecule PARP and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, a rational combination as NAMPTis block the rate-limiting enzyme in the production of nicotinamide adenine dinucleotide (NAD+), a necessary substrate of PARP. Mechanistic drivers of the synergistic cell killing phenotype of these combined drugs included depletion of NMN and NAD+, diminished PAR activity, increased DNA damage, and apoptosis. Combination PARPis and NAMPTis in vivo resulted in tumor regression, delayed disease progression, and increased survival.Conclusions: These studies highlight the potential of these drugs as a possible therapeutic option in treating patients with Ewing sarcoma. Clin Cancer Res; 23(23); 7301-11. ©2017 AACR.
Collapse
Affiliation(s)
- Christine M Heske
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Mindy I Davis
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Joshua T Baumgart
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Michael V Gormally
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Damien Y Duveau
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Fernanda I Arnaldez
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jiuping Ji
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Huong-Lan Tran
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yiping Zhang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Arnulfo Mendoza
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lee J Helman
- Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|