1
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
3
|
Chiavelli C, Prapa M, Rovesti G, Silingardi M, Neri G, Pugliese G, Trudu L, Dall'Ora M, Golinelli G, Grisendi G, Vinet J, Bestagno M, Spano C, Papapietro RV, Depenni R, Di Emidio K, Pasetto A, Nascimento Silva D, Feletti A, Berlucchi S, Iaccarino C, Pavesi G, Dominici M. Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma. NPJ Precis Oncol 2024; 8:26. [PMID: 38302615 PMCID: PMC10834575 DOI: 10.1038/s41698-024-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Glioblastoma (GBM) remains a deadly tumor. Treatment with chemo-radiotherapy and corticosteroids is known to impair the functionality of lymphocytes, potentially compromising the development of autologous CAR T cell therapies. We here generated pre-clinical investigations of autologous anti-GD2 CAR T cells tested against 2D and 3D models of GBM primary cells. We detected a robust antitumor effect, highlighting the feasibility of developing an autologous anti-GD2 CAR T cell-based therapy for GBM patients.
Collapse
Affiliation(s)
- Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Silingardi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Neri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pugliese
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Leucid Bio Ltd., Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Lucia Trudu
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Center for Cellular Immunotherapies, Perelman School of Medicine, and Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carlotta Spano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vito Papapietro
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Katia Di Emidio
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Anna Pasetto
- Section for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Alberto Feletti
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurosurgery Unit, University of Verona, Verona, Italy
| | - Silvia Berlucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
4
|
Laopajon W, Takheaw N, Kotemul K, Pata S, Hongeng S, Kasinrerk W. Chimeric single-chain variable fragment-human immunoglobulin G crystallizable fragment antibody against GD2 for neuroblastoma targeted immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1145-1156. [PMID: 38213540 PMCID: PMC10776594 DOI: 10.37349/etat.2023.00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 01/13/2024] Open
Abstract
Aim The present study aims to generate chimeric mouse single-chain variable fragment (scFv) and immunoglobulin G1 (IgG1) crystallizable fragment (Fc) antibody against disialoganglioside (GD2) for the treatment of neuroblastoma (NB). The generated scFv-IgG Fc antibody, lacking first constant domain of heavy chain (CH1), is of a smaller size than the natural antibody and has anti-tumor activity. Methods Vector for scFv-IgG Fc antibody was constructed and scFv-IgG Fc antibody was expressed in human embryonic kidney 293T (HEK293T) cell line. Purification of scFv-IgG Fc antibody from the culture supernatant of transfected HEK293T cells was performed by Protein G affinity chromatography. The structure and binding activity of scFv-IgG Fc antibody were verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting (WB), and immunofluorescence techniques. Anti-tumor activities by antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) were determined. Results Using plasmid fusion-human IgG1-Fc2 tag vector (pFUSE-hIgG1-Fc2), a plasmid vector encoding chimeric mouse scFv and hIgG1 Fc antibody against GD2 was successfully constructed. This vector was transfected into human HEK293T cells to produce scFv-IgG Fc antibody. The transfected HEK293T cells could produce chimeric scFv-IgG Fc antibody against GD2, which lacks the IgG heavy chain CH1 domain but carries CH2 and CH3 domains. The chimeric antibodies could be purified from the culture supernatant of the transfected HEK293T culture in the presence of zeocin drug. The produced GD2 scFv-IgG Fc antibodies, which are smaller in size than the intact antibody, could trigger the killing of GD2 expressed NB cell line SH-SY5Y by ADCC and ADCP mechanisms. Conclusions The results indicate that chimeric scFv-hIgG Fc antibody, lacking heavy chain CH1 domain, could mediate antibody induced anti-tumor activities. The small size of this type of chimeric antibody may be employed as anti-GD2 antibody for NB therapy.
Collapse
Affiliation(s)
- Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J, Künkele A. Adoptive cell therapy in paediatric extracranial solid tumours: current approaches and future challenges. Eur J Cancer 2023; 194:113347. [PMID: 37832507 PMCID: PMC10695178 DOI: 10.1016/j.ejca.2023.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023]
Abstract
Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.
Collapse
Affiliation(s)
- Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alice Vitali
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
van der Haar Àvila I, Windhouwer B, van Vliet SJ. Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:941-958. [PMID: 37266839 PMCID: PMC10584724 DOI: 10.1007/s10555-023-10108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Britt Windhouwer
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
8
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Gatto L, Franceschi E, Tosoni A, Di Nunno V, Bartolini S, Brandes AA. Glioblastoma treatment slowly moves toward change: novel druggable targets and translational horizons in 2022. Expert Opin Drug Discov 2023; 18:269-286. [PMID: 36718723 DOI: 10.1080/17460441.2023.2174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain tumor in adults. GBM treatment options have been the same for the past 30 years and have only modestly extended survival, despite aggressive multimodal treatments. The progressively better knowledge of GBM biology and a comprehensive analysis of its genomic profile have elucidated GBM heterogeneity, contributing to a more effective molecular classification and to the development of innovative targeted therapeutic approaches. AREAS COVERED This article reports all the noteworthy innovations for immunotherapy and targeted therapy, providing insights into the current advances in trial designs, including combination therapies with immuno-oncology agents and target combinations. EXPERT OPINION GBM molecular heterogeneity and brain anatomical characteristics critically restrain drug effectiveness. Nevertheless, stimulating insights for future research and drug development come from innovative treatment strategies for GBM, such as multi-specific 'off-the-shelf' CAR-T therapy, oncolytic viral therapy and autologous dendritic cell vaccination. Disappointing results from targeted therapies-clinical trials are mainly due to complex interferences between signaling pathways and biological processes leading to drug resistance: hence, it is imperative in the future to develop combinatorial approaches and multimodal therapies.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | | | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| |
Collapse
|
11
|
Bunse L, Bunse T, Krämer C, Chih YC, Platten M. Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics 2022; 19:1799-1817. [PMID: 36303101 PMCID: PMC9723056 DOI: 10.1007/s13311-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.
Collapse
Affiliation(s)
- Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
12
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
13
|
Golinelli G, Talami R, Frabetti S, Candini O, Grisendi G, Spano C, Chiavelli C, Arnaud GF, Mari G, Dominici M. A 3D Platform to Investigate Dynamic Cell-to-Cell Interactions Between Tumor Cells and Mesenchymal Progenitors. Front Cell Dev Biol 2022; 9:767253. [PMID: 35111750 PMCID: PMC8802911 DOI: 10.3389/fcell.2021.767253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
We here investigated the dynamic cell-to-cell interactions between tumor and mesenchymal stromal/stem cells (MSCs) by the novel VITVOⓇ 3D bioreactor that was customized to develop in vivo-like metastatic nodules of Ewing’s sarcoma (ES). MSCs are known to contribute to tumor microenvironment as cancer associated fibroblast (CAF) precursors and, for this reason, they have also been used as anti-cancer tools. Using dynamic conditions, the process of tissue colonization and formation of metastatic niches was recreated through tumor cell migration aiming to mimic ES development in patients. ES is an aggressive tumor representing the second most common malignant bone cancer in children and young adults. An urgent and unmet need exists for the development of novel treatment strategies to improve the outcomes of metastatic ES. The tumor-tropic ability of MSCs offers an alternative approach, in which these cells can be used as vehicles for the delivery of antitumor molecules, such as the proapoptotic TNF-related apoptosis inducing ligand (TRAIL). However, the therapeutic targeting of metastases remains challenging and the interaction occurring between tumor cells and MSCs has not yet been deeply investigated. Setting up in vitro and in vivo models to study this interaction is a prerequisite for novel approaches where MSCs affinity for tumor is optimized to ultimately increase their therapeutic efficacy. Here, VITVOⓇ integrating a customized scaffold with an increased inter-fiber distance (VITVO50) was used to develop a dynamic model where MSCs and tumor nodules were evaluated under flow conditions. Colonization and interaction between cell populations were explored by droplet digital PCR (ddPCR). VITVO50 findings were then applied in vivo. An ES metastatic model was established in NSG mice and biodistribution of TRAIL-expressing MSCs in mice organs affected by metastases was investigated using a 4-plex ddPCR assay. VITVOⓇ proved to be an easy handling and versatile bioreactor to develop in vivo-like tumor nodules and investigate dynamic cell-to-cell interactions with MSCs. The proposed fluidic system promises to facilitate the understanding of tumor-stroma interaction for the development of novel tumor targeting strategies, simplifying the analysis of in vivo data, and ultimately accelerating the progress towards the early clinical phase.
Collapse
Affiliation(s)
- Giulia Golinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Giulia Golinelli, ; Massimo Dominici,
| | - Rebecca Talami
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Chiara Chiavelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Gaëlle F. Arnaud
- Science and Technology Park for Medicine, Tecnopolo di Mirandola “Mario Veronesi”, Mirandola, Italy
| | - Giorgio Mari
- Rigenerand Srl, Medolla, Modena, Italy
- Science and Technology Park for Medicine, Tecnopolo di Mirandola “Mario Veronesi”, Mirandola, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Rigenerand Srl, Medolla, Modena, Italy
- *Correspondence: Giulia Golinelli, ; Massimo Dominici,
| |
Collapse
|
14
|
Golinelli G, Grisendi G, Dall'Ora M, Casari G, Spano C, Talami R, Banchelli F, Prapa M, Chiavelli C, Rossignoli F, Candini O, D'Amico R, Nasi M, Cossarizza A, Casarini L, Dominici M. Anti-GD2 CAR MSCs against metastatic Ewing's sarcoma. Transl Oncol 2022; 15:101240. [PMID: 34649148 PMCID: PMC8517927 DOI: 10.1016/j.tranon.2021.101240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Ewing's sarcoma (ES) is an aggressive cancer affecting children and young adults. We pre-clinically demonstrated that mesenchymal stromal/stem cells (MSCs) can deliver tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) against primary ES after local injection. However, ES is often metastatic calling for approaches able to support MSC targeting to the ES multiple remote sites. Considering that the disialoganglioside GD2 is expressed by ES and to optimise MSC tumour affinity, bi-functional (BF) MSCs expressing both TRAIL and a truncated anti-GD2 chimeric antigen receptor (GD2 tCAR) were generated and challenged against ES. METHODS The anti-GD2 BF MSCs delivering a soluble variant of TRAIL (sTRAIL) were tested in several in vitro ES models. Tumour targeting and killing by BF MSCs was further investigated by a novel immunodeficient ES metastatic model characterized by different metastatic sites, including lungs, liver and bone, mimicking the deadly clinical scenario. FINDINGS In vitro data revealed both tumour affinity and killing of BF MSCs. In vivo, GD2 tCAR molecule ameliorated the tumour targeting and persistence of BF MSCs counteracting ES in lungs but not in liver. INTERPRETATION We here generated data on the potential effects of BF MSCs within a complex ES metastatic in vivo model, exploring also the biodistribution of MSCs. Our BF MSC-based strategy promises to pave the way for potential improvements in the therapeutic delivery of TRAIL for the treatment of metastatic ES and other deadly GD2-positive malignancies.
Collapse
Affiliation(s)
- Giulia Golinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Rigenerand Srl, Medolla, Modena, Italy
| | | | - Giulia Casari
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Rebecca Talami
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Medical Statistic, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Rossignoli
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Roberto D'Amico
- Center of Medical Statistic, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy; National Institute for Cardiovascular Research - INRC, Bologna, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Rigenerand Srl, Medolla, Modena, Italy.
| |
Collapse
|
15
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
16
|
Kilian M, Bunse T, Wick W, Platten M, Bunse L. Genetically Modified Cellular Therapies for Malignant Gliomas. Int J Mol Sci 2021; 22:12810. [PMID: 34884607 PMCID: PMC8657496 DOI: 10.3390/ijms222312810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Despite extensive preclinical research on immunotherapeutic approaches, malignant glioma remains a devastating disease of the central nervous system for which standard of care treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and antibodies have been identified, leading to the development of chimeric antigen receptors (CAR), which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities, a plethora of CARs has been designed and tested for glioma, with promising signs of biological activity. In this review, we describe glioma antigens that have been targeted using CAR T cells preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming antigenic limitations.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, 69120 Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, 69120 Heidelberg, Germany
| | - Michael Platten
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Helmholtz-Institute of Translational Oncology (HI-TRON), 55131 Mainz, Germany
| | - Lukas Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Prapa M, Chiavelli C, Golinelli G, Grisendi G, Bestagno M, Di Tinco R, Dall'Ora M, Neri G, Candini O, Spano C, Petrachi T, Bertoni L, Carnevale G, Pugliese G, Depenni R, Feletti A, Iaccarino C, Pavesi G, Dominici M. GD2 CAR T cells against human glioblastoma. NPJ Precis Oncol 2021; 5:93. [PMID: 34707200 PMCID: PMC8551169 DOI: 10.1038/s41698-021-00233-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor and is still in need of effective medical treatment. We isolated patient-derived glioblastoma cells showing high GD2 antigen expression representing a potential target for CAR T strategy. Data highlighted a robust GD2 CAR antitumor potential in 2D and 3D glioblastoma models associated with a significant and CAR T-restricted increase of selected cytokines. Interestingly, immunosuppressant TGF β1, expressed in all co-cultures, did not influence antitumor activity. The orthotopic NOD/SCID models using primary glioblastoma cells reproduced human histopathological features. Considering still-conflicting data on the delivery route for targeting brain tumors, we compared intracerebral versus intravenous CAR T injections. We report that the intracerebral route significantly increased the length of survival time in a dose-dependent manner, without any side effects. Collectively, the proposed anti-GD2 CAR can counteract human glioblastoma potentially opening a new therapeutic option for a still incurable cancer.
Collapse
Affiliation(s)
- Malvina Prapa
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Modena, Italy
| | | | - Giovanni Neri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Tiziana Petrachi
- Technopole Mario Veronesi of Mirandola, Fondazione Democenter, Mirandola, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Modena, Italy
| | - Giuseppe Pugliese
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Feletti
- Department of Neurosciences, Biomedicine and Movement Sciences, Institute of Neurosurgery, University of Verona, Verona, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia- Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia- Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
18
|
Shao C, Anand V, Andreeff M, Battula VL. Ganglioside GD2: a novel therapeutic target in triple-negative breast cancer. Ann N Y Acad Sci 2021; 1508:35-53. [PMID: 34596246 DOI: 10.1111/nyas.14700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by lack of hormone receptor expression and is known for high rates of recurrence, distant metastases, and poor clinical outcomes. TNBC cells lack targetable receptors; hence, there is an urgent need for targetable markers for the disease. Breast cancer stem-like cells (BCSCs) are a fraction of cells in primary tumors that are associated with tumorigenesis, metastasis, and resistance to chemotherapy. Targeting BCSCs is thus an effective strategy for preventing cancer metastatic spread and sensitizing tumors to chemotherapy. The CD44hi CD24lo phenotype is a well-established phenotype for identification of BCSCs, but CD44 and CD24 are not targetable markers owing to their expression in normal tissues. The ganglioside GD2 has been shown to be upregulated in primary TNBC tumors compared with normal breast tissue and has been shown to identify BCSCs. In this review, we discuss GD2 as a BCSC- and tumor-specific marker in TNBC; epithelial-to-mesenchymal transition and the signaling pathways that are upstream and downstream of GD2 and the role of these pathways in tumorigenesis and metastasis in TNBC; direct and indirect approaches for targeting GD2; and ongoing clinical trials and treatments directed against GD2 as well as future directions for these strategies.
Collapse
Affiliation(s)
- Claire Shao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Togashi Y, Tanaka T, Takemoto M, Takeuchi Y, Higashi M, Fumino S, Tajiri T. Anti-relapse effect of trametinib on a local minimal residual disease neuroblastoma mouse model. J Pediatr Surg 2021; 56:1233-1239. [PMID: 33863557 DOI: 10.1016/j.jpedsurg.2021.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE We reported the in vitro and in vivo anti-tumor effects of trametinib, an MEK inhibitor, on neuroblastoma. However, long-term trametinib administration for bulky tumors failed to prevent local relapse. In this study, we established a local minimal residual disease (L-MRD) model to develop an optimal clinical protocol. METHODS We prepared an l-MRD model by implanting neuroblastoma cells (SK-N-AS) into the renal capsule of nude mice with total tumorectomy or sham operation 14 days later. These mice received post-operative administration of trametinib or vehicle for eight weeks. Relapse was measured once weekly. Flow cytometry was performed with SK-N-AS cells treated by trametinib. RESULTS Tumorectomy+trametinib dramatically suppressed relapse, and all mice survived during trametinib administration, while other treatments failed to suppress relapse. The survival rates for other groups were 20% in sham+trametinib, 17% in tumorectomy+vehicle, and 0% in sham+vehicle. Relapse occurred in the tumorectomy+trametinib group after withdrawal of trametinib administration. Flow cytometry revealed G1 arrest in SK-N-AS cells treated with trametinib. CONCLUSION These findings suggested that trametinib was able to suppress relapse from minimal residual tumor cells. Therefore, we propose that trametinib be administered as an option for maintenance therapy after surgical and chemotherapeutic treatments for neuroblastoma in future clinical protocols.
Collapse
Affiliation(s)
- Yuichi Togashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Tomoko Tanaka
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masakazu Takemoto
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuki Takeuchi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
20
|
Thurin M. Tumor-Associated Glycans as Targets for Immunotherapy: The Wistar Institute Experience/Legacy. Monoclon Antib Immunodiagn Immunother 2021; 40:89-100. [PMID: 34161162 DOI: 10.1089/mab.2021.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor cells are characterized by the expression of tumor-specific carbohydrate structures that differ from their normal counterparts. Carbohydrates on tumor cells have phenotypical as well as functional implications, impacting the tumor progression process, from malignant transformation to metastasis formation. Importantly, carbohydrates are structures that play a role in receptor-ligand interaction and elicit the activity of growth factor receptors, integrins, lectins, and other type 1 transmembrane proteins. They have been recognized as biomarkers for cancer diagnosis, and evidence demonstrating their relevance as targets for anticancer therapeutic strategies, including immunotherapy, continues to accumulate. Different approaches targeting carbohydrates include monoclonal antibodies (mAbs), antibody (Ab)-drug conjugates, vaccines, and adhesion antagonists. Development of bispecific antibodies and chimeric antigen receptor (CAR)-modified T cells against tumor-associated carbohydrate antigens (TACAs) as promising cancer immunotherapeutic agents is rapidly evolving. As reviewed here, there are several cancer-associated glycan features that can be leveraged to design rational drug or immune system targets, applying multiple TACA structural and functional features to be targeted as the standard treatment paradigm. Many of the underlying targets were defined by researchers at the Wistar Institute in Philadelphia, Pennsylvania, which provide basis for different immunotherapy approaches.
Collapse
Affiliation(s)
- Magdalena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
23
|
The Potential of Mesenchymal Stromal Cells in Neuroblastoma Therapy for Delivery of Anti-Cancer Agents and Hematopoietic Recovery. J Pers Med 2021; 11:jpm11030161. [PMID: 33668854 PMCID: PMC7996318 DOI: 10.3390/jpm11030161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric cancers and a major cause of cancer-related death in infancy. Conventional therapies including high-dose chemotherapy, stem cell transplantation, and immunotherapy approach a limit in the treatment of high-risk neuroblastoma and prevention of relapse. In the last two decades, research unraveled a potential use of mesenchymal stromal cells in tumor therapy, as tumor-selective delivery vehicles for therapeutic compounds and oncolytic viruses and by means of supporting hematopoietic stem cell transplantation. Based on pre-clinical and clinical advances in neuroblastoma and other malignancies, we assess both the strong potential and the associated risks of using mesenchymal stromal cells in the therapy for neuroblastoma. Furthermore, we examine feasibility and safety aspects and discuss future directions for harnessing the advantageous properties of mesenchymal stromal cells for the advancement of therapy success.
Collapse
|
24
|
Sujjitjoon J, Sayour E, Tsao ST, Uiprasertkul M, Sanpakit K, Buaboonnam J, Yenchitsomanus PT, Atchaneeyasakul LO, Chang LJ. GD2-specific chimeric antigen receptor-modified T cells targeting retinoblastoma - assessing tumor and T cell interaction. Transl Oncol 2021; 14:100971. [PMID: 33321428 PMCID: PMC7745061 DOI: 10.1016/j.tranon.2020.100971] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
A novel disialoganglioside 2 (GD2)-specific chimeric antigen receptor (CAR)-modified T cell therapy against retinoblastoma (RB) were generated. GD2-CAR consists of a single-chain variable fragment (scFv) derived from a monoclonal antibody, hu3F8, that is linked with the cytoplasmic signaling domains of CD28, 41BB, a CD3ζ, and an inducible caspase 9 death fusion partner. GD2 antigen is highly expressed in Y79RB cell line and in several surgical RB tumor specimens. In vitro co-culture experiments revealed the effective killing of Y79RB cells by GD2-CAR T cells, but not by control CD19-CAR T cells. The killing activities of GD2-CAR T cells were diminished when repeatedly exposed to the tumor, due to an attenuated expression of GD2 antigen on tumor cells and upregulation of inhibitory molecules of the PD1 and PD-L1 axis in the CAR T cells and RB tumor cells respectively. This is the first report to describe the potential of GD2-CAR T cells as a promising therapeutic strategy for RB with the indication of potential benefit of combination therapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Elias Sayour
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Shih-Ting Tsao
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States; Shenzhen Geno-Immune Medical Institute, 2nd FL. 6 Yuexing 2nd Rd., Nanshan Dist., Shenzhen, China
| | - Mongkol Uiprasertkul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kleebsabai Sanpakit
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jassada Buaboonnam
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States; Shenzhen Geno-Immune Medical Institute, 2nd FL. 6 Yuexing 2nd Rd., Nanshan Dist., Shenzhen, China; School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.
| |
Collapse
|
25
|
Ciccocioppo R, Comoli P, Astori G, Del Bufalo F, Prapa M, Dominici M, Locatelli F. Developing cell therapies as drug products. Br J Pharmacol 2020; 178:262-279. [PMID: 33140850 DOI: 10.1111/bph.15305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the last 20 years, the global regulatory frameworks for drug assessment have been managing the challenges posed by using cellular products as new therapeutic tools. Currently, they are defined as "Advanced Therapy Medicinal Products", comprising a large group of cellular types that either alone or in combination with gene and tissue engineering technology. They have the potential to change the natural course of still lethal or highly debilitating diseases, including cancers, opportunistic infections and chronic inflammatory conditions. Globally, more than 50 cell-based products have obtained market authorization. This overview describes the advantages and unsolved challenges on developing cells as innovative therapeutic vehicles. The main cell therapy players and the legal framework are discussed, starting from chimeric antigen receptor T-cells for leukaemia and solid tumours, dealing then with lymphocytes as potent anti-microbiological tools and then focusing on mesenchymal stem/stromal cells whose role covers regenerative medicine, immunology and anti-tumour therapy.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Patrizia Comoli
- Cell Factory and Paediatric Haematology/Oncology Unit, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies, Haematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy.,Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Samadani AA, Keymoradzdeh A, Shams S, Soleymanpour A, Rashidy-Pour A, Hashemian H, Vahidi S, Norollahi SE. CAR T-cells profiling in carcinogenesis and tumorigenesis: An overview of CAR T-cells cancer therapy. Int Immunopharmacol 2020; 90:107201. [PMID: 33249047 DOI: 10.1016/j.intimp.2020.107201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Immunotherapy of cancer by chimeric antigen receptors (CAR) modified T-cell has a remarkable clinical potential for malignancies. Meaningly, it is a suitable cancer therapy to treat different solid tumors. CAR is a special recombinant protein combination with an antibody targeting structure alongside with signaling domain capacity on order to activate T cells. It is confirmed that the CAR-modified T cells have this ability to terminate and remove B cell malignancies. So, methodologies for investigations the pro risks and also strategies for neutralizing possible off-tumor consequences of are great importance successful protocols and strategies of CAR T-cell therapy can improve the efficacy and safety of this type of cancers. In this review article, we try to classify and illustrate main optimized plans in cancer CAR T-cell therapy.
Collapse
Affiliation(s)
- Ali Akbar Samadani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Arman Keymoradzdeh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Houman Hashemian
- Pediatrics Diseases Research Center, 17 Shahrivar Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
27
|
Corallo D, Frabetti S, Candini O, Gregianin E, Dominici M, Fischer H, Aveic S. Emerging Neuroblastoma 3D In Vitro Models for Pre-Clinical Assessments. Front Immunol 2020; 11:584214. [PMID: 33324402 PMCID: PMC7726254 DOI: 10.3389/fimmu.2020.584214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
The potential of tumor three-dimensional (3D) in vitro models for the validation of existing or novel anti-cancer therapies has been largely recognized. During the last decade, diverse in vitro 3D cell systems have been proposed as a bridging link between two-dimensional (2D) cell cultures and in vivo animal models, both considered gold standards in pre-clinical settings. The latest awareness about the power of tailored therapies and cell-based therapies in eradicating tumor cells raises the need for versatile 3D cell culture systems through which we might rapidly understand the specificity of promising anti-cancer approaches. Yet, a faithful reproduction of the complex tumor microenvironment is demanding as it implies a suitable organization of several cell types and extracellular matrix components. The proposed 3D tumor models discussed here are expected to offer the required structural complexity while also assuring cost-effectiveness during pre-selection of the most promising therapies. As neuroblastoma is an extremely heterogenous extracranial solid tumor, translation from 2D cultures into innovative 3D in vitro systems is particularly challenging. In recent years, the number of 3D in vitro models mimicking native neuroblastoma tumors has been rapidly increasing. However, in vitro platforms that efficiently sustain patient-derived tumor cell growth, thus allowing comprehensive drug discovery studies on tailored therapies, are still lacking. In this review, the latest neuroblastoma 3D in vitro models are presented and their applicability for a more accurate prediction of therapy outcomes is discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, Padova, Italy
| | | | | | | | - Massimo Dominici
- Rigenerand srl, Modena, Italy.,Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Sanja Aveic
- Neuroblastoma Laboratory, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, Padova, Italy.,Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
28
|
Eranki A, Srinivasan P, Ries M, Kim A, Lazarski CA, Rossi CT, Khokhlova TD, Wilson E, Knoblach SM, Sharma KV, Wood BJ, Moonen C, Sandler AD, Kim PCW. High-Intensity Focused Ultrasound (HIFU) Triggers Immune Sensitization of Refractory Murine Neuroblastoma to Checkpoint Inhibitor Therapy. Clin Cancer Res 2020; 26:1152-1161. [PMID: 31615935 PMCID: PMC9009723 DOI: 10.1158/1078-0432.ccr-19-1604] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy promises unprecedented benefits to patients with cancer. However, the majority of cancer types, including high-risk neuroblastoma, remain immunologically unresponsive. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can mechanically fractionate tumors, transforming immunologically "cold" tumors into responsive "hot" tumors. EXPERIMENTAL DESIGN We treated <2% of tumor volume in previously unresponsive, large, refractory murine neuroblastoma tumors with mechanical HIFU and assessed systemic immune response using flow cytometry, ELISA, and gene sequencing. In addition, we combined this treatment with αCTLA-4 and αPD-L1 to study its effect on the immune response and long-term survival. RESULTS Combining HIFU with αCTLA-4 and αPD-L1 significantly enhances antitumor response, improving survival from 0% to 62.5%. HIFU alone causes upregulation of splenic and lymph node NK cells and circulating IL2, IFNγ, and DAMPs, whereas immune regulators like CD4+Foxp3+, IL10, and VEGF-A are significantly reduced. HIFU combined with checkpoint inhibitors induced significant increases in intratumoral CD4+, CD8α+, and CD8α+CD11c+ cells, CD11c+ in regional lymph nodes, and decrease in circulating IL10 compared with untreated group. We also report significant abscopal effect following unilateral treatment of mice with large, established bilateral tumors using HIFU and checkpoint inhibitors compared with tumors treated with HIFU or checkpoint inhibitors alone (61.1% survival, P < 0.0001). This combination treatment significantly also induces CD4+CD44+hiCD62L+low and CD8α+CD44+hiCD62L+low population and is adoptively transferable, imparting immunity, slowing subsequent de novo tumor engraftment. CONCLUSIONS Mechanical fractionation of tumors using HIFU can effectively induce immune sensitization in a previously unresponsive murine neuroblastoma model and promises a novel yet efficacious immunoadjuvant modality to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Avinash Eranki
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
- Center for Interventional Oncology, National Cancer Institute, Radiology & Imaging Sciences, NIH Clinical Center, NIH, Bethesda, Maryland
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Mario Ries
- Imaging Division, UMC Utrecht, Heidelberglaan, Utrecht, the Netherlands
| | - AeRang Kim
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, D.C
| | - Christopher T Rossi
- Department of Pathology, Children's National Medical Center, Washington, D.C
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington
| | - Emmanuel Wilson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C
| | - Karun V Sharma
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Bradford J Wood
- Center for Interventional Oncology, National Cancer Institute, Radiology & Imaging Sciences, NIH Clinical Center, NIH, Bethesda, Maryland
| | - Chrit Moonen
- Imaging Division, UMC Utrecht, Heidelberglaan, Utrecht, the Netherlands
| | - Anthony D Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Peter C W Kim
- Department of Surgery, Brown University, Providence, Rhode Island.
| |
Collapse
|
29
|
ji C, You F, Zhang T, Fan S, Han Z, Xiang S, Wang Y, Sheng B, Wang T, An G, Meng H, Yang L. Novel anti-GD2 CAR-T cells exhibit superior cytotoxicity against neuroblastoma. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220961193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Treatment of high-risk paediatric neuroblastoma represents an unmet clinical need. Chimeric antigen receptor-modified T cell (CAR-T) therapy is a promising treatment option, but there exist some challenges regarding specificity and potency. The current study used ganglioside GD2 as a target for CAR-T construction because of its selective overexpression in neuroblastoma cells. We engineered a GD2-based CAR-T construct, including ICOS and 4-1BB co-stimulatory domains for better persistence. The cytotoxicity of the generated CAR-T cells (PG3-GD2-CAR-T) was verified using in vitro and in vivo assays. PG3-GD2-CAR-T cells exerted potent anti-tumour activity in vitro and in vivo, with minimal effects on peripheral blood cells. PG3-GD2-CAR-T cells exhibited encouraging specificity for and potency against neuroblastoma.
Collapse
Affiliation(s)
- Cheng ji
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine & Protection, Soochow University, Suzhou, Jiangsu, China
| | - Fengtao You
- Persongen Bio Therapeutics (Suzhou) Co., Ltd, Suzhou, Jiangsu, China
| | - Tingting Zhang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Shuangshuang Fan
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Zhichao Han
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Shufen Xiang
- Persongen Bio Therapeutics (Suzhou) Co., Ltd, Suzhou, Jiangsu, China
| | - Yinyan Wang
- Persongen Bio Therapeutics (Suzhou) Co., Ltd, Suzhou, Jiangsu, China
| | - Binjie Sheng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Tian Wang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Gangli An
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Huimin Meng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine & Protection, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
30
|
Andersch L, Radke J, Klaus A, Schwiebert S, Winkler A, Schumann E, Grunewald L, Zirngibl F, Flemmig C, Jensen MC, Rossig C, Joussen A, Henssen A, Eggert A, Schulte JH, Künkele A. CD171- and GD2-specific CAR-T cells potently target retinoblastoma cells in preclinical in vitro testing. BMC Cancer 2019; 19:895. [PMID: 31500597 PMCID: PMC6732842 DOI: 10.1186/s12885-019-6131-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. METHODS CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. RESULTS All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. CONCLUSION Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.
Collapse
Affiliation(s)
- Lena Andersch
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charitéplatz 1, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, CCCC (Campus Mitte), Invalidenstr. 80, 10115 Berlin, Germany
| | - Anika Klaus
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Silke Schwiebert
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisa Schumann
- Department of Neuropathology, Charitéplatz 1, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, CCCC (Campus Mitte), Invalidenstr. 80, 10115 Berlin, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Zirngibl
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Carina Flemmig
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Michael C. Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA USA
- Seattle Children’s Research Institute, Seattle, WA USA
- Fred Hutchinson Cancer Research Center, Seattle, WA USA
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Antonia Joussen
- Department of Ophthalmology, Charité – Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Anton Henssen
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, CCCC (Campus Mitte), Invalidenstr. 80, 10115 Berlin, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, CCCC (Campus Mitte), Invalidenstr. 80, 10115 Berlin, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, CCCC (Campus Mitte), Invalidenstr. 80, 10115 Berlin, Germany
| |
Collapse
|
31
|
Spano C, Grisendi G, Golinelli G, Rossignoli F, Prapa M, Bestagno M, Candini O, Petrachi T, Recchia A, Miselli F, Rovesti G, Orsi G, Maiorana A, Manni P, Veronesi E, Piccinno MS, Murgia A, Pinelli M, Horwitz EM, Cascinu S, Conte P, Dominici M. Soluble TRAIL Armed Human MSC As Gene Therapy For Pancreatic Cancer. Sci Rep 2019; 9:1788. [PMID: 30742129 PMCID: PMC6370785 DOI: 10.1038/s41598-018-37433-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive adult cancers with an unacceptable prognosis. For this reason novel therapies accounting for PDAC peculiarities, such as the relevant stromal reaction, are urgently needed. Here adipose mesenchymal stromal/stem cells (AD-MSC) have been armed to constantly release a soluble trimeric and multimeric variant of the known anti-cancer TNF-related apoptosis-inducing ligand (sTRAIL). This cancer gene therapy strategy was in vitro challenged demonstrating that sTRAIL was thermally stable and able to induce apoptosis in the PDAC lines BxPC-3, MIA PaCa-2 and against primary PDAC cells. sTRAIL released by AD-MSC relocated into the tumor stroma was able to significantly counteract tumor growth in vivo with a significant reduction in tumor size, in cytokeratin-7+ cells and by an anti-angiogenic effect. In parallel, histology on PDAC specimens form patients (n = 19) was performed to investigate the levels of TRAIL DR4, DR5 and OPG receptors generating promising insights on the possible clinical translation of our approach. These results indicate that adipose MSC can very efficiently vehicle a novel TRAIL variant opening unexplored opportunities for PDAC treatment.
Collapse
Affiliation(s)
- Carlotta Spano
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | - Giulia Golinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Rossignoli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Olivia Candini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy
| | | | - Alessandra Recchia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Miselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orsi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Department of Diagnostic and Clinical Medicine and of Public Health, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Manni
- Department of Diagnostic and Clinical Medicine and of Public Health, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Veronesi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | | | - Alba Murgia
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Stefano Cascinu
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenerology University of Padova, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy. .,Rigenerand srl, Medolla, Modena, Italy. .,Technopole of Mirandola TPM, Mirandola, Modena, Italy.
| |
Collapse
|
32
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther 2018; 27:558-570. [PMID: 30464207 PMCID: PMC7445885 DOI: 10.1038/s41417-018-0062-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Abstract
Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens. Several neuroectoderm-derived neoplasms, including glioblastoma (GBM), sarcomas, and neuroblastoma, express high levels of the tumor-associated antigen GD2. We have already challenged this cell surface disialoganglioside by a chimeric antigen receptor (CAR)-T cell approach against neuroblastoma. With the intent to maximize the therapeutic profile of MSCs delivering TRAIL, we here originally developed a bi-functional strategy where TRAIL is delivered by MSCs that are also gene modified with the truncated form of the anti-GD2 CAR (GD2 tCAR) to mediate an immunoselective recognition of GD2-positive tumors. These bi-functional MSCs expressed high levels of TRAIL and GD2 tCAR associated with a robust anti-tumor activity against GD2-positive GBM cells. Most importantly, the anti-cancer action was reinforced by the enhanced targeting potential of such bi-functional cells. Collectively, our results suggest that a truncated anti-GD2 CAR might be a powerful new tool to redirect MSCs carrying TRAIL against GD2-expressing tumors. This affinity-based dual targeting holds the promise to combine site-specific and prolonged retention of MSCs in GD2-expressing tumors, thereby providing a more effective delivery of TRAIL for still incurable cancers.
Collapse
|
35
|
Novel Immunotherapeutic Approaches for Neuroblastoma and Malignant Melanoma. J Immunol Res 2018; 2018:8097398. [PMID: 30510968 PMCID: PMC6232800 DOI: 10.1155/2018/8097398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023] Open
Abstract
Neuroblastoma (NB) and malignant melanoma (MM), tumors of pediatric age and adulthood, respectively, share a common origin, both of them deriving from the neural crest cells. Although NB and MM have a different behavior, in respect to age of onset, primary tissue involvement and metastatic spread, the prognosis for high stage-affected patients is still poor, in spite of aggressive treatment strategies and the huge amount of new discovered biological knowledge. For these reasons researchers are continuously attempting to find out new treatment options, which in a near future could be translated to the clinical practice. In the last two decades, a strong effort has been spent in the field of translational research of immunotherapy which led to satisfactory results. Indeed, several immunotherapeutic clinical trials have been performed and some of them also resulted beneficial. Here, we summarize preclinical studies based on immunotherapeutic approaches applied in models of both NB and MM.
Collapse
|
36
|
Tariq SM, Haider SA, Hasan M, Tahir A, Khan M, Rehan A, Kamal A. Chimeric Antigen Receptor T-Cell Therapy: A Beacon of Hope in the Fight Against Cancer. Cureus 2018; 10:e3486. [PMID: 30613448 PMCID: PMC6314790 DOI: 10.7759/cureus.3486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite significant advancements, relapses, and persistent malignancies are still a major challenge faced by the oncologists. Immunotherapy has shown remarkable potential in induction of sustained remission in refractory malignancies. Chimeric antigen receptor T-cell (CAR-T) therapy is a newer treatment methodology approved by the Food and Drug Administration (FDA). The chimeric pairing of an antigen receptor with the T-cell receptor (TCR) intracellular signaling domain allows cluster of designation 8 (CD8) cytotoxic T-cells to target cell surface makers independent of major histocompatibility complex (MHC) activation. Another essential feature which contributes to the broad applicability of CARs and expanding their potential targets is their ability to bind not only to proteins but also to carbohydrate and glycolipid structures. Their antigen-specific and targeted immune responses have shown promising outcomes in clinical trials particularly involving B-cell malignancies and solid tumors. High remission rates and low percentages of relapses have caused a paradigm shift in the treatment of relapsed or refractory cancers. Challenges include side effects such as cytokine release syndrome, on-target off-tumor toxicities, and replication of its success in treating solid tumors. The burden of side effects and hefty cost of treatment are major obstacles which could hinder its progress globally. Nevertheless, ongoing research would only result in a maximized therapeutic potential in addition to more patient- and cost-friendly treatment. In this review, we aim to provide the readers an overview of chimeric antigen receptor T-cell therapy, a relatively new advancement in the world of immuno-oncology and thereby also discussing its advantages, side effects and future challenges.
Collapse
Affiliation(s)
- Syed Maaz Tariq
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Syed Ali Haider
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Mohammad Hasan
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Amber Tahir
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Maria Khan
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Arisha Rehan
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Anum Kamal
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review will discuss the challenges facing adoptive cell techniques in the treatment of solid tumors and examine the therapies that are in development for specifically pediatric solid tumors. RECENT FINDINGS Targeting solid tumors with adoptive cell therapy has been limited by the inhibitory tumor microenvironment and heterogeneous expression of targetable antigens. Many creative strategies to overcome these limitations are being developed but still need to be tested clinically. Early phase clinical trials in neuroblastoma with GD2 CAR T cells are promising but results need to be validated on a larger scale. Most research in other pediatric solid tumors is still in early stages. Adoptive cell therapy represents a useful tool to improve the outcomes of many pediatric solid tumors but significant study is still required. Several clinical trials are ongoing to test therapies that have shown promise in the lab.
Collapse
|
38
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
39
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
40
|
Orsi G, Barbolini M, Ficarra G, Tazzioli G, Manni P, Petrachi T, Mastrolia I, Orvieto E, Spano C, Prapa M, Kaleci S, D'Amico R, Guarneri V, Dieci MV, Cascinu S, Conte P, Piacentini F, Dominici M. GD2 expression in breast cancer. Oncotarget 2018; 8:31592-31600. [PMID: 28415563 PMCID: PMC5458232 DOI: 10.18632/oncotarget.16363] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/09/2017] [Indexed: 01/05/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, including different subtypes having diverse incidence, drug-sensitivity and survival rates. In particular, claudin-low and basal-like BC have mesenchymal features with a dismal prognosis. Disialoganglioside GD2 is a typical neuroectodermal antigen expressed in a variety of cancers. Despite its potential relevance in cancer diagnostics and therapeutics, the presence and role of GD2 require further investigation, especially in BC. Therefore, we evaluated GD2 expression in a cohort of BC patients and its correlation with clinical-pathological features. Sixty-three patients with BC who underwent surgery without prior chemo- and/or radiotherapy between 2001 and 2014 were considered. Cancer specimens were analyzed by immunohistochemistry and GD2-staining was expressed according to the percentage of positive cells and by a semi-quantitative scoring system. Patient characteristics were heterogeneous by age at diagnosis, histotype, grading, tumor size, Ki-67 and receptor-status. GD2 staining revealed positive cancer cells in 59% of patients. Among them, 26 cases (41%) were labeled with score 1+ and 11 (18%) with score 2+. Notably, the majority of metaplastic carcinoma specimens stained positive for GD2. The univariate regression logistic analysis revealed a significant association of GD2 with triple-receptor negative phenotype and older age (> 78) at diagnosis. We demonstrate for the first time that GD2 is highly prevalent in a cohort of BC patients clustering on very aggressive BC subtypes, such as triple-negative and metaplastic variants.
Collapse
Affiliation(s)
- Giulia Orsi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Monica Barbolini
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Guido Ficarra
- Division of Pathology, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Giovanni Tazzioli
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Paola Manni
- Division of Pathology, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Tiziana Petrachi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Ilenia Mastrolia
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Enrico Orvieto
- Department of Pathology, Padua University Hospital, 2-35128 Padua, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Malvina Prapa
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Shaniko Kaleci
- Department of Diagnostic and Clinical Medicine and Public Health, Statistics Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Roberto D'Amico
- Department of Diagnostic and Clinical Medicine and Public Health, Statistics Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Stefano Cascinu
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Federico Piacentini
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| |
Collapse
|
41
|
Zhang Q, Wang H, Li H, Xu J, Tian K, Yang J, Lu Z, Zheng J. Chimeric antigen receptor-modified T Cells inhibit the growth and metastases of established tissue factor-positive tumors in NOG mice. Oncotarget 2018; 8:9488-9499. [PMID: 28055955 PMCID: PMC5354747 DOI: 10.18632/oncotarget.14367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell (CAR T) is a promising therapeutic option for patients with cancer. Such an approach requires the identification of tumor-specific antigen targets that are expressed in solid tumors. We developed a new third-generation CAR directed against tissue factor (TF), a surface molecule overexpressed in some types of lung cancer, melanoma and other cancers. First, we demonstrated by immunohistochemistry that TF was overexpressed in squamous cell carcinoma and adenocarcinoma of non-small cell lung cancer (NSCLC) and melanoma using a human tissue microarray. In the presence of TF-positive cancer cells, the CAR-modified T cells (TF-CAR T) were highly activated and showed specific cytotoxicity to TF-positive cancer cells in vitro. In established s.c. xenograft and lung metastasis models, TF-CAR T cells could significantly suppress the growth of s.c. xenograft and metastasis of TF-positive cancer cells. Additionally, the safety evaluation of TF-CAR T cells in vivo showed that the treatment did not cause obvious toxicity in mice. Taken together, these findings indicate that TF-CAR T cells might be a novel potential therapeutic agent for the treatment of patients with TF-positive cancers.
Collapse
Affiliation(s)
- Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Haiyu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jinjing Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Kang Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
42
|
Yeku O, Li X, Brentjens RJ. Adoptive T-Cell Therapy for Solid Tumors. AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2017. [PMID: 28561728 DOI: 10.14694/edbk_180328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of immunotherapy wherein autologous T cells are genetically modified to express chimeric receptors encoding an antigen-specific single-chain variable fragment and various costimulatory molecules. Upon administration, these modified T cells traffic to, and recognize, cancer cells in an HLA-independent manner. CAR T-cell therapy has shown remarkable success in the treatment of CD-19-expressing B-cell acute lymphocytic leukemia. However, clinical gains to the same magnitude have not been reported in solid tumors. Several known obstacles to CAR T-cell therapy for solid tumors include target antigen identification, effective trafficking to the tumor, robust activation, proliferation, and in vivo cytotoxicity. Beyond these T-cell intrinsic properties, a complex and dynamic immunosuppressive tumor microenvironment in solid tumors hinders T-cell efficacy. Notable advancements in CAR design to include multiple costimulatory molecules, ligands, and soluble cytokines have shown promise in preclinical models, and some of these are currently in early-phase clinical trials. In this review, we discuss selected solid tumor malignancies and relevant preclinical data and highlight clinical trial results that are available. Furthermore, we outline some obstacles to CAR T-cell therapy for each tumor and propose strategies to overcome some of these limitations.
Collapse
Affiliation(s)
- Oladapo Yeku
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xinghuo Li
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renier J Brentjens
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
43
|
Yeku O, Li X, Brentjens RJ. Adoptive T-Cell Therapy for Solid Tumors. Am Soc Clin Oncol Educ Book 2017; 37:193-204. [PMID: 28561728 DOI: 10.1200/edbk_180328] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of immunotherapy wherein autologous T cells are genetically modified to express chimeric receptors encoding an antigen-specific single-chain variable fragment and various costimulatory molecules. Upon administration, these modified T cells traffic to, and recognize, cancer cells in an HLA-independent manner. CAR T-cell therapy has shown remarkable success in the treatment of CD-19-expressing B-cell acute lymphocytic leukemia. However, clinical gains to the same magnitude have not been reported in solid tumors. Several known obstacles to CAR T-cell therapy for solid tumors include target antigen identification, effective trafficking to the tumor, robust activation, proliferation, and in vivo cytotoxicity. Beyond these T-cell intrinsic properties, a complex and dynamic immunosuppressive tumor microenvironment in solid tumors hinders T-cell efficacy. Notable advancements in CAR design to include multiple costimulatory molecules, ligands, and soluble cytokines have shown promise in preclinical models, and some of these are currently in early-phase clinical trials. In this review, we discuss selected solid tumor malignancies and relevant preclinical data and highlight clinical trial results that are available. Furthermore, we outline some obstacles to CAR T-cell therapy for each tumor and propose strategies to overcome some of these limitations.
Collapse
Affiliation(s)
- Oladapo Yeku
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xinghuo Li
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renier J Brentjens
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
44
|
Le TP, Thai TH. The State of Cellular Adoptive Immunotherapy for Neuroblastoma and Other Pediatric Solid Tumors. Front Immunol 2017; 8:1640. [PMID: 29225605 PMCID: PMC5705544 DOI: 10.3389/fimmu.2017.01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 01/21/2023] Open
Abstract
Research on adult cancer immunotherapy is proceeding at a rapid pace resulting in an impressive success rate exemplified by a few high profile cases. However, this momentum is not readily extended to pediatric immunotherapy, and it is not for lack of trying. Though reasons for the slower advance are not apparent, some issues can be raised. Pediatric cancer patients represent a distinct demographic group whose immune system is inherently different from that of mature adults. Treating pediatric patients with immunotherapy designed for adults may not yield objective clinical responses. Here, we will present an update on adoptive T-cell and natural killer-cell therapies for neuroblastoma and other childhood solid tumors. Additionally, we will delineate key differences between human fetal/neonatal and adult immune systems. We hope this will generate interests leading to the discussion of potential future directions for improving adoptive cancer immunotherapy for children.
Collapse
Affiliation(s)
- Thanh-Phuong Le
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - To-Ha Thai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects. Oncotarget 2017; 8:99161-99178. [PMID: 29228761 PMCID: PMC5716801 DOI: 10.18632/oncotarget.21959] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
Tumor-associated carbohydrate antigens (TACAs) support cell survival that could be interrupted by anti-TACA antibodies. Among TACAs that mediate cell survival signals are the neolactoseries antigen Lewis Y (LeY) and the ganglioside GD2. To induce sustained immunity against both LeY and GD2, we developed a carbohydrate mimicking peptide (CMP) as a surrogate pan-immunogen that mimics both. This CMP, referred to as P10s, is the N-terminal half of a peptide vaccine named P10s-PADRE, the C-terminal half of which (PADRE) is a Pan-T-cell epitope. A Phase I dose-escalation trial of P10s-PADRE plus adjuvant MONTANIDE™ ISA 51 VG was conducted in subjects with metastatic breast cancer to test 300 and 500 μg/injection in two cohorts of 3 subjects each. Doses of the P10s-PADRE vaccine were administered to research participants subcutaneously on weeks 1, 2, 3, 7 and 19. Antibody responses to P10s, GD2, and LeY were measured by ELISA. The P10s-PADRE vaccine induced antibodies specifically reactive with P10s, LeY and GD2 in all 6 subjects. Serum antibodies displayed Caspase-3-dependent apoptotic functionality against LeY or GD2 expressing breast cancer cell lines. Immunization with the P10s-PADRE vaccine was well-tolerated and induced functional antibodies, and the data suggest potential clinical benefit.
Collapse
|
46
|
Sridhar P, Petrocca F. Regional Delivery of Chimeric Antigen Receptor (CAR) T-Cells for Cancer Therapy. Cancers (Basel) 2017; 9:E92. [PMID: 28718815 PMCID: PMC5532628 DOI: 10.3390/cancers9070092] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.
Collapse
Affiliation(s)
- Praveen Sridhar
- Department of Surgery, Boston University, Boston, MA 02118, USA.
| | - Fabio Petrocca
- Department of Surgery, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
47
|
Bezverbnaya K, Mathews A, Sidhu J, Helsen CW, Bramson JL. Tumor-targeting domains for chimeric antigen receptor T cells. Immunotherapy 2017; 9:33-46. [PMID: 28000526 DOI: 10.2217/imt-2016-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunotherapy with chimeric antigen receptor (CAR) T cells has been advancing steadily in clinical trials. Since the ability of engineered T cells to recognize intended tumor-associated targets is crucial for the therapeutic success, antigen-binding domains play an important role in shaping T-cell responses. Single-chain antibody and T-cell receptor fragments, natural ligands, repeat proteins, combinations of the above and universal tag-specific domains have all been used in the antigen-binding moiety of chimeric receptors. Here we outline the advantages and disadvantages of different domains, discuss the concepts of affinity and specificity, and highlight the recent progress of each targeting strategy.
Collapse
Affiliation(s)
- Ksenia Bezverbnaya
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ashish Mathews
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jesse Sidhu
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Christopher W Helsen
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jonathan L Bramson
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
48
|
Bedoya F, Frigault MJ, Maus MV. The Flipside of the Power of Engineered T Cells: Observed and Potential Toxicities of Genetically Modified T Cells as Therapy. Mol Ther 2017; 25:314-320. [PMID: 28153085 DOI: 10.1016/j.ymthe.2016.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Autologous T cells modified to recognize novel antigen targets are a novel form of therapy for cancer. We review the various potential forms of observed and hypothetical toxicities associated with genetically modified T cells. Despite the focus on toxicities in this review, re-directed T cells represent a powerful and highly effective form of anti-cancer therapy; we remain optimistic that the common toxicities will become routinely manageable and that some theoretical toxicity will be exceedingly rare, if ever observed.
Collapse
Affiliation(s)
- Felipe Bedoya
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J Control Release 2017; 255:108-119. [PMID: 28412222 DOI: 10.1016/j.jconrel.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
Abstract
Neuroblastoma is a pediatric solid tumor with high expression of the tumor associated antigen disialoganglioside GD2. Despite initial response to induction therapy, nearly 50% of high-risk neuroblastomas recur because of chemoresistance. Here we encapsulated the topoisomerase-I inhibitor SN-38 in polymeric nanoparticles (NPs) surface-decorated with the anti-GD2 mouse mAb 3F8 at a mean density of seven antibody molecules per NP. The accumulation of drug-loaded NPs targeted with 3F8 versus with control antibody was monitored by microdialysis in patient-derived GD2-expressing neuroblastoma xenografts. We showed that the extent of tumor penetration by SN-38 was significantly higher in mice receiving the targeted nano-drug delivery system when compared to non-targeted system or free drug. This selective penetration of the tumor extracellular fluid translated into a strong anti-tumor effect prolonging survival of mice bearing GD2-high neuroblastomas in vivo.
Collapse
|
50
|
Cohen JE, Merims S, Frank S, Engelstein R, Peretz T, Lotem M. Adoptive cell therapy: past, present and future. Immunotherapy 2017; 9:183-196. [DOI: 10.2217/imt-2016-0112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The immune system is a potent inhibitor of tumor growth with curative potential, constituting in many eyes the future of antineoplastic therapy. Adoptive cell therapy (ACT) is a form of immunotherapy in which autologous cancer-cognate lymphocytes are expanded and modified ex vivo and re-infused to combat the tumor. This review follows the evolvement of ACT and treatment protocols, focusing on unresolved dilemmas regarding this treatment while providing evidence for its effectiveness in refractory patients. Future directions of ACT are discussed, in particular with regard to genetic engineering of autologous cells, and the role of ACT in the era of checkpoint inhibitors is addressed.
Collapse
Affiliation(s)
- Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sharon Merims
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Stephen Frank
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Roni Engelstein
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|