1
|
Li Y, Wang M, Jiang L, Jia J, Pan F, Li W, Wang B, Huang K, Luo J. SIPA1 promotes epithelial-mesenchymal transition in colorectal cancer through STAT3 activation. Heliyon 2024; 10:e34527. [PMID: 39130435 PMCID: PMC11315193 DOI: 10.1016/j.heliyon.2024.e34527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cancer type worldwide and accounts for the second highest rate of cancer-related mortality. Liver metastasis significantly contributes to the mortality associated with CRC, but the fundamental mechanisms behind it remain unclear. Signal-induced proliferation-associated protein 1 (SIPA1), a GTPase activating protein, has been shown to promote metastasis in breast cancer. In this study, our objective was to explore the role of SIPA1 in regulating epithelial-mesenchymal transition (EMT) in CRC. The analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression level of SIPA1 mRNA was notably upregulated and exhibited a positively correlated with EMT and STAT3 signaling pathways in CRC. Knockdown of SIPA1 impairs CRC cell proliferation and migration. Further studies on the reliance of SIPA1 on STAT3 signaling for EMT regulation have shown that SIPA1 stimulates the activation of STAT3, resulting in its nuclear translocation. The co-treatment of overexpressed SIPA1 with the STAT3 inhibitor STTITA has shown that SIPA1 regulates the expression of EMT-related markers through STAT3. Our study indicate that SIPA1 promotes CRC metastasis by activating the STAT3 signaling pathway, underscoring the potential of SIPA1 as a therapeutic target for metastatic CRC patients.
Collapse
Affiliation(s)
- Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Mengjie Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Jiang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jiehong Jia
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Fei Pan
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wen Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Bochu Wang
- Biomedical and Health Engineering Laboratory, Chongqing University, Chongqing, China
| | - Ke Huang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jie Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
- Biomedical and Health Engineering Laboratory, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Fang Y, Wang Q, Zhang L, Xie L. SIPA1 promotes angiogenesis by regulating VEGF secretion in Müller cells through STAT3 activation. Heliyon 2024; 10:e24869. [PMID: 38312659 PMCID: PMC10834823 DOI: 10.1016/j.heliyon.2024.e24869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes that can lead to vision loss. The chronic hyperglycemia associated with DR results in damage to the retinal microvasculature. Müller cells, as a kind of macroglia, play a crucial role in regulating the retinal vascular microenvironment. The objective of this study was to investigate the role of signal-induced proliferation-associated protein 1 (SIPA1) in regulating angiogenesis in Müller cells. Through proteomics, database analysis, endothelial cell function tests, and Western blot detection, we observed an up-regulation of SIPA1 expression in Müller cells upon high glucose stimulation. SIPA1 expression contributed to VEGF secretion in Müller cells and regulated the mobility of retinal vascular endothelial cells. Further investigation of the dependence of SIPA1 on VEGF secretion revealed that SIPA1 activated the phosphorylation STAT3, leading to its translocation into the nucleus. Overexpression of SIPA1 combined with the STAT3 inhibitor STATTIC demonstrated the regulation of SIPA1 in VEGF expression, dependent on STAT3 activation. These findings suggest that SIPA1 promotes the secretion of pro-angiogenic factors in Müller cells by activating the STAT3 signaling pathway, thereby highlighting SIPA1 as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Yanhong Fang
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Qionghua Wang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lanyue Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
4
|
Baier D, Mendrina T, Schoenhacker‐Alte B, Pirker C, Mohr T, Rusz M, Regner B, Schaier M, Sgarioto N, Raynal NJ, Nowikovsky K, Schmidt WM, Heffeter P, Meier‐Menches SM, Koellensperger G, Keppler BK, Berger W. The Lipid Metabolism as Target and Modulator of BOLD-100 Anticancer Activity: Crosstalk with Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301939. [PMID: 37752764 PMCID: PMC10646284 DOI: 10.1002/advs.202301939] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.
Collapse
Affiliation(s)
- Dina Baier
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Theresa Mendrina
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Beatrix Schoenhacker‐Alte
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- ScienceConsultGuntramsdorf2351Austria
| | - Mate Rusz
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Benedict Regner
- Anna Spiegel Center of Translational ResearchDepartment of Medicine IMedical University ViennaLazarettgasse 14Vienna1090Austria
| | - Martin Schaier
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Nicolas Sgarioto
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Noël J.‐M. Raynal
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Karin Nowikovsky
- Unit of Physiology and BiophysicsDepartment of Biomedical SciencesUniversity of Veterinary Medicine ViennaVeterinaerplatz 1Vienna1210Austria
| | - Wolfgang M. Schmidt
- Neuromuscular Research DepartmentCenter for Anatomy and Cell BiologyMedical University of ViennaWähringer Str. 13Vienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Gunda Koellensperger
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| |
Collapse
|
5
|
Ries A, Flehberger D, Slany A, Pirker C, Mader JC, Mohr T, Schelch K, Sinn K, Mosleh B, Hoda MA, Dome B, Dolznig H, Krupitza G, Müllauer L, Gerner C, Berger W, Grusch M. Mesothelioma-associated fibroblasts enhance proliferation and migration of pleural mesothelioma cells via c-Met/PI3K and WNT signaling but do not protect against cisplatin. J Exp Clin Cancer Res 2023; 42:27. [PMID: 36683050 PMCID: PMC9869633 DOI: 10.1186/s13046-022-02582-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Unlike many other cancers, PM is mostly characterized by inactivation of tumor suppressor genes. Its highly malignant nature in absence of tumor driving oncogene mutations indicates an extrinsic supply of stimulating signals by cells of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are an abundant cell type of the TME and have been shown to drive the progression of several malignancies. The aim of the current study was to isolate and characterize patient-derived mesothelioma-associated fibroblasts (Meso-CAFs), and evaluate their impact on PM cells. METHODS Meso-CAFs were isolated from surgical specimens of PM patients and analyzed by array comparative genomic hybridization, next generation sequencing, transcriptomics and proteomics. Human PM cell lines were retrovirally transduced with GFP. The impact of Meso-CAFs on tumor cell growth, migration, as well as the response to small molecule inhibitors, cisplatin and pemetrexed treatment was investigated in 2D and 3D co-culture models by videomicroscopy and automated image analysis. RESULTS Meso-CAFs show a normal diploid genotype without gene copy number aberrations typical for PM cells. They express CAF markers and lack PM marker expression. Their proteome and secretome profiles clearly differ from normal lung fibroblasts with particularly strong differences in actively secreted proteins. The presence of Meso-CAFs in co-culture resulted in significantly increased proliferation and migration of PM cells. A similar effect on PM cell growth and migration was induced by Meso-CAF-conditioned medium. Inhibition of c-Met with crizotinib, PI3K with LY-2940002 or WNT signaling with WNT-C59 significantly impaired the Meso-CAF-mediated growth stimulation of PM cells in co-culture at concentrations not affecting the PM cells alone. Meso-CAFs did not provide protection of PM cells against cisplatin but showed significant protection against the EGFR inhibitor erlotinib. CONCLUSIONS Our study provides the first characterization of human patient-derived Meso-CAFs and demonstrates a strong impact of Meso-CAFs on PM cell growth and migration, two key characteristics of PM aggressiveness, indicating a major role of Meso-CAFs in driving PM progression. Moreover, we identify signaling pathways required for Meso-CAF-mediated growth stimulation. These data could be relevant for novel therapeutic strategies against PM.
Collapse
Affiliation(s)
- Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Daniela Flehberger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Waehringer Guertel 38, 1090, Vienna, Austria
- ScienceConsult - DI Thomas Mohr KG, Enzianweg 10a, 2353, Guntramsdorf, Austria
| | - Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Katharina Sinn
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Berta Mosleh
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
- National Korányi Institute of Pulmonology, Korányi Frigyes u. 1, Budapest, 1122, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, 1090, Vienna, Austria
| | - Georg Krupitza
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Leonhard Müllauer
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Gabler L, Jaunecker CN, Katz S, van Schoonhoven S, Englinger B, Pirker C, Mohr T, Vician P, Stojanovic M, Woitzuck V, Laemmerer A, Kirchhofer D, Mayr L, LaFranca M, Erhart F, Grissenberger S, Wenninger-Weinzierl A, Sturtzel C, Kiesel B, Lang A, Marian B, Grasl-Kraupp B, Distel M, Schüler J, Gojo J, Grusch M, Spiegl-Kreinecker S, Donoghue DJ, Lötsch D, Berger W. Fibroblast growth factor receptor 4 promotes glioblastoma progression: a central role of integrin-mediated cell invasiveness. Acta Neuropathol Commun 2022; 10:65. [PMID: 35484633 PMCID: PMC9052585 DOI: 10.1186/s40478-022-01363-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lisa Gabler
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carola Nadine Jaunecker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sonja Katz
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sushilla van Schoonhoven
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Bernhard Englinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Christine Pirker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Mirjana Stojanovic
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Valentin Woitzuck
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anna Laemmerer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lisa Mayr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Mery LaFranca
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | | | | | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Brigitte Marian
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Julia Schüler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany
| | - Johannes Gojo
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University Linz, Wagner-Jauregg-Weg 15, 4020, Linz and Altenberger Strasse 69, 4020, Linz, Austria
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA
| | - Daniela Lötsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria.
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
7
|
The Anticancer Ruthenium Compound BOLD-100 Targets Glycolysis and Generates a Metabolic Vulnerability towards Glucose Deprivation. Pharmaceutics 2022; 14:pharmaceutics14020238. [PMID: 35213972 PMCID: PMC8875291 DOI: 10.3390/pharmaceutics14020238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular energy metabolism is reprogrammed in cancer to fuel proliferation. In oncological therapy, treatment resistance remains an obstacle and is frequently linked to metabolic perturbations. Identifying metabolic changes as vulnerabilities opens up novel approaches for the prevention or targeting of acquired therapy resistance. Insights into metabolic alterations underlying ruthenium-based chemotherapy resistance remain widely elusive. In this study, colon cancer HCT116 and pancreatic cancer Capan-1 cells were selected for resistance against the clinically evaluated ruthenium complex sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (BOLD-100). Gene expression profiling identified transcriptional deregulation of carbohydrate metabolism as a response to BOLD-100 and in resistance against the drug. Mechanistically, acquired BOLD-100 resistance is linked to elevated glucose uptake and an increased lysosomal compartment, based on a defect in downstream autophagy execution. Congruently, metabolomics suggested stronger glycolytic activity, in agreement with the distinct hypersensitivity of BOLD-100-resistant cells to 2-deoxy-d-glucose (2-DG). In resistant cells, 2-DG induced stronger metabolic perturbations associated with ER stress induction and cytoplasmic lysosome deregulation. The combination with 2-DG enhanced BOLD-100 activity against HCT116 and Capan-1 cells and reverted acquired BOLD-100 resistance by synergistic cell death induction and autophagy disturbance. This newly identified enhanced glycolytic activity as a metabolic vulnerability in BOLD-100 resistance suggests the targeting of glycolysis as a promising strategy to support BOLD-100 anticancer activity.
Collapse
|
8
|
Yao C, Weng J, Feng L, Zhang W, Xu Y, Zhang P, Tanaka Y, Su L. SIPA1 Enhances Aerobic Glycolysis Through HIF-2α Pathway to Promote Breast Cancer Metastasis. Front Cell Dev Biol 2022; 9:779169. [PMID: 35096814 PMCID: PMC8790513 DOI: 10.3389/fcell.2021.779169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Increased dependence on aerobic glycolysis is characteristic of most cancer cells, whereas the mechanism underlying the promotion of aerobic glycolysis in metastatic breast cancer cells under ambient oxygen has not been well understood. Here, we demonstrated that aberrant expression of signal-induced proliferation-associated 1 (SIPA1) enhanced aerobic glycolysis and altered the main source of ATP production from oxidative phosphorylation to glycolysis in breast cancer cells. We revealed that SIPA1 promoted the transcription of EPAS1, which is known as the gene encoding hypoxia-inducible factor-2α (HIF-2α) and up-regulated the expression of multiple glycolysis-related genes to increase aerobic glycolysis. We also found that blocking aerobic glycolysis by either knocking down SIPA1 expression or oxamate treatment led to the suppression of tumor metastasis of breast cancer cells both in vitro and in vivo. Taken together, aberrant expression of SIPA1 resulted in the alteration of glucose metabolism from oxidative phosphorylation to aerobic glycolysis even at ambient oxygen levels, which might aggravate the malignancy of breast cancer cells. The present findings indicate a potential target for the development of therapeutics against breast cancers with dysregulated SIPA1 expression.
Collapse
Affiliation(s)
- Chenguang Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Peijing Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Gao B, Baudis M. Signatures of Discriminative Copy Number Aberrations in 31 Cancer Subtypes. Front Genet 2021; 12:654887. [PMID: 34054918 PMCID: PMC8155688 DOI: 10.3389/fgene.2021.654887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Copy number aberrations (CNA) are one of the most important classes of genomic mutations related to oncogenetic effects. In the past three decades, a vast amount of CNA data has been generated by molecular-cytogenetic and genome sequencing based methods. While this data has been instrumental in the identification of cancer-related genes and promoted research into the relation between CNA and histo-pathologically defined cancer types, the heterogeneity of source data and derived CNV profiles pose great challenges for data integration and comparative analysis. Furthermore, a majority of existing studies have been focused on the association of CNA to pre-selected "driver" genes with limited application to rare drivers and other genomic elements. In this study, we developed a bioinformatics pipeline to integrate a collection of 44,988 high-quality CNA profiles of high diversity. Using a hybrid model of neural networks and attention algorithm, we generated the CNA signatures of 31 cancer subtypes, depicting the uniqueness of their respective CNA landscapes. Finally, we constructed a multi-label classifier to identify the cancer type and the organ of origin from copy number profiling data. The investigation of the signatures suggested common patterns, not only of physiologically related cancer types but also of clinico-pathologically distant cancer types such as different cancers originating from the neural crest. Further experiments of classification models confirmed the effectiveness of the signatures in distinguishing different cancer types and demonstrated their potential in tumor classification.
Collapse
Affiliation(s)
- Bo Gao
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Baudis
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
10
|
Liu C, Jiang W, Zhang L, Hargest R, Martin TA. SIPA1 Is a Modulator of HGF/MET Induced Tumour Metastasis via the Regulation of Tight Junction-Based Cell to Cell Barrier Function. Cancers (Basel) 2021; 13:1747. [PMID: 33917539 PMCID: PMC8038768 DOI: 10.3390/cancers13071747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death. SIPA1 is a mitogen induced GTPase activating protein (GAP) and may hamper cell cycle progression. SIPA1 has been shown to be involved in MET signaling and may contribute to tight junction (TJ) function and cancer metastasis. METHODS Human lung tumour cohorts were analyzed. In vitro cell function assays were performed after knock down of SIPA1 in lung cancer cells with/without treatment. Quantitative polymerase chain reaction (qPCR) and western blotting were performed to analyze expression of HGF (hepatocyte growth factor), MET, and their downstream markers. Immunohistochemistry (IHC) and immunofluorescence (IFC) staining were performed. RESULTS Higher expression of SIPA1 in lung tumours was associated with a poorer prognosis. Knockdown of SIPA1 decreased invasiveness and proliferation of in vitro cell lines, and the SIPA1 knockdown cells demonstrated leaky barriers. Knockdown of SIPA1 decreased tight junction-based barrier function by downregulating MET at the protein but not the transcript level, through silencing of Grb2, SOCS, and PKCμ (Protein kinase Cµ), reducing the internalization and recycling of MET. Elevated levels of SIPA1 protein are correlated with receptor tyrosine kinases (RTKs), especially HGF/MET and TJs. The regulation of HGF on barrier function and invasion required the presence of SIPA1. CONCLUSIONS SIPA1 plays an essential role in lung tumourigenesis and metastasis. SIPA1 may be a diagnostic and prognostic predictive biomarker. SIPA1 may also be a potential therapeutic target for non-small cell lung cancer (NSCLC) patients with aberrant MET expression and drug resistance.
Collapse
Affiliation(s)
- Chang Liu
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| | - Wenguo Jiang
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| | - Lijian Zhang
- Peking University School of Oncology and Peking University Cancer Hospital, Fucheng Road, Beijing 100142, China;
| | - Rachel Hargest
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| | - Tracey A. Martin
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| |
Collapse
|
11
|
Ma Y, Weng J, Wang N, Zhang Y, Minato N, Su L. A novel nuclear localization region in SIPA1 determines protein nuclear distribution and epirubicin-sensitivity of breast cancer cells. Int J Biol Macromol 2021; 180:718-728. [PMID: 33753200 DOI: 10.1016/j.ijbiomac.2021.03.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
Signal-induced proliferation-associated protein 1 (SIPA1) is highly expressed and mainly located in the nucleus in some breast cancer cell lines and clinical tumor tissues. Previous study revealed that nuclear localization of SIPA1 is functionally involved in breast cancer metastasis in the lymphatic gland. In the current study, we identified a non-typical region (140-179aa) of SIPA1 as a novel nuclear localization region (NLR) which is crucial for translocating the proteins into the nucleus in HEK293 cells and breast cancer cells. This region contained one basic amino acid, His160, and had no common features of typical nuclear localization signals. In addition, overexpressing SIPA1 without NLR could suppress breast cancer cell proliferation but could not promote cell migration in MCF7 cells. Furthermore, we found that a high expression of SIPA1 upregulated the expression of ABCB1, encoding multi-drug resistance protein MDR1, and promoted the resistance to epirubicin in breast cancer cells, while this effect was largely abolished in the cells with the expression of NLR-deleted SIPA1. This study overall, identified a nuclear localization-dependent region determining the nuclear distribution of SIPA1 and its regulation on epirubicin-sensitivity in breast cancer cells, which could be a potential drug target to facilitate the development of breast cancer chemotherapy.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Mussi V, Ledda M, Polese D, Maiolo L, Paria D, Barman I, Lolli MG, Lisi A, Convertino A. Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111951. [PMID: 33641882 DOI: 10.1016/j.msec.2021.111951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/04/2023]
Abstract
Genomic deoxyribonucleic acid (DNA) stores and carries the information required to maintain and replicate cellular life. While much efforts have been devoted in decoding the sequence of DNA basis to detect the genetic mutations related to cancer disease, it is becoming clear that physical properties, like structural conformation, stiffness and shape, can play an important role to recognize DNA modifications. Here, silver-coated silicon nanowires (Ag/SiNWs) are exploited as Raman spectroscopic platform to easily discriminate healthy and cancer genomic DNA, extracted from human normal skin and malignant melanoma cells, respectively. In particular, aqueous DNA droplets are directly deposited onto a forest of Ag/SiNWs and Raman maps are acquired after sample dehydration. By applying principal component analysis (PCA) to the Raman spectra collected within the droplets, healthy and cancer cell DNA can be distinguished without false negative identifications and with few false positive results (< 2%). The discrimination occurs regardless the analysis of specific DNA sequencing, but through Raman bands strictly related to the interfacing of the DNA and the NWs. The observed phenomenon can be ascribed to conformational differences and/or diverse charge properties between healthy and cancer cell DNA determining a different arrangement of the molecules adsorbed onto the NWs upon water evaporation. The unique interaction with DNA and facile fabrication technology make Ag/SiNWs an effective platform for a robust, rapid and label-free cancer diagnosis, as well as a potential tool to investigate physical properties of DNA.
Collapse
Affiliation(s)
- Valentina Mussi
- Institute for Microelectronics and Microsystems, CNR, 00133 Rome, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Davide Polese
- Institute for Microelectronics and Microsystems, CNR, 00133 Rome, Italy
| | - Luca Maiolo
- Institute for Microelectronics and Microsystems, CNR, 00133 Rome, Italy
| | - Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | | | - Antonella Lisi
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy.
| | | |
Collapse
|
13
|
Dinhof C, Pirker C, Kroiss P, Kirchhofer D, Gabler L, Gojo J, Lötsch-Gojo D, Stojanovic M, Timelthaler G, Ferk F, Knasmüller S, Reisecker J, Spiegl-Kreinecker S, Birner P, Preusser M, Berger W. p53 Loss Mediates Hypersensitivity to ETS Transcription Factor Inhibition Based on PARylation-Mediated Cell Death Induction. Cancers (Basel) 2020; 12:cancers12113205. [PMID: 33143299 PMCID: PMC7693367 DOI: 10.3390/cancers12113205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/31/2023] Open
Abstract
Simple Summary ETS transcription factors are potent oncogenic drivers in several cancer types and represent promising therapeutic targets. However, molecular factors influencing response to ETS factor inhibition are widely unknown so far. Here, we uncover that sensitivity of cancer cells against ETS factor blockade by the small molecule inhibitor YK-4-279 is strongly promoted by p53 loss in a MAPK-driven background. Induction of a parthanatos-like cell death based on a deregulated MAPK/ETS1/p53/PARP1 signal axis is identified as underlying molecular mechanism. Hence, this study suggests a novel and biomarker-driven therapeutic strategy for p53-deleted tumours, generally known for their profound therapy resistance. Abstract The small-molecule E26 transformation-specific (ETS) factor inhibitor YK-4-279 was developed for therapy of ETS/EWS fusion-driven Ewing’s sarcoma. Here we aimed to identify molecular factors underlying YK-4-279 responsiveness in ETS fusion-negative cancers. Cell viability screenings that deletion of P53 induced hypersensitization against YK-4-279 especially in the BRAFV600E-mutated colon cancer model RKO. This effect was comparably minor in the BRAF wild-type HCT116 colon cancer model. Out of all ETS transcription factor family members, especially ETS1 overexpression at mRNA and protein level was induced by deletion of P53 specifically under BRAF-mutated conditions. Exposure to YK-4-279 reverted ETS1 upregulation induced by P53 knock-out in RKO cells. Despite upregulation of p53 by YK-4-279 itself in RKOp53 wild-type cells, YK-4-279-mediated hyperphosphorylation of histone histone H2A.x was distinctly more pronounced in the P53 knock-out background. YK-4-279-induced cell death in RKOp53-knock-out cells involved hyperPARylation of PARP1, translocation of the apoptosis-inducible factor AIF into nuclei, and induction of mitochondrial membrane depolarization, all hallmarks of parthanatos. Accordingly, pharmacological PARP as well as BRAFV600E inhibition showed antagonistic activity with YK-4-279 especially in the P53 knock-out background. Taken together, we identified ETS factor inhibition as a promising strategy for the treatment of notoriously therapy-resistant p53-null solid tumours with activating MAPK mutations.
Collapse
Affiliation(s)
- Carina Dinhof
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Philipp Kroiss
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominik Kirchhofer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Lisa Gabler
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes Gojo
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Mirjana Stojanovic
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gerald Timelthaler
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Franziska Ferk
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Siegfried Knasmüller
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Johannes Reisecker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Neuromed Campus, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Peter Birner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-(0)1-40160-57555
| |
Collapse
|
14
|
Joshi SS, Hornyak TJ. Cellular Phenotypic Plasticity of Cutaneous Melanoma: A Complex Puzzle. J Invest Dermatol 2020; 140:743-745. [PMID: 32200877 DOI: 10.1016/j.jid.2019.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023]
Abstract
Wenzina et al. (2020) explore the potential role of E-cadherin (CDH1) as a marker for invasive behavior in melanoma. The authors show that CDH1 expression is modulated by p38 signaling, and that manipulation of this pathway can impede endothelial disruption and lung dissemination in vivo and in vitro. The downstream markers PODXL and DEL of the invasive phenotype are associated with a poor prognosis.
Collapse
Affiliation(s)
- Sandeep S Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas J Hornyak
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Li L, Hao J, Yan CQ, Wang HF, Meng B, Cai SY. Inhibition of microRNA-300 inhibits cell adhesion, migration, and invasion of prostate cancer cells by promoting the expression of DAB1. Cell Cycle 2020; 19:2793-2810. [PMID: 33064976 DOI: 10.1080/15384101.2020.1823730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Prostate cancer (PC) is the most common malignancy in men. As per recent findings, microRNA-300 (miR-300) were found to be overexpressed in numerous types of cancers. In this study, we aimed to explore the effects of miR-300 on the adhesion, invasion, and migration of PC cells by targeting Disabled 1 (DAB1). Firstly, the regulatory role of miRNAs on DAB1 was predicted by screening PC-related differentially expressed genes (DEGs). Immunohistochemistry was applied to determine the positive protein expression of DAB1, after which the target relationship between miR-300 and DAB1 was examined. Loss-of-function and gain-of-function experiments were conducted to determine cell proliferation, adhesion, migration, invasion capability, and cell cycle of PC cells. Our data illustrated that DAB1 had a low expression, while miR-300 was expressed at a relatively high level in PC tissues. Moreover, our clinicopathological analysis revealed that there was a correlation between miR-300 and tumor, node, metastases stage, Gleason score, and lymph node metastasis of PC patients. DAB1 was also found to be poorly expressed in PC based on the findings from the microarray analysis. The results from dual-luciferase reporter gene assay corroborated that miR-300 interacts with DAB1. Importantly, overexpression of miR-300 and/or si-DAB1 resulted in the enhancement of RAC1, MMP2, MMP9, CyclinD1, and CyclinE expressions, whereas the expression of DAB1 and Rap was reduced in PC cells, thus suggesting that down-regulated miR-300 suppressed proliferation, adhesion, migration, and invasion of PC cells. Collectively, our results provided evidence that down-regulation of miR-300 inhibits the adhesion, migration, and invasion of PC cells.
Collapse
Affiliation(s)
- Lin Li
- Department of Urology, Tangshan Gongren Hospital , Tangshan, P.R. China
| | - Jing Hao
- The College of Nursing and Rehabilitation, North China University of Science and Technology , Tangshan, P.R. China
| | - Cheng-Quan Yan
- Department of Urology, Tangshan Gongren Hospital , Tangshan, P.R. China
| | - He-Feng Wang
- Department of Oncology, Linxi Hospital of Kailuan General Hospital , Tangshan, P.R. China
| | - Bin Meng
- Department of Urology, Tangshan Gongren Hospital , Tangshan, P.R. China
| | - Sheng-Yong Cai
- Department of Urology, Tangshan Gongren Hospital , Tangshan, P.R. China
| |
Collapse
|
16
|
Liu C, Jiang WG, Hargest R, Martin TA. The role of SIPA1 in the development of cancer and metastases (Review). Mol Clin Oncol 2020; 13:32. [PMID: 32789016 DOI: 10.3892/mco.2020.2102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer is a leading cause of mortality and the majority of deaths are due to metastases. Many molecules have been implicated in the development of metastases. Signal induced proliferation associated protein 1 (SIPA1), a mitogen-inducible gene, has been demonstrated to be involved in the metastasis of various solid tumours and may indicate a poor prognosis. Polymorphisms of SIPA1 can be associated with several different types of cancer and interactions between SIPA1 and binding molecules integrate a series of cellular functions, which may promote the development and metastasis of cancer. The mechanisms by which SIPA1 promotes the development and metastasis of cancer varies among tumour types. The present review describes the structure, function and regulation of SIPA1 and focuses on its role in cancer metastasis. Possibilities for future research and the clinical application of SIPA1 are also discussed.
Collapse
Affiliation(s)
- Chang Liu
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Wen Guo Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Tracey Amanda Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
17
|
Pirker C, Bilecz A, Grusch M, Mohr T, Heidenreich B, Laszlo V, Stockhammer P, Lötsch-Gojo D, Gojo J, Gabler L, Spiegl-Kreinecker S, Dome B, Steindl A, Klikovits T, Hoda MA, Jakopovic M, Samarzija M, Mohorcic K, Kern I, Kiesel B, Brcic L, Oberndorfer F, Müllauer L, Klepetko W, Schmidt WM, Kumar R, Hegedus B, Berger W. Telomerase Reverse Transcriptase Promoter Mutations Identify a Genomically Defined and Highly Aggressive Human Pleural Mesothelioma Subgroup. Clin Cancer Res 2020; 26:3819-3830. [PMID: 32317288 DOI: 10.1158/1078-0432.ccr-19-3573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/13/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Human malignant pleural mesothelioma (MPM) is characterized by dismal prognosis. Consequently, dissection of molecular mechanisms driving malignancy is of key importance. Here we investigate whether activating mutations in the telomerase reverse transcriptase (TERT) gene promoter are present in MPM and associated with disease progression, cell immortalization, and genomic alteration patterns. EXPERIMENTAL DESIGN TERT promoters were sequenced in 182 MPM samples and compared with clinicopathologic characteristics. Surgical specimens from 45 patients with MPM were tested for in vitro immortalization. The respective MPM cell models (N = 22) were analyzed by array comparative genomic hybridization, gene expression profiling, exome sequencing as well as TRAP, telomere length, and luciferase promoter assays. RESULTS TERT promoter mutations were detected in 19 of 182 (10.4%) MPM cases and significantly associated with advanced disease and nonepithelioid histology. Mutations independently predicted shorter overall survival in both histologic MPM subtypes. Moreover, 9 of 9 (100%) mutated but only 13 of 36 (36.1%) wild-type samples formed immortalized cell lines. TERT promoter mutations were associated with enforced promoter activity and TERT mRNA expression, while neither telomerase activity nor telomere lengths were significantly altered. TERT promoter-mutated MPM cases exhibited distinctly reduced chromosomal alterations and specific mutation patterns. While BAP1 mutations/deletions were exclusive with TERT promoter mutations, homozygous deletions at the RBFOX1 and the GSTT1 loci were clearly enriched in mutated cases. CONCLUSIONS TERT promoter mutations independently predict a dismal course of disease in human MPM. The altered genomic aberration pattern indicates that TERT promoter mutations identify a novel, highly aggressive MPM subtype presumably based on a specific malignant transformation process.
Collapse
Affiliation(s)
- Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Agnes Bilecz
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Paul Stockhammer
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Daniela Lötsch-Gojo
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Ariane Steindl
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Marko Jakopovic
- Department for Respiratory Diseases Jordanovac, University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Miroslav Samarzija
- Department for Respiratory Diseases Jordanovac, University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Katja Mohorcic
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Izidor Kern
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Luka Brcic
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | | | - Leonhard Müllauer
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Wolfgang M Schmidt
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Balazs Hegedus
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Wenzina J, Holzner S, Puujalka E, Cheng PF, Forsthuber A, Neumüller K, Schossleitner K, Lichtenberger BM, Levesque MP, Petzelbauer P. Inhibition of p38/MK2 Signaling Prevents Vascular Invasion of Melanoma. J Invest Dermatol 2020; 140:878-890.e5. [DOI: 10.1016/j.jid.2019.08.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
|
19
|
Englinger B, Laemmerer A, Moser P, Kallus S, Röhrl C, Pirker C, Baier D, Mohr T, Niederstaetter L, Meier-Menches SM, Gerner C, Gabler L, Gojo J, Timelthaler G, Senkiv J, Jäger W, Kowol CR, Heffeter P, Berger W. Lipid droplet-mediated scavenging as novel intrinsic and adaptive resistance factor against the multikinase inhibitor ponatinib. Int J Cancer 2020; 147:1680-1693. [PMID: 32064608 PMCID: PMC7497038 DOI: 10.1002/ijc.32924] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Ponatinib is a small molecule multi‐tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1‐driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co‐culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib‐selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell‐defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics. What's new? Ponatinib is a small‐molecule multi‐tyrosine kinase inhibitor clinically approved for anticancer therapy. However, to date, the intracellular pharmacokinetics of this compound and the molecular mechanisms underlying resistance in cancer cells remain largely unknown. Here, the authors found that ponatinib was selectively scavenged by lipid droplets in cancer cells. Ponatinib accumulation into lipid droplets emerged as a critical determinant of intrinsic and acquired drug resistance. The findings suggest that lipid droplets represent an underestimated organelle influencing intracellular pharmacokinetics and anticancer tyrosine kinase inhibitor activity. Moreover, co‐targeting of lipogenic cancer cell phenotypes might enhance the efficacy of ponatinib and other lipophilic pharmaceuticals.
Collapse
Affiliation(s)
- Bernhard Englinger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Anna Laemmerer
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Patrick Moser
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Sebastian Kallus
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.,University of Applied Sciences Upper Austria, Wels, Austria
| | - Christine Pirker
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Dina Baier
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Johannes Gojo
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Julia Senkiv
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Gabler L, Lötsch D, Kirchhofer D, van Schoonhoven S, Schmidt HM, Mayr L, Pirker C, Neumayer K, Dinhof C, Kastler L, Azizi AA, Dorfer C, Czech T, Haberler C, Peyrl A, Kumar R, Slavc I, Spiegl-Kreinecker S, Gojo J, Berger W. TERT expression is susceptible to BRAF and ETS-factor inhibition in BRAF V600E/TERT promoter double-mutated glioma. Acta Neuropathol Commun 2019; 7:128. [PMID: 31391125 PMCID: PMC6685154 DOI: 10.1186/s40478-019-0775-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
The BRAF gene and the TERT promoter are among the most frequently altered genomic loci in low-grade (LGG) and high-grade-glioma (HGG), respectively. The coexistence of BRAF and TERT promoter aberrations characterizes a subset of aggressive glioma. Therefore, we investigated interactions between those alterations in malignant glioma. We analyzed co-occurrence of BRAFV600E and TERT promoter mutations in our clinical data (n = 8) in addition to published datasets (n = 103) and established a BRAFV600E-positive glioma cell panel (n = 9) for in vitro analyses. We investigated altered gene expression, signaling events and TERT promoter activity upon BRAF- and E-twenty-six (ETS)-factor inhibition by qRT-PCR, chromatin immunoprecipitation (ChIP), Western blots and luciferase reporter assays. TERT promoter mutations were significantly enriched in BRAFV600E-mutated HGG as compared to BRAFV600E-mutated LGG. In vitro, BRAFV600E/TERT promoter double-mutant glioma cells showed exceptional sensitivity towards BRAF-targeting agents. Remarkably, BRAF-inhibition attenuated TERT expression and TERT promoter activity exclusively in double-mutant models, while TERT expression was undetectable in BRAFV600E-only cells. Various ETS-factors were broadly expressed, however, only ETS1 expression and phosphorylation were consistently downregulated following BRAF-inhibition. Knock-down experiments and ChIP corroborated the notion of a functional role for ETS1 and, accordingly, all double-mutant tumor cells were highly sensitive towards the ETS-factor inhibitor YK-4-279. In conclusion, our data suggest that concomitant BRAFV600E and TERT promoter mutations synergistically support cancer cell proliferation and immortalization. ETS1 links these two driver alterations functionally and may represent a promising therapeutic target in this aggressive glioma subgroup.
Collapse
Affiliation(s)
- Lisa Gabler
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Daniela Lötsch
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dominik Kirchhofer
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sushilla van Schoonhoven
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Hannah M. Schmidt
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lisa Mayr
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Katharina Neumayer
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Carina Dinhof
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Lucia Kastler
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Amedeo A. Azizi
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christian Dorfer
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Czech
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christine Haberler
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Peyrl
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Irene Slavc
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Johannes Gojo
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter Berger
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| |
Collapse
|
21
|
Rossi S, Cordella M, Tabolacci C, Nassa G, D'Arcangelo D, Senatore C, Pagnotto P, Magliozzi R, Salvati A, Weisz A, Facchiano A, Facchiano F. TNF-alpha and metalloproteases as key players in melanoma cells aggressiveness. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:326. [PMID: 30591049 PMCID: PMC6309098 DOI: 10.1186/s13046-018-0982-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Background Melanoma aggressiveness determines its growth and metastatic potential. This study aimed at identifying new molecular pathways controlling melanoma cell malignancy. Methods Ten metastatic melanoma cell lines were characterized by their proliferation, migration and invasion capabilities. The most representative cells were also characterized by spheroid formation assay, gene- and protein- expression profiling as well as cytokines secretion and the most relevant pathways identified through bioinformatic analysis were tested by in silico transcriptomic validation on datasets generated from biopsies specimens of melanoma patients. Further, matrix metalloproteases (MMPs) activity was tested by zymography assays and TNF-alpha role was validated by anti-TNF cell-treatment. Results An aggressiveness score (here named Melanoma AGgressiveness Score: MAGS) was calculated by measuring proliferation, migration, invasion and cell-doubling time in10human melanoma cell lines which were clustered in two distinct groups, according to the corresponding MAGS. SK-MEL-28 and A375 cell lines were selected as representative models for the less and the most aggressive phenotype, respectively. Gene-expression and protein expression data were collected for SK-MEL-28 and A375 cells by Illumina-, multiplex x-MAP-and mass-spectrometry technology. The collected data were subjected to an integrated Ingenuity Pathway Analysis, which highlighted that cytokine/chemokine secretion, as well as Cell-To-Cell Signaling and Interaction functions as well as matrix metalloproteases activity were significantly different in these two cell types. The key role of these pathways was then confirmed by functional validation. TNF role was confirmed by exposing cells to the anti-TNF Infliximab antibody. Upon such treatment melanoma cells aggressiveness was strongly reduced. Metalloproteases activity was assayed, and their role was confirmed by comparing transcriptomic data from cutaneous melanoma patients (n = 45) and benign nevi (n = 18). Conclusions Inflammatory signals such as TNF and MMP-2 activity are key intrinsic players to determine melanoma cells aggressiveness suggesting new venue sin the identification of novel molecular targets with potential therapeutic relevance. Electronic supplementary material The online version of this article (10.1186/s13046-018-0982-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Martina Cordella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, SA, Italy
| | - Daniela D'Arcangelo
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cinzia Senatore
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Pagnotto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy
| | - Roberta Magliozzi
- Neurology B, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, SA, Italy.,Genomix4Life srl, Baronissi, SA, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, ISS, viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
22
|
Biological activity of Pt IV prodrugs triggered by riboflavin-mediated bioorthogonal photocatalysis. Sci Rep 2018; 8:17198. [PMID: 30464209 PMCID: PMC6249213 DOI: 10.1038/s41598-018-35655-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that riboflavin (Rf) functions as unconventional bioorthogonal photocatalyst for the activation of PtIV prodrugs. In this study, we show how the combination of light and Rf with two PtIV prodrugs is a feasible strategy for light-mediated pancreatic cancer cell death induction. In Capan-1 cells, which have high tolerance against photodynamic therapy, Rf-mediated activation of the cisplatin and carboplatin prodrugs cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] (1) and cis,cis,trans-[Pt(NH3)2(CBDCA)(O2CCH2CH2CO2H)2] (2, where CBDCA = cyclobutane dicarboxylate) resulted in pronounced reduction of the cell viability, including under hypoxia conditions. Such photoactivation mode occurs to a considerable extent intracellularly, as demonstrated for 1 by uptake and cell viability experiments. 195Pt NMR, DNA binding studies using circular dichroism, mass spectrometry and immunofluorescence microscopy were performed using the Rf-1 catalyst-substrate pair and indicated that cell death is associated with the efficient light-induced formation of cisplatin. Accordingly, Western blot analysis revealed signs of DNA damage and activation of cell death pathways through Rf-mediated photochemical activation. Phosphorylation of H2AX as indicator for DNA damage, was detected for Rf-1 in a strictly light-dependent fashion while in case of free cisplatin also in the dark. Photochemical induction of nuclear pH2AX foci by Rf-1 was confirmed in fluorescence microscopy again proving efficient light-induced cisplatin release from the prodrug system.
Collapse
|
23
|
Salemi R, Falzone L, Madonna G, Polesel J, Cinà D, Mallardo D, Ascierto PA, Libra M, Candido S. MMP-9 as a Candidate Marker of Response to BRAF Inhibitors in Melanoma Patients With BRAFV600E Mutation Detected in Circulating-Free DNA. Front Pharmacol 2018; 9:856. [PMID: 30154717 PMCID: PMC6102751 DOI: 10.3389/fphar.2018.00856] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The BRAFV600E mutation is associated with melanoma development and its detection in circulating-free DNA cannot be observed in all melanoma patients harboring this mutation in tumor specimens. Beside the circulating-free DNA BRAFV600E mutation, other markers of therapeutic response should be identified. Matrix metalloproteinase-9 (MMP-9) could be one of them as its role as indicator of invasiveness in melanoma have been explored. In this study, MMP-9 was evaluated in melanoma cells after treatment with dabrafenib. In vitro data were validated in 26 melanoma patients, of which 14 treated with BRAF inhibitor alone and 12 treated with both BRAF and MEK inhibitors, by ELISA assay and droplet digital PCR for measuring MMP-9 serum levels and circulating-free DNA BRAFV600E mutation, respectively. Statistical analyses were performed to evaluate the prognostic significance of MMP-9, progression-free survival (PFS) and overall survival (OS) according to the BRAFV600E mutation and MMP-9 levels. The performed analyses showed that MMP-9 and pEKR1-2 were statistically down-regulated in melanoma cells after treatment with dabrafenib. Circulating-free DNA BRAFV600E mutation was detected in 11 out of 26 melanoma patients showing higher levels of MMP-9 compared to those with undetectable BRAFV600E mutation. Furthermore, higher levels of MMP-9 and circulating-free DNA BRAFV600E mutation were associated with lower PFS and OS. Finally, the monitoring of therapy showed that MMP-9 significantly decreased at T1 and T2, but not at T-last, for the patients with detectable circulating-free DNA BRAFV600E mutation. In conclusion, high levels of MMP-9 and circulating-free DNA BRAFV600E mutation are associated with poor PFS and OS. MMP-9 may represent a promising indicator of response to BRAF inhibitors in combination with the detection of BRAFV600E mutation.
Collapse
Affiliation(s)
- Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gabriele Madonna
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori "Fondazione G. Pascale", Naples, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Aviano National Cancer Institute, IRCCS, Aviano, Italy
| | - Diana Cinà
- Clinical Pathology Unit, Garibaldi Hospital, Catania, Italy
| | - Domenico Mallardo
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori "Fondazione G. Pascale", Naples, Italy
| | - Paolo A Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori "Fondazione G. Pascale", Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Heilos D, Röhrl C, Pirker C, Englinger B, Baier D, Mohr T, Schwaiger M, Iqbal SM, van Schoonhoven S, Klavins K, Eberhart T, Windberger U, Taibon J, Sturm S, Stuppner H, Koellensperger G, Dornetshuber-Fleiss R, Jäger W, Lemmens-Gruber R, Berger W. Altered membrane rigidity via enhanced endogenous cholesterol synthesis drives cancer cell resistance to destruxins. Oncotarget 2018; 9:25661-25680. [PMID: 29876015 PMCID: PMC5986646 DOI: 10.18632/oncotarget.25432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Destruxins, secondary metabolites of entomopathogenic fungi, exert a wide variety of interesting characteristics ranging from antiviral to anticancer effects. Although their mode of action was evaluated previously, the molecular mechanisms of resistance development are unknown. Hence, we have established destruxin-resistant sublines of HCT116 colon carcinoma cells by selection with the most prevalent derivatives, destruxin (dtx)A, dtxB and dtxE. Various cell biological and molecular techniques were applied to elucidate the regulatory mechanisms underlying these acquired and highly stable destruxin resistance phenotypes. Interestingly, well-known chemoresistance-mediating ABC efflux transporters were not the major players. Instead, in dtxA- and dtxB-resistant cells a hyper-activated mevalonate pathway was uncovered resulting in increased de-novo cholesterol synthesis rates and elevated levels of lanosterol, cholesterol as well as several oxysterol metabolites. Accordingly, inhibition of the mevalonate pathway at two different steps, using either statins or zoledronic acid, significantly reduced acquired but also intrinsic destruxin resistance. Vice versa, cholesterol supplementation protected destruxin-sensitive cells against their cytotoxic activity. Additionally, an increased cell membrane adhesiveness of dtxA-resistant as compared to parental cells was detected by atomic force microscopy. This was paralleled by a dramatically reduced ionophoric capacity of dtxA in resistant cells when cultured in absence but not in presence of statins. Summarizing, our results suggest a reduced ionophoric activity of destruxins due to cholesterol-mediated plasma membrane re-organization as molecular mechanism underlying acquired destruxin resistance in human colon cancer cells. Whether this mechanism might be valid also in other cell types and organisms exposed to destruxins e.g. as bio-insecticides needs to be evaluated.
Collapse
Affiliation(s)
- Daniela Heilos
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Bernhard Englinger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Dina Baier
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Decentralized Biomedical Facilities of the Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Michaela Schwaiger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Sushilla van Schoonhoven
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | | | - Tanja Eberhart
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Ursula Windberger
- Decentralized Biomedical Facilities of the Medical University of Vienna, Vienna, Austria
| | - Judith Taibon
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sonja Sturm
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Rita Dornetshuber-Fleiss
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Spitzwieser M, Pirker C, Koblmüller B, Pfeiler G, Hacker S, Berger W, Heffeter P, Cichna-Markl M. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. Oncotarget 2018; 7:73347-73369. [PMID: 27689338 PMCID: PMC5341984 DOI: 10.18632/oncotarget.12332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Overexpression of ABCB1, ABCC1 and ABCG2 in tumor tissues is considered a major cause of limited efficacy of anticancer drugs. Gene expression of ABC transporters is regulated by multiple mechanisms, including changes in the DNA methylation status. Most of the studies published so far only report promoter methylation levels for either ABCB1 or ABCG2, and data on the methylation status for ABCC1 are scarce. Thus, we determined the promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in 19 human cancer cell lines. In order to contribute to the elucidation of the role of DNA methylation changes in acquisition of a multidrug resistant (MDR) phenotype, we also analyzed the promoter methylation patterns in drug-resistant sublines of the cancer cell lines GLC-4, SW1573, KB-3-1 and HL-60. In addition, we investigated if aberrant promoter methylation levels of ABCB1, ABCC1 and ABCG2 occur in tumor and tumor-surrounding tissues from breast cancer patients. Our data indicates that hypomethylation of the ABCC1 promoter is not cancer type-specific but occurs in cancer cell lines of different origins. Promoter methylation was found to be an important mechanism in gene regulation of ABCB1 in parental cancer cell lines and their drug-resistant sublines. Overexpression of ABCC1 in MDR cell models turned out to be mediated by gene amplification, not by changes in the promoter methylation status of ABCC1. In contrast to the promoters of ABCC1 and ABCG2, the promoter of ABCB1 was significantly higher methylated in tumor tissues than in tumor-adjacent and tumor-distant tissues from breast cancer patients.
Collapse
Affiliation(s)
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | - Bettina Koblmüller
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
26
|
Englinger B, Lötsch D, Pirker C, Mohr T, van Schoonhoven S, Boidol B, Lardeau CH, Spitzwieser M, Szabó P, Heffeter P, Lang I, Cichna-Markl M, Grasl-Kraupp B, Marian B, Grusch M, Kubicek S, Szakács G, Berger W. Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: role of endothelin-A receptor-activated ABCB1 expression. Oncotarget 2018; 7:50161-50179. [PMID: 27367030 PMCID: PMC5226575 DOI: 10.18632/oncotarget.10324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Genomically amplified fibroblast growth factor receptor 1 (FGFR1) is an oncogenic driver in defined lung cancer subgroups and predicts sensibility against FGFR1 inhibitors in this patient cohort. The FGFR inhibitor nintedanib has recently been approved for treatment of lung adenocarcinoma and is currently evaluated for small cell lung cancer (SCLC). However, tumor recurrence due to development of nintedanib resistance might occur. Hence, we aimed at characterizing the molecular mechanisms underlying acquired nintedanib resistance in FGFR1-driven lung cancer. Chronic nintedanib exposure of the FGFR1-driven SCLC cell line DMS114 (DMS114/NIN) but not of two NSCLC cell lines induced massive overexpression of the multidrug-resistance transporter ABCB1. Indeed, we proved nintedanib to be both substrate and modulator of ABCB1-mediated efflux. Importantly, the oncogenic FGFR1 signaling axis remained active in DMS114/NIN cells while bioinformatic analyses suggested hyperactivation of the endothelin-A receptor (ETAR) signaling axis. Indeed, ETAR inhibition resensitized DMS114/NIN cells against nintedanib by downregulation of ABCB1 expression. PKC and downstream NFκB were identified as major downstream players in ETAR-mediated ABCB1 hyperactivation. Summarizing, ABCB1 needs to be considered as a factor underlying nintedanib resistance. Combination approaches with ETAR antagonists or switching to non-ABCB1 substrate FGFR inhibitors represent innovative strategies to manage nintedanib resistance in lung cancer.
Collapse
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Daniela Lötsch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | | | - Bernd Boidol
- CeMM Research Center for Molecular Medicine of The Austrian Academy of Sciences, Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of The Austrian Academy of Sciences, Vienna, Austria
| | | | - Pál Szabó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petra Heffeter
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of The Austrian Academy of Sciences, Vienna, Austria
| | - Gergely Szakács
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria
| |
Collapse
|
27
|
Agnetti L, Fondello C, Villaverde MS, Glikin GC, Finocchiaro LME. Therapeutic potential of bleomycin plus suicide or interferon-β gene transfer combination for spontaneous feline and canine melanoma. Oncoscience 2017; 4:199-214. [PMID: 29344558 PMCID: PMC5769984 DOI: 10.18632/oncoscience.387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023] Open
Abstract
We originated and characterized melanoma cell lines derived from tumors of two feline and two canine veterinary patients. These lines reestablished the morphology, physiology and cell heterogeneity of their respective parental tumors. We evaluated the cytotoxicity of bleomycin (BLM) alone, or combined with interferon-β (IFN-β) or HSVtk/GCV suicide gene (SG) lipofection on these cells. Although the four animals presented stage III disease (WHO system), SG treated feline tumors displayed stable disease in vivo, while the canine ones exhibited partial response. Their derived cell lines reflected this behavior. Feline were significantly more sensitive than canine cells to IFN-β gene transfer. BLM improved the antitumor effects of both genes. The higher levels of reactive oxygen species (ROS) significantly correlated with membrane and DNA damages, emphasizing ROS intervention in apoptotic and necrotic cell death. After 3 days of BLM alone or combined with gene treatments, the colony forming capacity of two canine and one feline treatments survivor cells almost disappeared. Taken together, these results suggest that the treatments eradicated tumor initiating cells and support the clinical potential of the tested combinations.
Collapse
Affiliation(s)
- Lucrecia Agnetti
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela S Villaverde
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética Instituto de Oncología "Ángel H. Roffo" Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Mayr L, Pirker C, Lötsch D, Van Schoonhoven S, Windhager R, Englinger B, Berger W, Kubista B. CD44 drives aggressiveness and chemoresistance of a metastatic human osteosarcoma xenograft model. Oncotarget 2017; 8:114095-114108. [PMID: 29371972 PMCID: PMC5768389 DOI: 10.18632/oncotarget.23125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant bone tumor with a 5 year survival rate of up to 70%. However, patients with metastatic disease have still a very poor prognosis. Osteosarcoma metastasis models are essential to develop novel treatment strategies for advanced disease. Methods Based on a serial transplantation approach, we have established a U-2 OS osteosarcoma xenograft model with increased metastatic potential and compared it to other metastatic osteosarcoma models from international sources. Subclones with differing invasive potential were compared for genomic gains and losses as well as gene expression changes by several bioinformatic approaches. Based on the acquired results, the effects of a shRNA-mediated CD44 mRNA knockdown on migration, invasion and chemosensitivity were evaluated. Results The CD44 gene was part of an amplified region at chromosome 11p found in both U-2 OS subclones with enhanced metastatic potential but not in parental U-2 OS cells, corresponding with distinct CD44 overexpression. Accordingly, shRNA-mediated CD44 knockdown significantly attenuated osteosarcoma cell migration, invasion, and viability especially in the metastatic subclones of U-2 OS and Saos-2 cells. Metastatic subclones generally were hypersensitive against the integrin inhibitor cilengitide paralleled by alterations in integrin expression pattern following CD44 knock-down. Additionally, attenuation of CD44 expression sensitized these cell models against osteosarcoma chemotherapy with doxorubicin but not methotrexate and cisplatin. Conclusions The osteosarcoma xenograft models with increased metastatic potential developed in this study can be useful for identification of mechanisms driving metastasis and resistance towards clinically used and novel therapeutic regimens.
Collapse
Affiliation(s)
- Lisa Mayr
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria
| | - Sushilla Van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria
| | - Reinhard Windhager
- Department of Orthopaedics, Medical University Vienna, 1090 Vienna, Austria
| | - Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria
| | - Bernd Kubista
- Department of Orthopaedics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
29
|
FGF5 is expressed in melanoma and enhances malignancy in vitro and in vivo. Oncotarget 2017; 8:87750-87762. [PMID: 29152117 PMCID: PMC5675669 DOI: 10.18632/oncotarget.21184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Although FGF5 mRNA was previously found expressed in some melanoma cell lines in contrast to normal human melanocytes, neither its contribution to melanoma growth nor its expression in melanoma tissue has been investigated. Here we demonstrate that ectopic overexpression of FGF5 in human melanoma cells with low endogenous FGF5 expression increased clonogenicity and invasion but not short-term growth in vitro. Silencing of FGF5 in melanoma cells with high endogenous FGF5 expression had the opposite effect on clonogenicity. FGF overexpression led to increased signaling along the MAPK and NFAT axis but had no effect on STAT3 signaling. In an in vivo experiment in immunocompromised mice, human melanoma xenografts overexpressing FGF5 showed enhanced tumor growth, a higher Ki-67 proliferation index, decreased apoptosis and enhanced angiogenesis. Immunohistochemistry performed on a tissue microarray demonstrated FGF5 protein expression in more than 50% of samples of melanoma and benign nevi. These data suggest that FGF5 has oncogenic potential in melanoma cells and contributes to melanoma growth in a subset of patients. This highlights the importance of further evaluating FGF5 as potential biomarker and therapy target in melanoma.
Collapse
|
30
|
Computed determination of the in vitro optimal chemocombinations of sphaeropsidin A with chemotherapeutic agents to combat melanomas. Cancer Chemother Pharmacol 2017; 79:971-983. [DOI: 10.1007/s00280-017-3293-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
|
31
|
Nieto-Jiménez C, Alcaraz-Sanabria A, Pérez-Peña J, Corrales-Sánchez V, Serrano-Heras G, Galán-Moya EM, Serrano-Oviedo L, Montero JC, Burgos M, Llopis J, Pandiella A, Ocaña A. Targeting basal-like breast tumors with bromodomain and extraterminal domain (BET) and polo-like kinase inhibitors. Oncotarget 2017; 8:19478-19490. [PMID: 28061448 PMCID: PMC5386699 DOI: 10.18632/oncotarget.14465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Metastatic triple negative breast cancer (TNBC) is an incurable disease with limited therapeutic options, and no targeted therapies available. Triple negative tumors and the basal-like genomic subtype, are both characterized by a high proliferation rate and an increase in cell division. In this context, protein kinases involved in the mitotic formation have a relevant role in this tumor subtype. Recently, Bromodomain and extraterminal domain (BET) inhibitors have shown to be active in this disease by modulating the expression of several transcription factors. In this article, by using an "in silico" approach, we identified genomic functions that can be inhibited pharmacologically in basal-like tumors. Functional annotation analyses identified "cell division" and "regulation of transcription" as upregulated functions. When focus on cell division, we identified the polo-like kinase 1 (PLK) as an upregulated kinase. The PLK inhibitor Volasertib had the strongest anti-proliferative effect compared with other inhibitors against mitotic kinases. Gene expression analyses demonstrated that the BET inhibitor JQ1 reduced the expression of kinases involved in cell division, and synergized with Volasertib in a panel of triple negative cell lines. Combination of both agents augmented cell death. Similarly, combination of both compounds reduced the expression of stem cell markers. Globally, this data demonstrates the synergistic interaction between BET and PLK inhibitors, paving the way for their future clinical development.
Collapse
Affiliation(s)
| | | | - Javier Pérez-Peña
- Translational Research Unit, Albacete University Hospital, Albacete, Spain
| | | | | | - Eva M. Galán-Moya
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| | | | | | - Miguel Burgos
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| | | | - Alberto Ocaña
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| |
Collapse
|
32
|
Loss of CUL4A expression is underlying cisplatin hypersensitivity in colorectal carcinoma cells with acquired trabectedin resistance. Br J Cancer 2017; 116:489-500. [PMID: 28095394 PMCID: PMC5318979 DOI: 10.1038/bjc.2016.449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal carcinoma (CRC) is the third most common cancer worldwide. Platinum-based anticancer compounds still constitute one mainstay of systemic CRC treatment despite limitations due to adverse effects and resistance development. Trabectedin has shown promising antitumor effects in CRC, however, again resistance development may occur. In this study, we aimed to develop strategies to circumvent or even exploit acquired trabectedin resistance in novel CRC treatment regimens. Methods: Human HCT116 CRC cells were selected for acquired trabectedin resistance in vitro and characterised by cell biological as well as bioinformatic approaches. In vivo xenograft experiments were conducted. Results: Selection of HCT116 cells for trabectedin resistance resulted in p53-independent hypersensitivity of the selected subline against cisplatin. Bioinformatic analyses of mRNA microarray data suggested deregulation of nucleotide excision repair and particularly loss of the ubiquitin ligase CUL4A in trabectedin-selected cells. Indeed, transient knockdown of CUL4A sensitised parental HCT116 cells towards cisplatin. Trabectedin selected but not parental HCT116 xenografts were significantly responsive towards cisplatin treatment. Conclusions: Trabectedin selection-mediated CUL4A loss generates an Achilles heel in CRC cancer cells enabling effective cisplatin treatment. Hence, inclusion of trabectedin in cisplatin-containing cancer treatment regimens might cause profound synergism based on reciprocal resistance prevention.
Collapse
|
33
|
Abstract
Ras-associated protein-1 (Rap1), a small GTPase in the Ras-related protein family, is an important regulator of basic cellular functions (e.g., formation and control of cell adhesions and junctions), cellular migration, and polarization. Through its interaction with other proteins, Rap1 plays many roles during cell invasion and metastasis in different cancers. The basic function of Rap1 is straightforward; it acts as a switch during cellular signaling transduction and regulated by its binding to either guanosine triphosphate (GTP) or guanosine diphosphate (GDP). However, its remarkably diverse function is rendered by its interplay with a large number of distinct Rap guanine nucleotide exchange factors and Rap GTPase activating proteins. This review summarizes the mechanisms by which Rap1 signaling can regulate cell invasion and metastasis, focusing on its roles in integrin and cadherin regulation, Rho GTPase control, and matrix metalloproteinase expression.
Collapse
Affiliation(s)
- Yi-Lei Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruo-Chen Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ken Cheng
- Sun Yat-sen University, Guangzhou 510275, China
| | - Brian Z Ring
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
34
|
Miklos W, Heffeter P, Pirker C, Hager S, Kowol CR, van Schoonhoven S, Stojanovic M, Keppler BK, Berger W. Loss of phosphodiesterase 4D mediates acquired triapine resistance via Epac-Rap1-Integrin signaling. Oncotarget 2016; 7:84556-84574. [PMID: 27602951 PMCID: PMC5356681 DOI: 10.18632/oncotarget.11821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
Triapine, an anticancer thiosemicarbazone, is currently under clinical investigation. Whereas promising results were obtained in hematological diseases, trials in solid tumors widely failed. To understand mechanisms causing triapine insensitivity, we have analysed genomic alterations in a triapine-resistant SW480 subline (SW480/tria). Only one distinct genomic loss was observed specifically in SW480/tria cells affecting the phosphodiesterase 4D (PDE4D) gene locus. Accordingly, pharmacological inhibition of PDE4D resulted in significant triapine resistance in SW480 cells. Hence, we concluded that enhanced cyclic AMP levels might confer protection against triapine. Indeed, hyperactivation of both major downstream pathways, namely the protein kinase A (PKA)-cAMP response element-binding protein (Creb) and the exchange protein activated by cAMP (Epac)-Ras-related protein 1 (Rap1) signaling axes, was observed in SW480/tria cells. Unexpectedly, inhibition of PKA did not re-sensitize SW480/tria cells against triapine. In contrast, Epac activation resulted in distinct triapine resistance in SW480 cells. Conversely, knock-down of Epac expression and pharmacological inhibition of Rap1 re-sensitized SW480/tria cells against triapine. Rap1 is a well-known regulator of integrins. Accordingly, SW480/tria cells displayed enhanced plasma membrane expression of several integrin subunits, enhanced adhesion especially to RGD-containing matrix components, and bolstered activation/expression of the integrin downstream effectors Src and RhoA/Rac. Accordingly, integrin and Src inhibition resulted in potent triapine re-sensitization especially of SW480/tria cells. In summary, we describe for the first time integrin activation based on cAMP-Epac-Rap1 signaling as acquired drug resistance mechanism. combinations of triapine with inhibitors of several steps in this resistance cascade might be feasible strategies to overcome triapine insensitivity of solid tumors.
Collapse
Affiliation(s)
- Walter Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Hager
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Mirjana Stojanovic
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| |
Collapse
|
35
|
Hoda MA, Pirker C, Dong Y, Schelch K, Heffeter P, Kryeziu K, van Schoonhoven S, Klikovits T, Laszlo V, Rozsas A, Ozsvar J, Klepetko W, Döme B, Grusch M, Hegedüs B, Berger W. Trabectedin Is Active against Malignant Pleural Mesothelioma Cell and Xenograft Models and Synergizes with Chemotherapy and Bcl-2 Inhibition In Vitro. Mol Cancer Ther 2016; 15:2357-2369. [PMID: 27512118 DOI: 10.1158/1535-7163.mct-15-0846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 07/26/2016] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma (MPM) is characterized by widespread resistance to systemic therapy. Trabectedin is an antineoplastic agent targeting both the malignant cells and the tumor microenvironment that has been approved for the treatment of advanced soft tissue sarcoma and ovarian cancer. In this preclinical study, we evaluated the antineoplastic potential of trabectedin as a single agent and in drug combination approaches in human MPM. Therefore, we utilized an extended panel of MPM cell lines (n = 6) and primary cell cultures from surgical MPM specimens (n = 13), as well as nonmalignant pleural tissue samples (n = 2). Trabectedin exerted a dose-dependent cytotoxic effect in all MPM cell cultures in vitro when growing as adherent monolayers or nonadherent spheroids with IC50 values ≤ 2.6 nmol/L. Nonmalignant mesothelial cells were significantly less responsive. The strong antimesothelioma activity was based on cell-cycle perturbation and apoptosis induction. The activity of trabectedin against MPM cells was synergistically enhanced by coadministration of cisplatin, a drug routinely used for systemic MPM treatment. Comparison of gene expression signatures indicated an inverse correlation between trabectedin response and bcl-2 expression. Accordingly, bcl-2 inhibitors (Obatoclax, ABT-199) markedly synergized with trabectedin paralleled by deregulated expression of the bcl-2 family members bcl-2, bim, bax, Mcl-1, and bcl-xL as a consequence of trabectedin exposure. In addition, trabectedin exerted significant antitumor activity against an intraperitoneal MPM xenograft model. Together, these data suggest that trabectedin exerts strong activity in MPM and synergizes with chemotherapy and experimental bcl-2 inhibitors in vitro Thus, it represents a promising new therapeutic option for MPM. Mol Cancer Ther; 15(10); 2357-69. ©2016 AACR.
Collapse
Affiliation(s)
- Mir A Hoda
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria. Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Christine Pirker
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Yawen Dong
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Karin Schelch
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria. Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Petra Heffeter
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kushtrim Kryeziu
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Klikovits
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Anita Rozsas
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria. National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Ozsvar
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Walter Klepetko
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Balazs Döme
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria. National Koranyi Institute of Pulmonology, Budapest, Hungary. Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary. Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedüs
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria. MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Walter Berger
- Applied and Experimental Oncology, Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Jeong Y, Kim ST, Jiang Y, Duncan B, Kim CS, Saha K, Yeh YC, Yan B, Tang R, Hou S, Kim C, Park MH, Rotello VM. Nanoparticle-dendrimer hybrid nanocapsules for therapeutic delivery. Nanomedicine (Lond) 2016; 11:1571-8. [PMID: 27175480 DOI: 10.2217/nnm-2016-0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nanocapsules can efficiently encapsulate therapeutic cargo for anticancer drug delivery. However, the controlled release of the payload remains a challenge for effective drug delivery. MATERIALS & METHODS We used dithiocarbamate-functionalized PAMAM dendrimer to cross-link the shell of arginine gold nanoparticles stabilized nanocapsule, and controlled the drug release from the nanocapsule. The ability of cross-linked nanocapsule to deliver hydrophobic paclitaxel to B16F10 cells was demonstrated both in vitro and in vivo. RESULTS Cross-linked nanocapsule possesses tunable stability and modular permeability, and can deliver paclitaxel with improved anticancer efficiency compared with free drug both in vitro and in vivo. CONCLUSION Dithiocarbamate chemistry provides a new tool to harness multifactorial colloidal self-assembly for controlled drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Youngdo Jeong
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sung Tae Kim
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Ying Jiang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chang Soo Kim
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Krishnendu Saha
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yi-Cheun Yeh
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Bo Yan
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rui Tang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Singyuk Hou
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Myoung-Hwan Park
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.,Department of Chemistry, Sahmyook University, Seoul 139-742, South Korea
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
37
|
Puujalka E, Heinz M, Hoesel B, Friedl P, Schweighofer B, Wenzina J, Pirker C, Schmid JA, Loewe R, Wagner EF, Berger W, Petzelbauer P. Opposing Roles of JNK and p38 in Lymphangiogenesis in Melanoma. J Invest Dermatol 2016; 136:967-977. [PMID: 26829032 DOI: 10.1016/j.jid.2016.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
In primary melanoma, the amount of vascular endothelial growth factor C (VEGF-C) expression and lymphangiogenesis predicts the probability of metastasis to sentinel nodes, but conditions boosting VEGF-C expression in melanoma are poorly characterized. By comparative mRNA expression analysis of a set of 22 human melanoma cell lines, we found a striking negative correlation between VEGF-C and microphthalmia-associated transcription factor (MITF) expression, which was confirmed by data mining in GEO databases of human melanoma Affymetrix arrays. Moreover, in human patients, high VEGF-C and low MITF levels in primary melanoma significantly correlated with the chance of metastasis. Pathway analysis disclosed the respective c-Jun N-terminal kinase and p38/mitogen-activated protein kinase activities as being responsible for the inverse regulation of VEGF-C and MITF. Predominant c-Jun N-terminal kinase signaling results in a VEGF-C(low)/MITF(high) phenotype; these melanoma cells are highly proliferative, show low mobility, and are poorly lymphangiogenic. Predominant p38 signaling results in a VEGF-C(high)/MITF(low) phenotype, corresponding to a slowly cycling, highly mobile, lymphangiogenic, and metastatic melanoma. In conclusion, the relative c-Jun N-terminal kinase and p38 activities determine the biological behavior of melanoma. VEGF-C and MITF levels serve as surrogate markers for the respective c-Jun N-terminal kinase and p38 activities and may be used to predict the risk of metastasis in primary melanoma.
Collapse
Affiliation(s)
- Emmi Puujalka
- Department of Dermatology, Skin and Endothelium Research Division (SERD), Medical University of Vienna, Austria
| | - Magdalena Heinz
- Department of Dermatology, Skin and Endothelium Research Division (SERD), Medical University of Vienna, Austria
| | - Bastian Hoesel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Peter Friedl
- Department of Dermatology, Skin and Endothelium Research Division (SERD), Medical University of Vienna, Austria
| | - Bernhard Schweighofer
- Department of Dermatology, Skin and Endothelium Research Division (SERD), Medical University of Vienna, Austria
| | - Judith Wenzina
- Department of Dermatology, Skin and Endothelium Research Division (SERD), Medical University of Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Johannes A Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Robert Loewe
- Department of Dermatology, Skin and Endothelium Research Division (SERD), Medical University of Vienna, Austria
| | - Erwin F Wagner
- BBVA Foundation-CNIO Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Peter Petzelbauer
- Department of Dermatology, Skin and Endothelium Research Division (SERD), Medical University of Vienna, Austria.
| |
Collapse
|
38
|
Sevelda F, Mayr L, Kubista B, Lötsch D, van Schoonhoven S, Windhager R, Pirker C, Micksche M, Berger W. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:134. [PMID: 26526352 PMCID: PMC4630894 DOI: 10.1186/s13046-015-0251-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 11/28/2022]
Abstract
Background Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. Methods We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Results Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Conclusion Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0251-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Sevelda
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Lisa Mayr
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Bernd Kubista
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Daniela Lötsch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Sushilla van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Reinhard Windhager
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Michael Micksche
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| |
Collapse
|
39
|
Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O, Blayney JK, Prutsch N, Skucha A, Herac M, Krämer OH, Mazal P, Grebien F, Egger G, Poli V, Mikulits W, Eferl R, Esterbauer H, Kennedy R, Fend F, Scharpf M, Braun M, Perner S, Levy DE, Malcolm T, Turner SD, Haitel A, Susani M, Moazzami A, Rose-John S, Aberger F, Merkel O, Moriggl R, Culig Z, Dolznig H, Kenner L. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun 2015. [PMID: 26198641 PMCID: PMC4525303 DOI: 10.1038/ncomms8736] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19ARF as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF–Mdm2–p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14ARF expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition. IL6-STAT3 signaling is activated in prostate cancer, however inhibiting this pathway has not lead to a survival advantage in patients. Here, Pencik et al. show that loss of the IL6-STAT3 axis in mice and humans leads to metastasis due to loss of ARF, unravelling STAT3 and ARF as potential prognostic markers in prostate cancer.
Collapse
Affiliation(s)
- Jan Pencik
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria. [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michaela Schlederer
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Gruber
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Steven M Walker
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Athena Chalaris
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Isabelle J Marié
- 1] Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA [2] Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Melanie R Hassler
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Osman Aksoy
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jaine K Blayney
- NI Stratified Medicine Research Group, University of Ulster, BT47 6SB Londonderry, UK
| | - Nicole Prutsch
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Skucha
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Merima Herac
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Peter Mazal
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valeria Poli
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin 10126, Italy
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Eferl
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Kennedy
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Martin Braun
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - Sven Perner
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - David E Levy
- 1] Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA [2] Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Tim Malcolm
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Andrea Haitel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Susani
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ali Moazzami
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Stefan Rose-John
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Fritz Aberger
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Unit for Translational Methods in Cancer Research, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria [3] Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
40
|
Laszlo V, Hoda MA, Garay T, Pirker C, Ghanim B, Klikovits T, Dong YW, Rozsas A, Kenessey I, Szirtes I, Grusch M, Jakopovic M, Samarzija M, Brcic L, Kern I, Rozman A, Popper H, Zöchbauer-Müller S, Heller G, Altenberger C, Ziegler B, Klepetko W, Berger W, Dome B, Hegedus B. Epigenetic down-regulation of integrin α7 increases migratory potential and confers poor prognosis in malignant pleural mesothelioma. J Pathol 2015; 237:203-14. [PMID: 26011651 DOI: 10.1002/path.4567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a devastating malignancy characterized by invasive growth and rapid recurrence. The identification and inhibition of molecular components leading to this migratory and invasive phenotype are thus essential. Accordingly, a genome-wide expression array analysis was performed on MPM cell lines and a set of 139 genes was identified as differentially expressed in cells with high versus low migratory activity. Reduced expression of the novel tumour suppressor integrin α7 (ITGA7) was found in highly motile cells. A significant negative correlation was observed between ITGA7 transcript levels and average displacement of cells. Forced overexpression of ITGA7 in MPM cells with low endogenous ITGA7 expression inhibited cell motility, providing direct evidence for the regulatory role of ITGA7 in MPM cell migration. MPM cells showed decreased ITGA7 expressions at both transcription and protein levels when compared to non-malignant mesothelial cells. The majority of MPM cell cultures displayed hypermethylation of the ITGA7 promoter when compared to mesothelial cultures. A statistically significant negative correlation between ITGA7 methylation and ITGA7 expression was also observed in MPM cells. While normal human pleura samples unambiguously expressed ITGA7, a varying level of expression was found in a panel of 200 human MPM samples. In multivariate analysis, ITGA7 expression was found to be an independent prognostic factor. Although there was no correlation between histological subtypes and ITGA7 expression, importantly, patients with high tumour cell ITGA7 expression had an increased median overall survival compared to the low- or no-expression groups (463 versus 278 days). In conclusion, our data suggest that ITGA7 is an epigenetically regulated tumour suppressor gene and a prognostic factor in human MPM.
Collapse
Affiliation(s)
- Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Tamas Garay
- Department of Biological Physics, Eötvös University, Budapest, Hungary.,2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Bahil Ghanim
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Yawen W Dong
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Anita Rozsas
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Istvan Kenessey
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ildiko Szirtes
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Marko Jakopovic
- University of Zagreb, School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Center Zagreb, Croatia
| | - Miroslav Samarzija
- University of Zagreb, School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Center Zagreb, Croatia
| | - Luka Brcic
- University of Zagreb, School of Medicine, Institute of Pathology, Croatia.,Institute of Pathology, Medical University of Graz, Austria
| | - Izidor Kern
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Ales Rozman
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Helmut Popper
- Institute of Pathology, Medical University of Graz, Austria
| | - Sabine Zöchbauer-Müller
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Corinna Altenberger
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Barbara Ziegler
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.,Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria.,MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
41
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
42
|
Masoumi-Moghaddam S, Amini A, Wei AQ, Robertson G, Morris DL. Sprouty 1 predicts prognosis in human epithelial ovarian cancer. Am J Cancer Res 2015; 5:1531-41. [PMID: 26101716 PMCID: PMC4473329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023] Open
Abstract
Sprouty proteins are evolutionary-conserved modulators of receptor tyrosine kinase (RTK) signaling. We have previously reported inverse correlation of the Sprouty 1 (Spry1) protein expression with ovarian cancer cell proliferation, migration, invasion and survival. In the present study, the expression status of Spry1 protein and its clinical relevance in patients with epithelial ovarian cancer were explored. Matched tumor and normal tissue samples from 100 patients with epithelial ovarian cancer were immunohistochemically stained for Spry1. Expression of ERK, p-ERK, Ki67, FGF-2, VEGF and IL-6 and their correlation with Spry1 were also evaluated. In addition, correlation between Spry1 and clinicopathological characteristics and predictive significance of Spry1 for overall survival (OS) and disease-free survival (DFS) were analysed. Our data indicated that Spry1 was significantly downregulated in tumor tissues (p=0.004). Spry1 showed significant inverse correlation with p-ERK/ERK (p=0.045), Ki67 (p=0.010), disease stage (p=0.029), tumor grade (p=0.037), recurrence (p=0.001) and lymphovascular invasion (p=0.042). It was revealed that Spry1 low-expressing patients had significantly poorer OS (p=0.010) and DFS (p=0.012) than those with high expression of Spry1. Multivariate analysis showed that high Spry1 (p=0.030), low stage (p=0.048) and no residual tumor (p=0.007) were independent prognostic factors for a better OS, among which high Spry1 (p=0.035) and low stage (p=0.035) remained as independent predictors of DFS, too. We also found that the expression of Spry1 significantly correlates with the expression of Spry2 (p<0.001), but not that of Spry4. In conclusion, we report for the first time to our knowledge that Spry1 protein is downregulated in human epithelial ovarian cancer. Spry1 expression significantly impacts tumor behavior and shows predictive value as an independent prognostic factor for survival and recurrence.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South WalesGray Street, Kogarah, Sydney NSW 2217, Australia
| | - Afshin Amini
- Department of Surgery, St George Hospital, The University of New South WalesGray Street, Kogarah, Sydney NSW 2217, Australia
| | - Ai-Qun Wei
- Department of Orthopedic Surgery, St George Hospital, The University of New South WalesGray Street, Kogarah, Sydney NSW 2217, Australia
| | - Gregory Robertson
- Department of Gynaecology Oncology, St George Hospital, The University of New South WalesGray Street, Kogarah, Sydney NSW 2217, Australia
| | - David L Morris
- Department of Surgery, St George Hospital, The University of New South WalesGray Street, Kogarah, Sydney NSW 2217, Australia
| |
Collapse
|
43
|
Miklos W, Pelivan K, Kowol CR, Pirker C, Dornetshuber-Fleiss R, Spitzwieser M, Englinger B, van Schoonhoven S, Cichna-Markl M, Koellensperger G, Keppler BK, Berger W, Heffeter P. Triapine-mediated ABCB1 induction via PKC induces widespread therapy unresponsiveness but is not underlying acquired triapine resistance. Cancer Lett 2015; 361:112-20. [PMID: 25749419 DOI: 10.1016/j.canlet.2015.02.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Although triapine is promising for treatment of advanced leukemia, it failed against solid tumors due to widely unknown reasons. To address this issue, a new triapine-resistant cell line (SW480/tria) was generated by drug selection and investigated in this study. Notably, SW480/tria cells displayed broad cross-resistance against several known ABCB1 substrates due to high ABCB1 levels (induced by promoter hypomethylation). However, ABCB1 inhibition did not re-sensitize SW480/tria cells to triapine and subsequent analysis revealed that triapine is only a weak ABCB1 substrate without significant interaction with the ABCB1 transport function. Interestingly, in chemo-naive, parental SW480 cells short-time (24 h) treatment with triapine stimulated ABCB1 expression. These effects were based on activation of protein kinase C (PKC), a known response to cellular stress. In accordance, SW480/tria cells were characterized by elevated levels of PKC. Together, this led to the conclusion that increased ABCB1 expression is not the major mechanism of triapine resistance in SW480/tria cells. In contrast, increased ABCB1 expression was found to be a consequence of triapine stress-induced PKC activation. These data are especially of importance when considering the choice of chemotherapeutics for combination with triapine.
Collapse
Affiliation(s)
- W Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Pelivan
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - C Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - R Dornetshuber-Fleiss
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Department of Pharmacology and Toxicology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - M Spitzwieser
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Cichna-Markl
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - G Koellensperger
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - W Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - P Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria.
| |
Collapse
|
44
|
High SIPA-1 expression in proximal tubules of human kidneys under pathological conditions. ACTA ACUST UNITED AC 2015; 35:64-70. [PMID: 25673195 DOI: 10.1007/s11596-015-1390-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 01/18/2015] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) and clear cell renal cell carcinoma (CC-RCC) are serious disorders and usually fatal, and always accompanied with pathological changes in the kidney. Signal-induced proliferation-associated protein 1 (SIPA-1) is a Rap1GTPase activating protein (Rap1GAP) expressed in the normal distal and collecting tubules of the murine kidney. Lupus-like autoimmune disease and leukemia have been observed in SIPA-1 deficient mice, suggesting a pathological relevance of SIPA-1 to SLE and carcinoma in human being. The expression pattern of SIPA-1 is as yet undefined and the pathogenesis of these diseases in humans remains elusive. In this study, we used both immunohistochemistry and quantum dot (QD)-based immunofluorescence staining to investigate the expression of SIPA-1 in renal specimens from SLE and CC-RCC patients. MTT assay and Western blotting were employed to evaluate the effects of SIPA-1 overexpression on the proliferation and apoptosis of renal cell lines. Semi-quantitative reverse transcriptase-PCR (RT-PCR) was applied to examine the changes of hypoxia-inducible factor-1α (HIF-1α) mRNA level. Results showed that SIPA-1 was highly expressed in the proximal and collecting tubules of nephrons in SLE patients compared to normal ones, and similar results were obtained in the specimens of CC-RCC patients. Although SIPA-1 overexpression did not affect cellular proliferation and apoptosis of both human 786-O renal cell carcinoma cells and rat NRK-52E renal epithelial cell lines, RT-PCR results showed that HIF-1α mRNA level was down-regulated by SIPA-1 overexpression in 786-O cells. These findings suggest that SIPA-1 may play critical roles in the pathological changes in kidney, and might provide a new biomarker to aid in the diagnosis of SLE and CC-RCC.
Collapse
|
45
|
Paulitschke V, Berger W, Paulitschke P, Hofstätter E, Knapp B, Dingelmaier-Hovorka R, Födinger D, Jäger W, Szekeres T, Meshcheryakova A, Bileck A, Pirker C, Pehamberger H, Gerner C, Kunstfeld R. Vemurafenib Resistance Signature by Proteome Analysis Offers New Strategies and Rational Therapeutic Concepts. Mol Cancer Ther 2015; 14:757-68. [DOI: 10.1158/1535-7163.mct-14-0701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
|
46
|
Schelch K, Hoda MA, Klikovits T, Münzker J, Ghanim B, Wagner C, Garay T, Laszlo V, Setinek U, Dome B, Filipits M, Pirker C, Heffeter P, Selzer E, Tovari J, Torok S, Kenessey I, Holzmann K, Grasl-Kraupp B, Marian B, Klepetko W, Berger W, Hegedus B, Grusch M. Fibroblast Growth Factor Receptor Inhibition Is Active against Mesothelioma and Synergizes with Radio- and Chemotherapy. Am J Respir Crit Care Med 2014; 190:763-72. [DOI: 10.1164/rccm.201404-0658oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Lötsch D, Steiner E, Holzmann K, Spiegl-Kreinecker S, Pirker C, Hlavaty J, Petznek H, Hegedus B, Garay T, Mohr T, Sommergruber W, Grusch M, Berger W. Major vault protein supports glioblastoma survival and migration by upregulating the EGFR/PI3K signalling axis. Oncotarget 2014; 4:1904-18. [PMID: 24243798 PMCID: PMC3875758 DOI: 10.18632/oncotarget.1264] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite their ubiquitous expression and high conservation during evolution, precise cellular functions of vault ribonucleoparticles, mainly built of multiple major vault protein (MVP) copies, are still enigmatic. With regard to cancer, vaults were shown to be upregulated during drug resistance development as well as malignant transformation and progression. Such in a previous study we demonstrated that human astrocytic brain tumours including glioblastoma are generally high in vault levels while MVP expression in normal brain is comparably low. However a direct contribution to the malignant phenotype in general and that of glioblastoma in particular has not been established so far. Thus we address the questions whether MVP itself has a pro-tumorigenic function in glioblastoma. Based on a large tissue collection, we re-confirm strong MVP expression in gliomas as compared to healthy brain. Further, the impact of MVP on human glioblastoma aggressiveness was analysed by using gene transfection, siRNA knock-down and dominant-negative genetic approaches. Our results demonstrate that MVP/vaults significantly support migratory and invasive competence as well as starvation resistance of glioma cells in vitro and in vivo. The enhanced aggressiveness was based on MVP-mediated stabilization of the epidermal growth factor receptor (EGFR)/phosphatidyl-inositol-3-kinase (PI3K) signalling axis. Consequently, MVP overexpression resulted in enhanced growth and brain invasion in human glioblastoma xenograft models. Our study demonstrates, for the first time, that vaults have a tumour-promoting potential by stabilizing EGFR/PI3K-mediated migration and survival pathways in human glioblastoma.
Collapse
|
48
|
Jungwirth U, Gojo J, Tuder T, Walko G, Holcmann M, Schöfl T, Nowikovsky K, Wilfinger N, Schoonhoven S, Kowol CR, Lemmens-Gruber R, Heffeter P, Keppler BK, Berger W. Calpain-Mediated Integrin Deregulation as a Novel Mode of Action for the Anticancer Gallium Compound KP46. Mol Cancer Ther 2014; 13:2436-49. [DOI: 10.1158/1535-7163.mct-14-0087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
MAP kinase activity supported by BRAF (V600E) mutation rather than gene amplification is associated with ETV1 expression in melanoma brain metastases. Arch Dermatol Res 2014; 306:873-84. [PMID: 25073704 DOI: 10.1007/s00403-014-1490-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 12/19/2022]
Abstract
In primary melanoma, ETV1 transcription factor was suggested to be activated mainly by gene amplification and to promote tumor growth in cooperation with BRAF (V600E) . Aim of this study was to investigate ETV1 expression in human melanoma with a focus on brain metastases. We investigated ETV1 in 68 human melanoma brain metastases using FISH for ETV1 gene (located at chromosome 7p21) and centromere chromosome 7 and immunohistochemistry for ETV1, BRAF (V600E) , and ETV1/BRAF associated proteins pMSK1, pRSK1, pp38, pMEK1/2, MAPKAP kinase 2, CIC, HIF-1alpha and Ki-67. We further studied ETV1 copy number variations in 32 melanoma cell lines from primary and metastatic lesions using array CGH. The influence of the MAP kinase pathway activity on ETV1 mRNA and protein expression under BRAF wild-type and BRAF (V600E) conditions were determined in melanoma cell lines using qRT-PCR and Western Blot. No ETV1 high grade amplifications were observed in tissue samples, but low grade ETV1 gene amplifications were found in 7 (10.3 %) melanoma brain metastases. ETV1 protein expression in tissue samples (15 %) correlated with BRAF (V600E) status (p = 0.007) and HIF-1alpha expression (p = 0.049), but not with ETV1 gene dose. Application of the BRAF(V600E)-specific inhibitor vemurafenib and the BRAF(V6ooE/V600K)-inhibitor dabrafenib revealed predominant regulation of ETV-1 mRNA and protein via MAPK-pathway. ETV1 expression is a rare event in human melanoma and seems to be rather based on hyperactivation of MAPK signals, by BRAF (V600E) mutation, than on ETV1 gene amplification. Consequently, therapeutic inhibition of BRAF and the downstream MAPK pathway also down-regulates oncogenic ETV1 expression.
Collapse
|
50
|
Nuclear SIPA1 activates integrin β1 promoter and promotes invasion of breast cancer cells. Oncogene 2014; 34:1451-62. [DOI: 10.1038/onc.2014.36] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
|