1
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
2
|
Hodapp SJ, Gravel N, Kannan N, Newton AC. Cancer-associated mutations in protein kinase C theta are loss-of-function. Biochem J 2024; 481:759-775. [PMID: 38752473 PMCID: PMC11346454 DOI: 10.1042/bcj20240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
Collapse
Affiliation(s)
- Stefanie J. Hodapp
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Nathan Gravel
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
3
|
Mieville V, Griffioen AW, Benamran D, Nowak-Sliwinska P. Advanced in vitro models for renal cell carcinoma therapy design. Biochim Biophys Acta Rev Cancer 2023; 1878:188942. [PMID: 37343729 DOI: 10.1016/j.bbcan.2023.188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Renal cell carcinoma (RCC) and its principal subtype, clear cell RCC, are the most diagnosed kidney cancer. Despite substantial improvement over the last decades, current pharmacological intervention still fails to achieve long-term therapeutic success. RCC is characterized by a high intra- and inter-tumoral heterogeneity and is heavily influenced by the crosstalk of the cells composing the tumor microenvironment, such as cancer-associated fibroblasts, endothelial cells and immune cells. Moreover, multiple physicochemical properties such as pH, interstitial pressure or oxygenation may also play an important role. These elements are often poorly recapitulated in in vitro models used for drug development. This inadequate recapitulation of the tumor is partially responsible for the current lack of an effective and curative treatment. Therefore, there are needs for more complex in vitro or ex vivo drug screening models. In this review, we discuss the current state-of-the-art of RCC models and suggest strategies for their further development.
Collapse
Affiliation(s)
- Valentin Mieville
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
4
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
5
|
de Abrantes RA, Batista TM, Mangueira VM, de Sousa TKG, Ferreira RC, Moura APG, Abreu LS, Alves AF, Velozo ES, Batista LM, da Silva MS, Tavares JF, Sobral MV. Antitumor and antiangiogenic effects of Tonantzitlolone B, an uncommon diterpene from Stillingia loranthacea. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:267-274. [PMID: 34854946 DOI: 10.1007/s00210-021-02185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/14/2021] [Indexed: 01/04/2023]
Abstract
Natural products have played a pivotal role for the discovery of anticancer drugs. Tonantzitlolones are flexibilan-type diterpenes rare in nature; therefore, few reports have shown antiviral and cytotoxic activities. This study aimed to investigate the in vivo antitumor action of Tonantzitlolone B (TNZ-B) and its toxicity. Toxicity was evaluated in mice (acute and micronucleus assays). Antitumor activity of TNZ-B (1.5 or 3 mg/kg intraperitoneally - i.p.) was assessed in Ehrlich ascites carcinoma model. Angiogenesis and reactive oxygen species (ROS) and nitric oxide (NO) production were also investigated, in addition to toxicological effects after 7-day treatment. The LD50 (lethal dose 50%) was estimated at around 25 mg/kg (i.p.), and no genotoxicity was recorded. TNZ-B reduced the Ehrlich tumor's volume and total viable cancer cell count (p < 0.001 for both). Additionally, TNZ-B reduced peritumoral microvessel density (p < 0.01), suggesting antiangiogenic action. Moreover, a decrease was observed on ROS (p < 0.05) and nitric oxide (p < 0.001) levels. No significant clinical findings were observed in the analysis of biochemical, hematological, and histological (liver and kidney) parameters. In conclusion, TNZ-B exerts antitumor and antiangiogenic effects by reducing ROS and NO levels and has weak in vivo dose-repeated toxicity. These data contribute to elucidate the antitumor action of TNZ-B and point the way for further studies with this natural compound as an anticancer drug.
Collapse
Affiliation(s)
- Renata A de Abrantes
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatianne M Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Vivianne M Mangueira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatyanna K G de Sousa
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Rafael C Ferreira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Ana Paula G Moura
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucas S Abreu
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Adriano F Alves
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Eudes S Velozo
- Research Laboratory in Materia Medica, School of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Leônia M Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcelo S da Silva
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Josean F Tavares
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marianna V Sobral
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
6
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
7
|
Nicolle A, Zhang Y, Belguise K. The Emerging Function of PKCtheta in Cancer. Biomolecules 2021; 11:biom11020221. [PMID: 33562506 PMCID: PMC7915540 DOI: 10.3390/biom11020221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C theta (PKCθ) is a serine/threonine kinase that belongs to the novel PKC subfamily. In normal tissue, its expression is restricted to skeletal muscle cells, platelets and T lymphocytes in which PKCθ controls several essential cellular processes such as survival, proliferation and differentiation. Particularly, PKCθ has been extensively studied for its role in the immune system where its translocation to the immunological synapse plays a critical role in T cell activation. Beyond its physiological role in immune responses, increasing evidence implicates PKCθ in the pathology of various diseases, especially autoimmune disorders and cancers. In this review, we discuss the implication of PKCθ in various types of cancers and the PKCθ-mediated signaling events controlling cancer initiation and progression. In these types of cancers, the high PKCθ expression leads to aberrant cell proliferation, migration and invasion resulting in malignant phenotype. The recent development and application of PKCθ inhibitors in the context of autoimmune diseases could benefit the emergence of treatment for cancers in which PKCθ has been implicated.
Collapse
|
8
|
Wang J, Jin W, Zhou X, Li J, Xu C, Ma Z, Wang J, Qin L, Zhou B, Ding W, Gao T, Yao H, Chen Z. Identification, Structure-Activity Relationships of Marine-Derived Indolocarbazoles, and a Dual PKCθ/δ Inhibitor with Potent Antipancreatic Cancer Efficacy. J Med Chem 2020; 63:12978-12991. [PMID: 33100009 DOI: 10.1021/acs.jmedchem.0c01271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinases C (PKCs) are a family of serine/threonine kinases involved in various cellular processes, including proliferation, differentiation, cell survival, and apoptosis. Here, we report the identification, structure-activity relationship (SAR), and 3D-QSAR studies of 69 natural indolocarbazoles, including 15 new compounds, from marine streptomyces strains. Interestingly, we found that the chair conformational isomer of 7-oxo-staurosporine (compound 15) inhibited PKCθ more potently than the corresponding boat isomer. An evaluation of kinase selectivity and antitumor efficacy revealed that 15 was a potent dual PKCθ/δ inhibitor and that it could efficiently inhibit tumor growth in pancreatic cancer (PC) by inducing cellular apoptosis and suppressing the NF-κB/p-P65 pathway. In addition, we demonstrated that overexpression of p-PKCδ and p-P65 was associated with poor survival rates in patients with PC, and p-PKCθ expression also showed significant positive correlations with p-PKCδ and p-P65 levels. Finally, the PC patient-derived xenograft model further confirmed the potential anti-PC efficacy of 15.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, China
| | - Xiaoxin Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, China
| | - Jiaqi Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Chengdong Xu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Jianan Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Lele Qin
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Biao Zhou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Tingting Gao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, No. 1 Zheda Road, Zhoushan 316021, China
| | - Hangping Yao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, No. 548, Binwen Road, Hangzhou 310053, China
| |
Collapse
|
9
|
Wu Z, Suppo JS, Tumova S, Strope J, Bravo F, Moy M, Weinstein ES, Peer CJ, Figg WD, Chain WJ, Echavarren AM, Beech DJ, Beutler JA. Bridgehead Modifications of Englerin A Reduce TRPC4 Activity and Intravenous Toxicity but not Cell Growth Inhibition. ACS Med Chem Lett 2020; 11:1711-1716. [PMID: 32944138 DOI: 10.1021/acsmedchemlett.0c00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022] Open
Abstract
Modifications at the bridgehead position of englerin A were made to explore the effects of variation at this site on the molecule for biological activity, as judged by the NCI 60 screen, in which englerin A is highly potent and selective for renal cancer cells. Replacement of the isopropyl group by other, larger substituents yielded compounds which displayed excellent selectivity and potency comparable to the natural product. Selected compounds were also evaluated for their effect on the ion channel TRPC4 as well as for intravenous toxicity in mice, and these had lower potency in both assays compared to englerin A.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | - Jean-Simon Suppo
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Sarka Tumova
- School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Jonathan Strope
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Fernando Bravo
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Melody Moy
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | - Ethan S. Weinstein
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | - Cody J. Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William J. Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, Delaware 19716, United States
| | | | - David J. Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - John A. Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
10
|
Abreu LS, do Nascimento YM, Costa RDS, Guedes MLS, Souza BNRF, Pena LJ, Costa VCDO, Scotti MT, Braz-Filho R, Barbosa-Filho JM, da Silva MS, Velozo EDS, Tavares JF. Tri- and Diterpenoids from Stillingia loranthacea as Inhibitors of Zika Virus Replication. JOURNAL OF NATURAL PRODUCTS 2019; 82:2721-2730. [PMID: 31599155 DOI: 10.1021/acs.jnatprod.9b00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study represents the first phytochemical analysis of Stillingia loranthacea (S. loranthacea) and describes new terpenoids obtained from the root bark of this species. The fractionation of the hexane extract from the root bark led to the isolation of two new 28-nor-taraxarenes derivatives, loranthones A and B (1 and 2), four new tigliane diterpenes (5-8), three known tigliane diterpenes (9-11), and three known flexibilene diterpenes, tonantzitlolones A-C (12-14). The investigation of these compounds and the use of a molecular networking-based prioritization approach afforded two other new 28-nor-taraxarenes, loranthones C and D (3 and 4). The cytotoxicity of compounds 1, 2, and 5-14 was evaluated against Vero cells, and their 20% cytotoxic concentration (CC20) values varied from 8.7 to 328 μM; antiviral activity was tested against an epidemic Zika virus (ZIKV) strain circulating in Brazil. Six out of 12 compounds (2, 5, 9-11, and 14) exhibited significant antiviral effects against ZIKV. Specifically, compounds 2 and 5 offered the most promise as lead compounds as they had a 1.7 and 1.8 log10 TCID50/mL reduction in ZIKV replication, respectively. Together, the present findings have identified S. loranthacea terpenoids as potent anti-ZIKV inhibitors and pave the way to the development of possible new treatments against this devastating pathogen.
Collapse
Affiliation(s)
- Lucas Silva Abreu
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Yuri Mangueira do Nascimento
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Rafael Dos Santos Costa
- Research Laboratory in Materia Medica, School of Pharmacy , Federal University of Bahia , Salvador 40170-290 , Brazil
| | | | | | - Lindomar José Pena
- Department of Virology , Oswaldo Cruz Foundation (Fiocruz) , Recife 50740-465 , Brazil
| | | | - Marcus Tullius Scotti
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Raimundo Braz-Filho
- Department of Chemistry, Institute of Chemistry , Federal Rural University of Rio de Janeiro , Seropédica 23890-000 , Brazil
| | - José Maria Barbosa-Filho
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| | - Eudes da Silva Velozo
- Research Laboratory in Materia Medica, School of Pharmacy , Federal University of Bahia , Salvador 40170-290 , Brazil
| | - Josean Fechine Tavares
- Institute for Research in Pharmaceuticals and Medications , Federal University of Paraíba , João Pessoa 58051-900 , Brazil
| |
Collapse
|
11
|
Rubaiy HN. Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2019; 176:832-846. [PMID: 30656647 PMCID: PMC6433652 DOI: 10.1111/bph.14578] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Canonical or classical transient receptor potential 4 and 5 proteins (TRPC4 and TRPC5) assemble as homomers or heteromerize with TRPC1 protein to form functional nonselective cationic channels with high calcium permeability. These channel complexes, TRPC1/4/5, are widely expressed in nervous and cardiovascular systems, also in other human tissues and cell types. It is debatable that TRPC1 protein is able to form a functional ion channel on its own. A recent explosion of molecular information about TRPC1/4/5 has emerged including knowledge of their distribution, function, and regulation suggesting these three members of the TRPC subfamily of TRP channels play crucial roles in human physiology and pathology. Therefore, these ion channels represent potential drug targets for cancer, epilepsy, anxiety, pain, and cardiac remodelling. In recent years, a number of highly selective small-molecule modulators of TRPC1/4/5 channels have been identified as being potent with improved pharmacological properties. This review will focus on recent remarkable small-molecule agonists: (-)-englerin A and tonantzitlolone and antagonists: Pico145 and HC7090, of TPRC1/4/5 channels. In addition, this work highlights other recently identified modulators of these channels such as the benzothiadiazine derivative, riluzole, ML204, clemizole, and AC1903. Together, these treasure troves of agonists and antagonists of TRPC1/4/5 channels provide valuable hints to comprehend the functional importance of these ion channels in native cells and in vivo animal models. Importantly, human diseases and disorders mediated by these proteins can be studied using these compounds to perhaps initiate drug discovery efforts to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Hussein N. Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical SchoolUniversity of HullHullUK
| |
Collapse
|
12
|
Rubaiy HN, Ludlow MJ, Siems K, Norman K, Foster R, Wolf D, Beutler JA, Beech DJ. Tonantzitlolone is a nanomolar potency activator of transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2018; 175:3361-3368. [PMID: 29859013 DOI: 10.1111/bph.14379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE The diterpene ester tonantzitlolone (TZL) is a natural product, which displays cytotoxicity towards certain types of cancer cell such as renal cell carcinoma cells. The effect is similar to that of (-)-englerin A, and so, although it is chemically distinct, we investigated whether TZL also targets transient receptor potential canonical (TRPC) channels of the 1, 4 and 5 type (TRPC1/4/5 channels). EXPERIMENTAL APPROACH The effects of TZL on renal cell carcinoma A498 cells natively expressing TRPC1 and TRPC4, modified HEK293 cells overexpressing TRPC4, TRPC5, TRPC4-TRPC1 or TRPC5-TRPC1 concatemer, TRPC3 or TRPM2, or CHO cells overexpressing TRPV4 were studied by determining changes in intracellular Ca2+ , or whole-cell or excised membrane patch-clamp electrophysiology. KEY RESULTS TZL induced an elevation of intracellular Ca2+ in A498 cells, similar to that evoked by englerin A. TZL activated overexpressed channels with EC50 values of 123 nM (TRPC4), 83 nM (TRPC5), 140 nM (TRPC4-TRPC1) and 61 nM (TRPC5-TRPC1). These effects of TZL were reversible on wash-out and potently inhibited by the TRPC1/4/5 inhibitor Pico145. TZL activated TRPC5 channels when bath-applied to excised outside-out but not inside-out patches. TZL failed to activate endogenous store-operated Ca2+ entry or overexpressed TRPC3, TRPV4 or TRPM2 channels in HEK 293 cells. CONCLUSIONS AND IMPLICATIONS TZL is a novel potent agonist for TRPC1/4/5 channels, which should be useful for testing the functionality of this type of ion channel and understanding how TRPC1/4/5 agonists achieve selective cytotoxicity against certain types of cancer cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | |
Collapse
|
13
|
Na + entry through heteromeric TRPC4/C1 channels mediates (-)Englerin A-induced cytotoxicity in synovial sarcoma cells. Sci Rep 2017; 7:16988. [PMID: 29209034 PMCID: PMC5717101 DOI: 10.1038/s41598-017-17303-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
The sesquiterpene (-)Englerin A (EA) is an organic compound from the plant Phyllanthus engleri which acts via heteromeric TRPC4/C1 channels to cause cytotoxicity in some types of cancer cell but not normal cells. Here we identified selective cytotoxicity of EA in human synovial sarcoma cells (SW982 cells) and investigated the mechanism. EA induced cation channel current (Icat) in SW982 cells with biophysical characteristics of heteromeric TRPC4/C1 channels. Inhibitors of homomeric TRPC4 channels were weak inhibitors of the Icat and EA-induced cytotoxicity whereas a potent inhibitor of TRPC4/C1 channels (Pico145) strongly inhibited Icat and cytotoxicity. Depletion of TRPC1 converted Icat into a current with biophysical and pharmacological properties of homomeric TRPC4 channels and depletion of TRPC1 or TRPC4 suppressed the cytotoxicity of EA. A Na+/K+-ATPase inhibitor (ouabain) potentiated EA-induced cytotoxicity and direct Na+ loading by gramicidin-A caused Pico145-resistant cytotoxicity in the absence of EA. We conclude that EA has a potent cytotoxic effect on human synovial sarcoma cells which is mediated by heteromeric TRPC4/C1 channels and Na+ loading.
Collapse
|
14
|
Wu Z, Zhao S, Fash DM, Li Z, Chain WJ, Beutler JA. Englerins: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2017; 80:771-781. [PMID: 28170253 PMCID: PMC6198806 DOI: 10.1021/acs.jnatprod.6b01167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the decade since the discovery of englerin A (1) and its potent activity in cancer models, this natural product and its analogues have been the subject of numerous chemical, biological, and preclinical studies by many research groups. This review summarizes published findings and proposes further research directions required for entry of an englerin analogue into clinical trials for kidney cancer and other conditions.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Senzhi Zhao
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - David M. Fash
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Zhenwu Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - William J. Chain
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
15
|
Fash DM, Peer CJ, Li Z, Talisman IJ, Hayavi S, Sulzmaier FJ, Ramos JW, Sourbier C, Neckers L, Figg WD, Beutler JA, Chain WJ. Synthesis of a stable and orally bioavailable englerin analogue. Bioorg Med Chem Lett 2016; 26:2641-4. [PMID: 27107948 PMCID: PMC4862412 DOI: 10.1016/j.bmcl.2016.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022]
Abstract
Synthesis of analogues of englerin A with a reduced propensity for hydrolysis of the glycolate moiety led to a compound which possessed the renal cancer cell selectivity of the parent and was orally bioavailable in mice.
Collapse
Affiliation(s)
- David M Fash
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, United States
| | - Cody J Peer
- Genitourinary Malignancies Branch, National Cancer Institute, Frederick, MD 21702, United States
| | - Zhenwu Li
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, United States
| | - Ian J Talisman
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, United States
| | - Sima Hayavi
- Developmental Therapeutics Program, National Cancer Institute, Frederick, MD 21702, United States
| | - Florian J Sulzmaier
- The University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Joe W Ramos
- The University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - W Douglas Figg
- Genitourinary Malignancies Branch, National Cancer Institute, Frederick, MD 21702, United States
| | - John A Beutler
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD 21702, United States.
| | - William J Chain
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, United States; The University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States.
| |
Collapse
|
16
|
The natural diterpene tonantzitlolone A and its synthetic enantiomer inhibit cell proliferation and kinesin-5 function. Eur J Med Chem 2016; 112:164-170. [DOI: 10.1016/j.ejmech.2016.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 01/05/2023]
|