1
|
Nguyen QTN, Park J, Kim DY, Tran DT, Han IO. Forskolin rescues hypoxia-induced cognitive dysfunction in zebrafish with potential involvement of O-GlcNAc cycling regulation. Biochem Pharmacol 2024; 221:116032. [PMID: 38281601 DOI: 10.1016/j.bcp.2024.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Repeated sublethal hypoxia exposure induces brain inflammation and affects the initiation and progression of cognitive dysfunction. Experiments from the current study showed that hypoxic exposure downregulates PKA/CREB signaling, which is restored by forskolin (FSK), an adenylate cyclase activator, in both Neuro2a (N2a) cells and zebrafish brain. FSK significantly protected N2a cells from hypoxia-induced cell death and neurite shrinkage. Intraperitoneal administration of FSK for 5 days on zebrafish additionally led to significant recovery from hypoxia-induced social interaction impairment and learning and memory (L/M) deficit. FSK suppressed hypoxia-induced neuroinflammation, as indicated by the observed decrease in NF-κB activation and GFAP expression. We further investigated the potential effect of FSK on O-GlcNAcylation changes induced by hypoxia. Intriguingly FSK induced marked upregulation of the protein level of O-GlcNAc transferase catalyzing addition of the GlcNAc group to target proteins, accompanied by elevated O-GlcNAcylation of nucleocytoplasmic proteins. The hypoxia-induced O-GlcNAcylation decrease in the brain of zebrafish was considerably restored following FSK treatment. Based on the collective results, we propose that FSK rescues hypoxia-induced cognitive dysfunction, potentially through regulation of HBP/O-GlcNAc cycling.
Collapse
Affiliation(s)
- Quynh T N Nguyen
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Duong T Tran
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea.
| |
Collapse
|
2
|
Allam AM, AbuBakr HO, Yassin AM, Abdel-Razek AS, Khattab MS, Gouda EM, Mousa SZ. Potential chemopreventive effects of Broccoli extract supplementation against 7, 12 dimethyl Benz(a)anthracene (DMBA) -induced toxicity in female rats. Sci Rep 2023; 13:17234. [PMID: 37821474 PMCID: PMC10567736 DOI: 10.1038/s41598-023-43629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Dietary components have recently received rapidly expanding attention for their potential to halt or reverse the development of many oxidative stress-mediated diseases after exposure to environmental toxicants. 7, 12 dimethylbenz(a)anthracene (DMBA) is one of the most common environmental pollutants. The present study aimed to evaluate the chemo-preventive effects of broccoli as a nutritional component against DMBA intoxication in rats. A daily dose of aqueous (1 ml/rat) and methanolic (150 mg/kg) broccoli extracts, respectively, was given to 50-day-old female rats for 26 successive weeks after carcinogen intoxication with a single dose of 20 mg/ml of DMBA. DMBA intoxication resulted in a redox imbalance (a decreased GSH level and an increased MDA level) and increased DNA fragmentation in the liver, kidney, and brain. Besides, it affected the level of expression of the bcl2 gene in the liver, kidney, and brain tissue but didn't affect cfos gene expression accompanied by histopathological changes. The aqueous and methanolic broccoli extract supplements ameliorated the adverse effects by increasing the level of GSH, decreasing the MDA level, and reducing DNA fragmentation. Besides, broccoli extracts decreased the expression of bcl2 in the liver and brain and up-regulated bcl2 expression in the kidney, accompanied by lowering NF-κβ 65 expression in the liver and brain and γ-catenin expression in the liver and kidney. In conclusion, broccoli as a dietary component had a strong chemoprotective effect against oxidative stress, DNA damage, and genotoxicity induced by DMBA intoxication in rats.
Collapse
Affiliation(s)
- Aya M Allam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Abdel-Razek
- Department of Microbial Chemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki- Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman M Gouda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Said Z Mousa
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Caires CRS, Bossolani-Martins AL. Which form of environmental enrichment is most effective in rodent models of autism? Behav Processes 2023; 211:104915. [PMID: 37451559 DOI: 10.1016/j.beproc.2023.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Environmental enrichment (EE) is known to produce experience-dependent changes in the brains and behaviors of rodents, and it has therefore been widely used to study neurodevelopmental disorders, including autism. Current studies show significant protocol variation, such as the presence of running wheels, number of cagemates, duration of enrichment, and the age of the animals at the beginning and end of the enrichment interventions. EE has been shown to have prominent positive effects in animal models of idiopathic and syndromic autism, but little is known about the ideal type of EE and the most efficient protocols for reversing autism spectrum disorder (ASD) behaviors modeled in rodents. This review presents evidence that social enrichment is the most effective way to rescue typical behaviors, and that variables such as onset, duration, and type of induction in the ASD model are important for EE success. Understanding which EE protocols are most beneficial for reversing ASD behaviors modeled in rodents opens up possibilities for the potential treatment of neuropsychiatric disorders characterized by behavioral deficits, such as autism.
Collapse
Affiliation(s)
- Cássia Regina Suzuki Caires
- Laboratory of Experimental Physiology, Faculty of Medicine of São Jose do Rio Preto - FAMERP, Av. Brg. Faria Lima, 5416 - Vila São Pedro, São José do Rio Preto, SP, Brazil.
| | - Ana Luiza Bossolani-Martins
- Federal University of Mato Grosso do Sul - UFMS, Av. Pedro Pedrossian, 725 - Universitário, Paranaíba, MS, Brazil.
| |
Collapse
|
4
|
Maili L, Tandon B, Yuan Q, Menezes S, Chiu F, Hashmi SS, Letra A, Eisenhoffer GT, Hecht JT. Disruption of fos causes craniofacial anomalies in developing zebrafish. Front Cell Dev Biol 2023; 11:1141893. [PMID: 37664458 PMCID: PMC10469461 DOI: 10.3389/fcell.2023.1141893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Craniofacial development is a complex and tightly regulated process and disruptions can lead to structural birth defects, the most common being nonsyndromic cleft lip and palate (NSCLP). Previously, we identified FOS as a candidate regulator of NSCLP through family-based association studies, yet its specific contributions to oral and palatal formation are poorly understood. This study investigated the role of fos during zebrafish craniofacial development through genetic disruption and knockdown approaches. Fos was expressed in the periderm, olfactory epithelium and other cell populations in the head. Genetic perturbation of fos produced an abnormal craniofacial phenotype with a hypoplastic oral cavity that showed significant changes in midface dimensions by quantitative facial morphometric analysis. Loss and knockdown of fos caused increased cell apoptosis in the head, followed by a significant reduction in cranial neural crest cells (CNCCs) populating the upper and lower jaws. These changes resulted in abnormalities of cartilage, bone and pharyngeal teeth formation. Periderm cells surrounding the oral cavity showed altered morphology and a subset of cells in the upper and lower lip showed disrupted Wnt/β-catenin activation, consistent with modified inductive interactions between mesenchymal and epithelial cells. Taken together, these findings demonstrate that perturbation of fos has detrimental effects on oral epithelial and CNCC-derived tissues suggesting that it plays a critical role in zebrafish craniofacial development and a potential role in NSCLP.
Collapse
Affiliation(s)
- Lorena Maili
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Bhavna Tandon
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qiuping Yuan
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Simone Menezes
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - S. Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ariadne Letra
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| | - George T. Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Rotherham M, Moradi Y, Nahar T, Mosses D, Telling N, El Haj AJ. Magnetic activation of TREK1 triggers stress signalling and regulates neuronal branching in SH-SY5Y cells. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:981421. [PMID: 36545473 PMCID: PMC9761330 DOI: 10.3389/fmedt.2022.981421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
TWIK-related K+ 1 (TREK1) is a potassium channel expressed in the nervous system with multiple functions including neurotransmission and is a prime pharmacological target for neurological disorders. TREK1 gating is controlled by a wide range of external stimuli including mechanical forces. Previous work has demonstrated that TREK1 can be mechano-activated using magnetic nanoparticles (MNP) functionalised with antibodies targeted to TREK1 channels. Once the MNP are bound, external dynamic magnetic fields are used to generate forces on the TREK channel. This approach has been shown to drive cell differentiation in cells from multiple tissues. In this work we investigated the effect of MNP-mediated TREK1 mechano-activation on early stress response pathways along with the differentiation and connectivity of neuronal cells using the model neuronal cell line SH-SY5Y. Results showed that TREK1 is well expressed in SH-SY5Y and that TREK1-MNP initiate c-Myc/NF-κB stress response pathways as well as Nitrite production after magnetic stimulation, indicative of the cellular response to mechanical cues. Results also showed that TREK1 mechano-activation had no overall effect on neuronal morphology or expression of the neuronal marker βIII-Tubulin in Retinoic Acid (RA)/Brain-derived Neurotrophic factor (BDNF) differentiated SH-SY5Y but did increase neurite number. These results suggest that TREK1 is involved in cellular stress response signalling in neuronal cells, which leads to increased neurite production, but is not involved in regulating RA/BDNF mediated neuronal differentiation.
Collapse
Affiliation(s)
- Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, United Kingdom,School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, United Kingdom,Correspondence: Michael Rotherham
| | - Yasamin Moradi
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, United Kingdom
| | - Tasmin Nahar
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, United Kingdom
| | - Dominic Mosses
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, United Kingdom,Regenerative Medicine and Cellular Therapies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, United Kingdom
| | - Alicia J. El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, United Kingdom,School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Stoke-on-Trent, United Kingdom
| |
Collapse
|
6
|
Pagin M, Pernebrink M, Giubbolini S, Barone C, Sambruni G, Zhu Y, Chiara M, Ottolenghi S, Pavesi G, Wei CL, Cantù C, Nicolis SK. Sox2 controls neural stem cell self-renewal through a Fos-centered gene regulatory network. Stem Cells 2021; 39:1107-1119. [PMID: 33739574 DOI: 10.1002/stem.3373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.
Collapse
Affiliation(s)
- Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Simone Giubbolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristiana Barone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Gaia Sambruni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Yanfen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Matteo Chiara
- Department of Biosciences, University of Milano, Milan, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, Milan, Italy
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
7
|
Pagin M, Pernebrink M, Pitasi M, Malighetti F, Ngan CY, Ottolenghi S, Pavesi G, Cantù C, Nicolis SK. FOS Rescues Neuronal Differentiation of Sox2-Deleted Neural Stem Cells by Genome-Wide Regulation of Common SOX2 and AP1(FOS-JUN) Target Genes. Cells 2021; 10:cells10071757. [PMID: 34359927 PMCID: PMC8303191 DOI: 10.3390/cells10071757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.
Collapse
Affiliation(s)
- Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Mattia Pitasi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Federica Malighetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Chew-Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, Via Celoria 26, 20134 Milano, Italy;
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
- Correspondence: (C.C.); (S.K.N.)
| | - Silvia K. Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (M.P.); (M.P.); (F.M.); (S.O.)
- Correspondence: (C.C.); (S.K.N.)
| |
Collapse
|
8
|
Impairing activation of phospholipid synthesis by c-Fos interferes with glioblastoma cell proliferation. Biochem J 2021; 477:4675-4688. [PMID: 33211090 DOI: 10.1042/bcj20200465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme is the most aggressive type of tumor of the CNS with an overall survival rate of approximately one year. Since this rate has not changed significantly over the last 20 years, the development of new therapeutic strategies for the treatment of these tumors is peremptory. The over-expression of the proto-oncogene c-Fos has been observed in several CNS tumors including glioblastoma multiforme and is usually associated with a poor prognosis. Besides its genomic activity as an AP-1 transcription factor, this protein can also activate phospholipid synthesis by a direct interaction with key enzymes of their metabolic pathways. Given that the amino-terminal portion of c-Fos (c-Fos-NA: amino acids 1-138) associates to but does not activate phospholipid synthesizing enzymes, we evaluated if c-Fos-NA or some shorter derivatives are capable of acting as dominant-negative peptides of the activating capacity of c-Fos. The over-expression or the exogenous administration of c-Fos-NA to cultured T98G cells hampers the interaction between c-Fos and PI4K2A, an enzyme activated by c-Fos. Moreover, it was observed a decrease in tumor cell proliferation rates in vitro and a reduction in tumor growth in vivo when a U87-MG-generated xenograft on nude mice is intratumorally treated with recombinant c-Fos-NA. Importantly, a smaller peptide of 92 amino acids derived from c-Fos-NA retains the capacity to interfere with tumor proliferation in vitro and in vivo. Taken together, these results support the use of the N-terminal portion of c-Fos, or shorter derivatives as a novel therapeutic strategy for the treatment of glioblastoma multiforme.
Collapse
|
9
|
Trombetta-Lima M, Assis-Ribas T, Cintra RC, Campeiro JD, Guerreiro JR, Winnischofer SMB, Nascimento ICC, Ulrich H, Hayashi MAF, Sogayar MC. Impact of Reck expression and promoter activity in neuronal in vitro differentiation. Mol Biol Rep 2021; 48:1985-1994. [PMID: 33619662 DOI: 10.1007/s11033-021-06175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Thais Assis-Ribas
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ricardo C Cintra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil
| | - Juliano R Guerreiro
- Faculdade de Farmácia, Universidade Paulista (UNIP), São Paulo, SP, 05347-020, Brazil
| | - Sheila M B Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
| | - Isis C C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil.
| | - Mari C Sogayar
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
10
|
Rodríguez-Berdini L, Ferrero GO, Bustos Plonka F, Cardozo Gizzi AM, Prucca CG, Quiroga S, Caputto BL. The moonlighting protein c-Fos activates lipid synthesis in neurons, an activity that is critical for cellular differentiation and cortical development. J Biol Chem 2020; 295:8808-8818. [PMID: 32385110 DOI: 10.1074/jbc.ra119.010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/28/2020] [Indexed: 01/07/2023] Open
Abstract
Differentiation of neuronal cells is crucial for the development and function of the nervous system. This process involves high rates of membrane expansion, during which the synthesis of membrane lipids must be tightly regulated. In this work, using a variety of molecular and biochemical assays and approaches, including immunofluorescence microscopy and FRET analyses, we demonstrate that the proto-oncogene c-Fos (c-Fos) activates cytoplasmic lipid synthesis in the central nervous system and thereby supports neuronal differentiation. Specifically, in hippocampal primary cultures, blocking c-Fos expression or its activity impairs neuronal differentiation. When examining its subcellular localization, we found that c-Fos co-localizes with endoplasmic reticulum markers and strongly interacts with lipid-synthesizing enzymes, whose activities were markedly increased in vitro in the presence of recombinant c-Fos. Of note, the expression of c-Fos dominant-negative variants capable of blocking its lipid synthesis-activating activity impaired neuronal differentiation. Moreover, using an in utero electroporation model, we observed that neurons with blocked c-Fos expression or lacking its AP-1-independent activity fail to initiate cortical development. These results highlight the importance of c-Fos-mediated activation of lipid synthesis for proper nervous system development.
Collapse
Affiliation(s)
- Lucia Rodríguez-Berdini
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel Orlando Ferrero
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florentyna Bustos Plonka
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrés Mauricio Cardozo Gizzi
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - César Germán Prucca
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz Leonor Caputto
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
11
|
Barron M, Zhang S, Li J. A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data. Nucleic Acids Res 2019; 46:e14. [PMID: 29140455 PMCID: PMC5815159 DOI: 10.1093/nar/gkx1113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cell types in cell populations change as the condition changes: some cell types die out, new cell types may emerge and surviving cell types evolve to adapt to the new condition. Using single-cell RNA-sequencing data that measure the gene expression of cells before and after the condition change, we propose an algorithm, SparseDC, which identifies cell types, traces their changes across conditions and identifies genes which are marker genes for these changes. By solving a unified optimization problem, SparseDC completes all three tasks simultaneously. SparseDC is highly computationally efficient and demonstrates its accuracy on both simulated and real data.
Collapse
Affiliation(s)
- Martin Barron
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46617, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46617, USA
| |
Collapse
|
12
|
Kroeze Y, Oti M, van Beusekom E, Cooijmans RHM, van Bokhoven H, Kolk SM, Homberg JR, Zhou H. Transcriptome Analysis Identifies Multifaceted Regulatory Mechanisms Dictating a Genetic Switch from Neuronal Network Establishment to Maintenance During Postnatal Prefrontal Cortex Development. Cereb Cortex 2019; 28:833-851. [PMID: 28108491 DOI: 10.1093/cercor/bhw407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the latest brain regions to mature, which allows the acquisition of complex cognitive abilities through experience. To unravel the underlying gene expression changes during postnatal development, we performed RNA-sequencing (RNA-seq) in the rat medial PFC (mPFC) at five developmental time points from infancy to adulthood, and analyzed the differential expression of protein-coding genes, long intergenic noncoding RNAs (lincRNAs), and alternative exons. We showed that most expression changes occur in infancy, and that the number of differentially expressed genes reduces toward adulthood. We observed 137 differentially expressed lincRNAs and 796 genes showing alternative exon usage during postnatal development. Importantly, we detected a genetic switch from neuronal network establishment in infancy to maintenance of neural networks in adulthood based on gene expression dynamics, involving changes in protein-coding and lincRNA gene expression as well as alternative exon usage. Our gene expression datasets provide insights into the multifaceted transcriptional regulation of the developing PFC. They can be used to study the basic developmental processes of the mPFC and to understand the mechanisms of neurodevelopmental and neuropsychiatric disorders. Our study provides an important contribution to the ongoing efforts to complete the "brain map", and to the understanding of PFC development.
Collapse
Affiliation(s)
- Yvet Kroeze
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands.,Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands.,Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Ellen van Beusekom
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Roel H M Cooijmans
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
13
|
Rodríguez-Berdini L, Caputto BL. Lipid Metabolism in Neurons: A Brief Story of a Novel c-Fos-Dependent Mechanism for the Regulation of Their Synthesis. Front Cell Neurosci 2019; 13:198. [PMID: 31133814 PMCID: PMC6514095 DOI: 10.3389/fncel.2019.00198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
The mechanisms that coordinately regulate lipid synthesis in the nervous system together with the high rates of membrane biogenesis needed to support cell growth are largely unknown as are their subcellular site of synthesis. c-Fos, a well-known AP-1 transcription factor, has emerged as a unique protein with the capacity to associate to specific enzymes of the pathway of synthesis of phospholipids at the endoplasmic reticulum and activate their synthesis to accompany genomic decisions of growth. Herein, we discuss this effect of c-Fos in the context of neuronal differentiation and also with respect to pathologies of the nervous system such as the development and growth of tumors. We also provide insights into the sub-cellular sites where this regulation occurs at the endoplasmic reticulum membranes and the molecular mechanism by which c-Fos exerts this activity.
Collapse
Affiliation(s)
- Lucia Rodríguez-Berdini
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz L Caputto
- Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas), Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
14
|
Comparative analyses of the neurobehavioral, molecular, and enzymatic effects of organophosphates on embryo-larval zebrafish (Danio rerio). Neurotoxicol Teratol 2019; 73:67-75. [DOI: 10.1016/j.ntt.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
|
15
|
Reshef YA, Finucane HK, Kelley DR, Gusev A, Kotliar D, Ulirsch JC, Hormozdiari F, Nasser J, O'Connor L, van de Geijn B, Loh PR, Grossman SR, Bhatia G, Gazal S, Palamara PF, Pinello L, Patterson N, Adams RP, Price AL. Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk. Nat Genet 2018; 50:1483-1493. [PMID: 30177862 PMCID: PMC6202062 DOI: 10.1038/s41588-018-0196-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Biological interpretation of genome-wide association study data frequently involves assessing whether SNPs linked to a biological process, for example, binding of a transcription factor, show unsigned enrichment for disease signal. However, signed annotations quantifying whether each SNP allele promotes or hinders the biological process can enable stronger statements about disease mechanism. We introduce a method, signed linkage disequilibrium profile regression, for detecting genome-wide directional effects of signed functional annotations on disease risk. We validate the method via simulations and application to molecular quantitative trait loci in blood, recovering known transcriptional regulators. We apply the method to expression quantitative trait loci in 48 Genotype-Tissue Expression tissues, identifying 651 transcription factor-tissue associations including 30 with robust evidence of tissue specificity. We apply the method to 46 diseases and complex traits (average n = 290 K), identifying 77 annotation-trait associations representing 12 independent transcription factor-trait associations, and characterize the underlying transcriptional programs using gene-set enrichment analyses. Our results implicate new causal disease genes and new disease mechanisms.
Collapse
Affiliation(s)
- Yakir A Reshef
- Department of Computer Science, Harvard University, Cambridge, MA, USA.
- Harvard/MIT MD/PhD Program, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | - David R Kelley
- California Life Sciences LLC, South San Francisco, CA, USA
| | | | - Dylan Kotliar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Farhad Hormozdiari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke O'Connor
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA
| | - Bryce van de Geijn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon R Grossman
- Harvard/MIT MD/PhD Program, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gaurav Bhatia
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Steven Gazal
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pier Francesco Palamara
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, University of Oxford, Oxford, UK
| | - Luca Pinello
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Ryan P Adams
- Google Brain, New York, NY, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
16
|
Policarpi C, Crepaldi L, Brookes E, Nitarska J, French SM, Coatti A, Riccio A. Enhancer SINEs Link Pol III to Pol II Transcription in Neurons. Cell Rep 2018; 21:2879-2894. [PMID: 29212033 PMCID: PMC5732322 DOI: 10.1016/j.celrep.2017.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (FosRSINE1) indicated that the FosRSINE1-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the FosRSINE1 transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that FosRSINE1 acts as a strong enhancer of Fos expression in diverse physiological contexts.
Collapse
Affiliation(s)
- Cristina Policarpi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Luca Crepaldi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Emily Brookes
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Justyna Nitarska
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sarah M French
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alessandro Coatti
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
17
|
Song H, Zheng Y, Cai F, Ma Y, Yang J, Wu Y. c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model. J Mol Histol 2018; 49:147-155. [PMID: 29330744 DOI: 10.1007/s10735-018-9754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.
Collapse
Affiliation(s)
- Honghua Song
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Fuying Cai
- Department of Pediatrics, Yin Shan Lake Hospital of Wuzhong District, Suzhou, 215100, Jiangsu Province, China
| | - Yanyan Ma
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Jingyue Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
18
|
Bao XJ, Wang GC, Zuo FX, Li XY, Wu J, Chen G, Dou WC, Guo Y, Shen Q, Wang RZ. Transcriptome profiling of the subventricular zone and dentate gyrus in an animal model of Parkinson's disease. Int J Mol Med 2017; 40:771-783. [PMID: 28677758 PMCID: PMC5547956 DOI: 10.3892/ijmm.2017.3052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2017] [Indexed: 01/21/2023] Open
Abstract
Adult neurogenesis in the subventricular zone (SVZ), as well as in the subgranular zone contributes to brain maintenance and regeneration. In the adult brain, dopamine (DA) can regulate the endogenous neural stem cells within these two regions, while a DA deficit may affect neurogenesis. Notably, the factors that regulate in vivo neurogenesis in these subregions have not yet been fully characterized, particularly following DA depletion. In thi study, we performed RNA sequencing to investigate transcriptomic changes in the SVZ and dentate gyrus (DG) of mice in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This analysis identified differentially expressed genes which were involved in the regulation of transcription, immune response, extracellular region, cell junction and myelination. These genes partially displayed different temporal profiles of expression, some of which may participate in the metabolic switch related to neurogenesis. Additionally, the mitogen-activated protein kinase (MAPK) signaling pathway was shown to be been positively regulated in the SVZ, while it was negatively affected in the DG following MPTP administration. Overall, our findings indicate that exposure to MPTP may exert different effects on transcriptome profiling between the SVZ and DG.
Collapse
Affiliation(s)
- Xin-Jie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Geng-Chao Wang
- State Key Laboratory of Medical Molecular Biology and Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Fu-Xing Zuo
- Department of Neurosurgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xue-Yuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jun Wu
- Center for Stem Cell Biology and Regenerative Medicine, Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Guo Chen
- Center for Stem Cell Biology and Regenerative Medicine, Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Wan-Chen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Qin Shen
- Center for Stem Cell Biology and Regenerative Medicine, Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Ren-Zhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
19
|
Sun Y, Lin Z, Liu CH, Gong Y, Liegl R, Fredrick TW, Meng SS, Burnim SB, Wang Z, Akula JD, Pu WT, Chen J, Smith LEH. Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. J Exp Med 2017; 214:1753-1767. [PMID: 28465464 PMCID: PMC5461000 DOI: 10.1084/jem.20161645] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 11/04/2022] Open
Abstract
Pathological neovessels growing into the normally avascular photoreceptors cause vision loss in many eye diseases, such as age-related macular degeneration and macular telangiectasia. Ocular neovascularization is strongly associated with inflammation, but the source of inflammatory signals and the mechanisms by which these signals regulate the disruption of avascular privilege in photoreceptors are unknown. In this study, we found that c-Fos, a master inflammatory regulator, was increased in photoreceptors in a model of pathological blood vessels invading photoreceptors: the very low-density lipoprotein receptor-deficient (Vldlr-/- ) mouse. Increased c-Fos induced inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor (TNF), leading to activation of signal transducer and activator of transcription 3 (STAT3) and increased TNFα-induced protein 3 (TNFAIP3) in Vldlr-/- photoreceptors. IL-6 activated the STAT3/vascular endothelial growth factor A (VEGFA) pathway directly, and elevated TNFAIP3 suppressed SOCS3 (suppressor of cytokine signaling 3)-activated STAT3/VEGFA indirectly. Inhibition of c-Fos using photoreceptor-specific AAV (adeno-associated virus)-hRK (human rhodopsin kinase)-sh_c-fos or a chemical inhibitor substantially reduced the pathological neovascularization and rescued visual function in Vldlr-/- mice. These findings suggested that the photoreceptor c-Fos controls blood vessel growth into the normally avascular photoreceptor layer through the inflammatory signal-induced STAT3/VEGFA pathway.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Zhiqiang Lin
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Raffael Liegl
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Thomas W Fredrick
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Steven S Meng
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Samuel B Burnim
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Zhongxiao Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - James D Akula
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - William T Pu
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
20
|
Zhang S, Zhu D, Li H, Zhang H, Feng C, Zhang W. Analyses of mRNA Profiling through RNA Sequencing on a SAMP8 Mouse Model in Response to Ginsenoside Rg1 and Rb1 Treatment. Front Pharmacol 2017; 8:88. [PMID: 28289387 PMCID: PMC5326756 DOI: 10.3389/fphar.2017.00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Ginsenoside Rg1 and Rb1 are the major ingredients in two medicines called QiShengLi (Z20027165) and QiShengJing (Z20027164) approved by China. These ingredients are believed to mitigate forgetfulness. Numerous studies have confirmed that GRg1 and GRb1 offer protection against Alzheimer's disease (AD), and our morris water maze (MWM) experiment also indicated that GRg1 and GRb1 may attenuate memory deficits in the 7-month-old SAMP8 mice; however, comprehensive understanding of their roles in AD remains limited. This study systematically explored the mechanism at the genome level of the anti-AD effects of GRg1 and GRb1 in a senescence-accelerated mouse prone 8 (SAMP8) model through deep RNA sequencing. A total of 74,885 mRNA transcripts were obtained. Expression analysis showed that 1,780 mRNA transcripts were differentially expressed in SAMP8 mice compared with the SAMP8+GRg1 mice. Moreover, 1,066 significantly dysregulated mRNA transcripts were identified between SAMP8 and SAMP8+GRb1 mice. Analyses according to gene ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that oral administration of GRg1 and GRb1 improved the learning performance of the SAMP8 mouse model from various aspects, such as nervous system development and mitogen-activated protein kinase signaling pathway. The most probable AD-related transcriptional responses after medication were predicted and discussed in detail. This study is the first to provide a systematic dissection of mRNA profiling in SAMP8 mouse brain in response to GRg1 and GRb1 treatment. We explained their efficacy thoroughly from the source (gene-level explanation). The findings serve as a theoretical basis for the exploration of GRg1 and GRb1 as functional drugs with anti-AD activity.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Dina Zhu
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Hong Li
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Haijing Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Chengqiang Feng
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Wensheng Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Department of Chinese Medicine, College of Resources Science Technology, Beijing Normal UniversityBeijing, China; National and Local United Engineering Research Center for Sanqi Resources Protection and Utilization TechnologyKunming, China
| |
Collapse
|
21
|
Shandilya J, Gao Y, Nayak TK, Roberts SGE, Medler KF. AP1 transcription factors are required to maintain the peripheral taste system. Cell Death Dis 2016; 7:e2433. [PMID: 27787515 PMCID: PMC5133999 DOI: 10.1038/cddis.2016.343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023]
Abstract
The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.
Collapse
Affiliation(s)
- Jayasha Shandilya
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Yankun Gao
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Tapan K Nayak
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY 14214, USA
| | - Stefan G E Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|