1
|
Demuytere J, Ernst S, Ceelen W. Pathophysiology of Peritoneal Metastasis. J Surg Oncol 2024. [PMID: 39400354 DOI: 10.1002/jso.27890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal metastasis is the result of a complex, stepwise process that involves multiple, spatially and temporally distinct interactions between the primary cancer, disseminated cancer cells or clusters, and the mesothelial lining of the peritoneal cavity and intraperitoneal organs. The biology of peritoneal metastasis, long a neglected field of research, is now increasingly being unraveled. Here, we provide an update on the mechanisms that drive the journey that eventually leads to widespread peritoneal metastatic disease.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Tansi FL, Schrepper A, Schwarzer M, Teichgräber U, Hilger I. Identifying the Morphological and Molecular Features of a Cell-Based Orthotopic Pancreatic Cancer Mouse Model during Growth over Time. Int J Mol Sci 2024; 25:5619. [PMID: 38891809 PMCID: PMC11171605 DOI: 10.3390/ijms25115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by hypovascularity, hypoxia, and desmoplastic stroma is one of the deadliest malignancies in humans, with a 5-year survival rate of only 7%. The anatomical location of the pancreas and lack of symptoms in patients with early onset of disease accounts for late diagnosis. Consequently, 85% of patients present with non-resectable, locally advanced, or advanced metastatic disease at diagnosis and rely on alternative therapies such as chemotherapy, immunotherapy, and others. The response to these therapies highly depends on the stage of disease at the start of therapy. It is, therefore, vital to consider the stages of PDAC models in preclinical studies when testing new therapeutics and treatment modalities. We report a standardized induction of cell-based orthotopic pancreatic cancer models in mice and the identification of vital features of their progression by ultrasound imaging and histological analysis of the level of pancreatic stellate cells, mature fibroblasts, and collagen. The results highlight that early-stage primary tumors are secluded in the pancreas and advance towards infiltrating the omentum at week 5-7 post implantation of the BxPC-3 and Panc-1 models investigated. Late stages show extensive growth, the infiltration of the omentum and/or stomach wall, metastases, augmented fibroblasts, and collagen levels. The findings can serve as suggestions for defining growth parameter-based stages of orthotopic pancreatic cancer models for the preclinical testing of drug efficacy in the future.
Collapse
Affiliation(s)
- Felista L. Tansi
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Ingrid Hilger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
3
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
4
|
Xia W, Geng Y, Hu W. Peritoneal Metastasis: A Dilemma and Challenge in the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:5641. [PMID: 38067347 PMCID: PMC10705712 DOI: 10.3390/cancers15235641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 10/25/2024] Open
Abstract
Peritoneal metastasis (PM) is a common mode of distant metastasis in colorectal cancer (CRC) and has a poorer prognosis compared to other metastatic sites. The formation of PM foci depends on the synergistic effect of multiple molecules and the modulation of various components of the tumor microenvironment. The current treatment of CRC-PM is based on systemic chemotherapy. However, recent developments in local therapeutic modalities, such as cytoreductive surgery (CRS) and intraperitoneal chemotherapy (IPC), have improved the survival of these patients. This article reviews the research progress on the mechanism, characteristics, diagnosis, and treatment strategies of CRC-PM, and discusses the current challenges, so as to deepen the understanding of CRC-PM among clinicians.
Collapse
Affiliation(s)
- Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
5
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
6
|
Li Z, Gao Y, Cao Y, He F, Jiang R, Liu H, Cai H, Zan T. Extracellular RNA in melanoma: Advances, challenges, and opportunities. Front Cell Dev Biol 2023; 11:1141543. [PMID: 37215082 PMCID: PMC10192583 DOI: 10.3389/fcell.2023.1141543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Melanoma, a malignant mass lesion that originates in melanocytes and has a high rate of malignancy, metastasis, and mortality, is defined by these characteristics. Malignant melanoma is a kind of highly malignant tumor that produces melanin and has a high mortality rate. Its incidence accounts for 1%-3% of all malignant tumors and shows an obvious upward trend. The discovery of biomolecules for the diagnosis and treatment of malignant melanoma has important application value. So far, the exact molecular mechanism of melanoma development relevant signal pathway still remains unclear. According to previous studies, extracellular RNAs (exRNAs) have been implicated in tumorigenesis and spread of melanoma. They can influence the proliferation, invasion and metastasis of melanoma by controlling the expression of target genes and can also influence tumor progression by participating in signal transduction mechanisms. Therefore, understanding the relationship between exRNA and malignant melanoma and targeting therapy is of positive significance for its prevention and treatment. In this review, we did an analysis of extracellular vesicles of melanoma which focused on the role of exRNAs (lncRNAs, miRNAs, and mRNAs) and identifies several potential therapeutic targets. In addition, we discuss the typical signaling pathways involved in exRNAs, advances in exRNA detection and how they affect the tumor immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Gao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Cao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifan He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Ye M, Huang X, Wu Q, Liu F. Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices? Cancers (Basel) 2023; 15:cancers15071927. [PMID: 37046588 PMCID: PMC10093305 DOI: 10.3390/cancers15071927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Cellular senescence is a unique cellular state. Senescent cells enter a non-proliferative phase, and the cell cycle is arrested. However, senescence is essentially an active cellular phenotype, with senescent cells affecting themselves and neighboring cells via autocrine and paracrine patterns. A growing body of research suggests that the dysregulation of senescent stromal cells in the microenvironment is tightly associated with the development of a variety of complex cancers. The role of senescent stromal cells in impacting the cancer cell and tumor microenvironment has also attracted the attention of researchers. In this review, we summarize the generation of senescent stromal cells in the tumor microenvironment and their specific biological functions. By concluding the signaling pathways and regulatory mechanisms by which senescent stromal cells promote tumor progression, distant metastasis, immune infiltration, and therapy resistance, this paper suggests that senescent stromal cells may serve as potential targets for drug therapy, thus providing new clues for future related research.
Collapse
Affiliation(s)
- Minghan Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Xinyi Huang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
| | - Qianju Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Regorafenib Induces Senescence and Epithelial-Mesenchymal Transition in Colorectal Cancer to Promote Drug Resistance. Cells 2022; 11:cells11223663. [PMID: 36429091 PMCID: PMC9688587 DOI: 10.3390/cells11223663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Potential intrinsic resistance mechanisms to regorafenib were explored after short exposure (3 days) on five CRC cell lines (HCT-116, SW1116, LS-1034, SW480, Caco-2). The observation of senescence-like features led to the investigation of a drug-initiated phenotype switch. Following long-term exposure (12 months) of HCT-116 and SW480 cell lines to regorafenib, we developed resistant models to explore acquired resistance. SW480 cells demonstrated senescent-like properties, including a cell arrest in the late G2/prophase cell cycle stage and a statistically significant decrease in the expression of G1 Cyclin-Dependent Kinase inhibitors and key cell cycle regulators. A specific senescence-associated secretome was also observed. In contrast, HCT-116 treated cells presented early senescent features and developed acquired resistance triggering EMT and a more aggressive phenotype over time. The gained migration and invasion ability by long-exposed cells was associated with the increased expression level of key cellular and extracellular EMT-related factors. The PI3K/AKT pathway was a significant player in the acquired resistance of HCT-116 cells, possibly related to a PI3KCA mutation in this cell line. Our findings provide new insights into the phenotypic plasticity of CRC cells able, under treatment pressure, to acquire a stable TIS or to use an early senescence state to undergo EMT.
Collapse
|
9
|
Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:cancers14122856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
|
10
|
Pretzsch E, Nieß H, Bösch F, Westphalen C, Jacob S, Neumann J, Werner J, Heinemann V, Angele M. Age and metastasis – How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol 2022; 77:102112. [DOI: 10.1016/j.canep.2022.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
11
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
12
|
Serratì S, Porcelli L, Fragassi F, Garofoli M, Di Fonte R, Fucci L, Iacobazzi RM, Palazzo A, Margheri F, Cristiani G, Albano A, De Luca R, Altomare DF, Simone M, Azzariti A. The Interaction between Reactive Peritoneal Mesothelial Cells and Tumor Cells via Extracellular Vesicles Facilitates Colorectal Cancer Dissemination. Cancers (Basel) 2021; 13:cancers13102505. [PMID: 34065529 PMCID: PMC8161093 DOI: 10.3390/cancers13102505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Advanced colorectal cancer (CRC) is highly metastatic and often results in peritoneal dissemination. The extracellular vesicles (EVs) released by cancer cells in the microenvironment are important mediators of tumor metastasis. We investigated the contribution of EV-mediated interaction between peritoneal mesothelial cells (MCs) and CRC cells in generating a pro-metastatic environment in the peritoneal cavity. Peritoneal MCs isolated from peritoneal lavage fluids displayed high CD44 expression, substantial mesothelial-to-mesenchymal transition (MMT) and released EVs that both directed tumor invasion and caused reprogramming of secretory profiles by increasing TGF-β1 and uPA/uPAR expression and MMP-2/9 activation in tumor cells. Notably, the EVs released by tumor cells induced apoptosis by activating caspase-3, peritoneal MC senescence, and MMT, thereby augmenting the tumor-promoting potential of these cells in the peritoneal cavity. By using pantoprazole, we reduced the biogenesis of EVs and their pro-tumor functions. In conclusion, our findings provided evidence of underlying mechanisms of CRC dissemination driven by the interaction of peritoneal MCs and tumor cells via the EVs released in the peritoneal cavity, which may have important implications for the clinical management of patients.
Collapse
Affiliation(s)
- Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (A.P.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Francesco Fragassi
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
| | - Marianna Garofoli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Livia Fucci
- Pathology Department, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.F.); (G.C.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Antonio Palazzo
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (A.P.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy;
| | - Grazia Cristiani
- Pathology Department, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.F.); (G.C.)
| | - Anna Albano
- Clinical Trial Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Raffaele De Luca
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
| | - Donato Francesco Altomare
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
- Department of Emergency and Organ Transplantation, University Aldo Moro of Bari, 70124 Bari, Italy
| | - Michele Simone
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
- Correspondence:
| |
Collapse
|
13
|
Bella Á, Di Trani CA, Fernández-Sendin M, Arrizabalaga L, Cirella A, Teijeira Á, Medina-Echeverz J, Melero I, Berraondo P, Aranda F. Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications. Cancers (Basel) 2021; 13:cancers13050963. [PMID: 33669017 PMCID: PMC7956655 DOI: 10.3390/cancers13050963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Peritoneal carcinomatosis mouse models as a platform to test, improve and/or predict the appropriate therapeutic interventions in patients are crucial to providing medical advances. Here, we overview reported mouse models to explore peritoneal carcinomatosis in translational biomedical research. Abstract Peritoneal carcinomatosis of primary tumors originating in gastrointestinal (e.g., colorectal cancer, gastric cancer) or gynecologic (e.g., ovarian cancer) malignancies is a widespread type of tumor dissemination in the peritoneal cavity for which few therapeutic options are available. Therefore, reliable preclinical models are crucial for research and development of efficacious treatments for this condition. To date, a number of animal models have attempted to reproduce as accurately as possible the complexity of the tumor microenvironment of human peritoneal carcinomatosis. These include: Syngeneic tumor cell lines, human xenografts, patient-derived xenografts, genetically induced tumors, and 3D scaffold biomimetics. Each experimental model has its own strengths and limitations, all of which can influence the subsequent translational results concerning anticancer and immunomodulatory drugs under exploration. This review highlights the current status of peritoneal carcinomatosis mouse models for preclinical development of anticancer drugs or immunotherapeutic agents.
Collapse
Affiliation(s)
- Ángela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Myriam Fernández-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (P.B.); (F.A.)
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Correspondence: (P.B.); (F.A.)
| |
Collapse
|
14
|
Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol 2020; 81:14-23. [PMID: 33290845 DOI: 10.1016/j.semcancer.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Although ovarian cancer is the leading cause of death from gynecological malignancies, there are still some issues that hamper accurate interpretation of the complexity of cellular and molecular events underlying the pathophysiology of this disease. One of these is cellular senescence, which is the process whereby cells irreversibly lose their ability to divide and develop a phenotype that fuels a variety of age-related diseases, including cancer. In this review, various aspects of cellular senescence associated with intraperitoneal ovarian cancer metastasis are presented and discussed, including mechanisms of senescence in normal peritoneal mesothelial cells; the role of senescent mesothelium in ovarian cancer progression; the effect of drugs commonly used as first-line therapy in ovarian cancer patients on senescence of normal cells; mechanisms of spontaneous senescence in ovarian cancer cells; and, last but not least, other pharmacologic strategies to induce senescence in ovarian malignancies. Collectively, this study shows that cellular senescence is involved in several aspects of ovarian cancer pathobiology. Proper understanding of this phenomenon, particularly its clinical relevance, seems to be critical for oncology patients from both therapeutic and prognostic perspectives.
Collapse
Affiliation(s)
- Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
15
|
Bustos SO, Antunes F, Rangel MC, Chammas R. Emerging Autophagy Functions Shape the Tumor Microenvironment and Play a Role in Cancer Progression - Implications for Cancer Therapy. Front Oncol 2020; 10:606436. [PMID: 33324568 PMCID: PMC7724038 DOI: 10.3389/fonc.2020.606436] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is a complex environment where cancer cells reside and interact with different types of cells, secreted factors, and the extracellular matrix. Additionally, TME is shaped by several processes, such as autophagy. Autophagy has emerged as a conserved intracellular degradation pathway for clearance of damaged organelles or aberrant proteins. With its central role, autophagy maintains the cellular homeostasis and orchestrates stress responses, playing opposite roles in tumorigenesis. During tumor development, autophagy also mediates autophagy-independent functions associated with several hallmarks of cancer, and therefore exerting several effects on tumor suppression and/or tumor promotion mechanisms. Beyond the concept of degradation, new different forms of autophagy have been described as modulators of cancer progression, such as secretory autophagy enabling intercellular communication in the TME by cargo release. In this context, the synthesis of senescence-associated secretory proteins by autophagy lead to a senescent phenotype. Besides disturbing tumor treatment responses, autophagy also participates in innate and adaptive immune signaling. Furthermore, recent studies have indicated intricate crosstalk between autophagy and the epithelial-mesenchymal transition (EMT), by which cancer cells obtain an invasive phenotype and metastatic potential. Thus, autophagy in the cancer context is far broader and complex than just a cell energy sensing mechanism. In this scenario, we will discuss the key roles of autophagy in the TME and surrounding cells, contributing to cancer development and progression/EMT. Finally, the potential intervention in autophagy processes as a strategy for cancer therapy will be addressed.
Collapse
Affiliation(s)
- Silvina Odete Bustos
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| | - Fernanda Antunes
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| | - Maria Cristina Rangel
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| | - Roger Chammas
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil
| |
Collapse
|
16
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
17
|
Ceelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends Cancer 2020; 6:236-246. [PMID: 32101726 DOI: 10.1016/j.trecan.2019.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/01/2023]
Abstract
Peritoneal metastasis (PM) occurs in approximately one in four colorectal cancer (CRC) patients. The pathophysiology of colorectal PM remains poorly characterized. Also, the efficacy of current treatment modalities, including surgery and intraperitoneal (IP) delivery of chemotherapy, is limited. Increasingly, therefore, efforts are being developed to unravel the PM cascade and at understanding the PM-associated tumor microenvironment (TME) and peritoneal ecosystem as potential therapeutic targets. Here, we review recent insights in the structure and components of the TME in colorectal PM, and discuss how these may translate into novel therapeutic approaches aimed at re-engineering the metastasis-promoting activity of the stroma.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium; Department of GI Surgery, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Vignesh Narasimhan
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander G Heriot
- Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory for Experimental Cancer Research, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020; 77:213-229. [PMID: 31414165 PMCID: PMC6970957 DOI: 10.1007/s00018-019-03261-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
In contrast to the well-recognized replicative and stress-induced premature senescence of normal somatic cells, mechanisms and clinical implications of senescence of cancer cells are still elusive and uncertain from patient-oriented perspective. Moreover, recent years provided multiple pieces of evidence that cancer cells may undergo senescence not only in response to chemotherapy or ionizing radiation (the so-called therapy-induced senescence) but also spontaneously, without any external insults. Since the molecular nature of the latter process is poorly recognized, the significance of spontaneously senescent cancer cells for tumor progression, therapy effectiveness, and patient survival is purely speculative. In this review, we summarize the most up-to-date research regarding therapy-induced and spontaneous senescence of cancer cells, by delineating the most important discoveries regarding the occurrence of these phenomena in vivo and in vitro. This review provides data collected from studies on various cancer cell models, and the narration is presented from the broader perspective of the most critical findings regarding the senescence of normal somatic cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland.
| |
Collapse
|
19
|
Kersy O, Loewenstein S, Lubezky N, Sher O, Simon NB, Klausner JM, Lahat G. Omental Tissue-Mediated Tumorigenesis of Gastric Cancer Peritoneal Metastases. Front Oncol 2019; 9:1267. [PMID: 31803630 PMCID: PMC6876669 DOI: 10.3389/fonc.2019.01267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
The peritoneal cavity, especially the omentum, is a common site for gastric cancer metastasis, representing advanced disease stage and poor prognosis. Here, we studied the effects of omental tissue on gastric cancer tumor progression in vitro and in vivo. Utilizing in vitro models, we found that omental tissue secreted factors increased gastric cancer cellular growth (by 30–67%, P < 0.05), motility (>8-fold, P < 0.05), invasiveness (>7-fold, P < 0.05) and chemoresistance to platinum-based chemotherapeutic agents (>1.2-fold for oxaliplatin and >1.6-fold for cisplatin, P < 0.05). Using a robust proteomic approach, we identified numerous molecules secreted into the omental tissue conditioned medium (CM) which may promote gastric cancer cellular aggressiveness (i.e., IL-6, IL-8, MMP9, FN1, and CXCL-5). Next, an in vivo xenograft mouse model showed an increased human gastric adenocarcinoma tumor volume of cells co-cultured with human omental tissue secreted factors; 1.6 ± 0.55 vs. 0.3 ± 0.19 cm3 (P < 0.001), as well as increased angiogenesis. Finally, exosomes were isolated from human omental tissue CM of gastric cancer patients. These exosomes were taken up by gastric cancer cells enhancing their growth (>8-fold, P < 0.01) and invasiveness (>8-fold, P < 0.001). Proteomic analysis of the content of these exosomes identified several established cancer- related proteins (i.e., IL-6, IL-8, ICAM-1, CCl2, and OSM). Taken together, our findings imply that the omentum play an active role in gastric cancer metastasis. The data also describe specific cytokines that are involved in this cross talk, and that omental tissue- derived exosomes may contribute to these unique cellular interactions with gastric cancer cells. Further studies aimed at understanding the biology of gastric cancer intra peritoneal spread are warranted. Hopefully, such data will enable to develop future novel therapeutic strategies for the treatment of metastatic gastric cancer.
Collapse
Affiliation(s)
- Olga Kersy
- Laboratory of Surgical Oncology, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Shelly Loewenstein
- Laboratory of Surgical Oncology, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Nir Lubezky
- Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Osnat Sher
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Natalie B Simon
- College of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Joseph M Klausner
- Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,The Nikolas and Elizabeth Shlezak Cathedra for Experimental Surgery, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Guy Lahat
- Laboratory of Surgical Oncology, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
20
|
Senescence-related deterioration of intercellular junctions in the peritoneal mesothelium promotes the transmesothelial invasion of ovarian cancer cells. Sci Rep 2019; 9:7587. [PMID: 31110245 PMCID: PMC6527686 DOI: 10.1038/s41598-019-44123-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanisms of transmesothelial invasion of ovarian cancer are still poorly understood. Here we examined whether this phenomenon may be determined by an expression of intercellular junctions in peritoneal mesothelial cells (PMCs). Analysis of ovarian tumors showed that cancer cells are localized below an intact layer of PMCs. The PMCs located near the invaded cancer cells displayed low expression of connexin 43, E-cadherin, occludin, and desmoglein, as well as expressed SA-β-Gal, a marker of senescence. Experiments in vitro showed that senescent PMCs exhibited decreased levels of the four tested intercellular junctions, and that the invasion of ovarian cancer cells through the PMCs increased proportionally to the admixture of senescent cells. Intervention studies showed that the expression of connexin 43, E-cadherin, occludin, and desmoglein in senescent PMCs could be restored upon the blockade of p38 MAPK, NF-κB, AKT, JNK, HGF, and TGF-β1. When these molecules were neutralized, the efficiency of the transmesothelial cancer cell invasion was diminished. Collectively, our findings show that the integrity of the peritoneal mesothelium, which is determined by the expression of junctional proteins, is critical for the invasion of ovarian cancer. They also indicate a mechanism by which senescent PMCs may promote the invasive potential of cancer cells.
Collapse
|
21
|
A Unique Pattern of Mesothelial-Mesenchymal Transition Induced in the Normal Peritoneal Mesothelium by High-Grade Serous Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11050662. [PMID: 31086083 PMCID: PMC6562987 DOI: 10.3390/cancers11050662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/05/2023] Open
Abstract
The study was designed to establish whether high aggressiveness of high-grade serous ovarian cancer cells (HGSOCs), which display rapid growth, advanced stage at diagnosis and the highest mortality among all epithelial ovarian cancer histotypes, may be linked with a specific pattern of mesothelial-mesenchymal transition (MMT) elicited by these cells in normal peritoneal mesothelial cells (PMCs). Experiments were performed on primary PMCs, stable and primary ovarian cancer cells, tumors from patients with ovarian cancer, and laboratory animals. Results of in vitro and in vivo tests showed that MMT triggered by HGSOCs (primary cells and OVCAR-3 line) is far more pronounced than the process evoked by cells representing less aggressive ovarian cancer histotypes (A2780, SKOV-3). Mechanistically, HGSOCs induce MMT via Smad 2/3, ILK, TGF-β1, HGF, and IGF-1, whereas A2780 and SKOV-3 cells via exclusively Smad 2/3 and HGF. The conditioned medium from PMCs undergoing MMT promoted the progression of cancer cells and the effects exerted by the cells triggered to undergo MMT by the HGSOCs were significantly stronger than those related to the activity of their less aggressive counterparts. Our findings indicate that MMT in PMCs provoked by HGSOCs is stronger, proceeds via different mechanisms and has more procancerous characteristics than MMT provoked by less aggressive cancer histotypes, which may at least partly explain high aggressiveness of HGSOCs.
Collapse
|
22
|
Bardi GT, Al-Rayan N, Richie JL, Yaddanapudi K, Hood JL. Detection of Inflammation-Related Melanoma Small Extracellular Vesicle (sEV) mRNA Content Using Primary Melanocyte sEVs as a Reference. Int J Mol Sci 2019; 20:ijms20051235. [PMID: 30870978 PMCID: PMC6429302 DOI: 10.3390/ijms20051235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Melanoma-derived small extracellular vesicles (sEVs) participate in tumor pathogenesis. Tumor pathogenesis is highly dependent on inflammatory processes. Given the potential for melanoma sEVs to carry tumor biomarkers, we explored the hypothesis that they may contain inflammation-related mRNA content. Biophysical characterization showed that human primary melanocyte-derived sEVs trended toward being smaller and having less negative (more neutral) zeta potential than human melanoma sEVs (A-375, SKMEL-28, and C-32). Using primary melanocyte sEVs as the control population, RT-qPCR array results demonstrated similarities and differences in gene expression between melanoma sEV types. Upregulation of pro-angiogenic chemokine ligand CXCL1, CXCL2, and CXCL8 mRNAs in A-375 and SKMEL-28 melanoma sEVs was the most consistent finding. This paralleled increased production of CXCL1, CXCL2, and CXCL8 proteins by A-375 and SKMEL-28 sEV source cells. Overall, the use of primary melanocyte sEVs as a control sEV reference population facilitated the detection of inflammation-related melanoma sEV mRNA content.
Collapse
Affiliation(s)
- Gina T Bardi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Numan Al-Rayan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Jamaal L Richie
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Joshua L Hood
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
23
|
Mikuła-Pietrasik J, Stryczyński Ł, Uruski P, Tykarski A, Książek K. Procancerogenic activity of senescent cells: A case of the peritoneal mesothelium. Ageing Res Rev 2018; 43:1-9. [PMID: 29355719 DOI: 10.1016/j.arr.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/18/2023]
Abstract
Human peritoneal mesothelial cells belong to a narrow group of somatic cells in which both the triggers and the mechanisms of senescence have already been well defined. Importantly, senescent mesothelial cells have been found in the peritoneal cavity in vivo. From a clinical point of view, peritoneal mesothelial cells have been recognized as playing a critical role in the intraperitoneal development of tumor metastases. The pro-cancerogenic behavior of mesothelial cells is even more pronounced when the cells exhaust their proliferative capacity and become senescent. In this review, we summarize the current state of art regarding the contribution of peritoneal mesothelial cells in the progression of ovarian, colorectal, and pancreatic carcinomas, with particular attention paid to the cancer-promoting activity of their senescent counterparts. Moreover, we delineate the mechanisms, mediators, and signaling pathways that are engaged by the senescent mesothelial cells to support such vital elements of cancer progression as adhesion, proliferation, migration, invasion, epithelial-mesenchymal transition, and angiogenesis. Finally, we discuss the experimental evidence regarding both natural and synthetic compounds that may either prevent or restrict cancer development by delaying senescence of mesothelial cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Łukasz Stryczyński
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| |
Collapse
|
24
|
Farsam V, Basu A, Gatzka M, Treiber N, Schneider LA, Mulaw MA, Lucas T, Kochanek S, Dummer R, Levesque MP, Wlaschek M, Scharffetter-Kochanek K. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget 2018; 7:83554-83569. [PMID: 27907906 PMCID: PMC5347788 DOI: 10.18632/oncotarget.13446] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with a rising incidence of cutaneous squamous cell carcinoma (cSCC), an aggressive skin cancer with the potential for local invasion and metastasis. Acquisition of a senescence-associated secretory phenotype (SASP) in dermal fibroblasts has been postulated to promote skin cancer progression in elderly individuals. The underlying molecular mechanisms are largely unexplored. We show that Chemerin, a previously unreported SASP factor released from senescent human dermal fibroblasts, promotes cSCC cell migration, a key feature driving tumor progression. Whereas the Chemerin abundance is downregulated in malignant cSCC cells, increased Chemerin transcripts and protein concentrations are detected in replicative senescent fibroblasts in vitro and in the fibroblast of skin sections from old donors, indicating that a Chemerin gradient is built up in the dermis of elderly. Using Transwell® migration assays, we show that Chemerin enhances the chemotaxis of different cSCC cell lines. Notably, the Chemerin receptor CCRL2 is remarkably upregulated in cSCC cell lines and human patient biopsies. Silencing Chemerin in senescent fibroblasts or the CCRL2 and GPR1 receptors in the SCL-1 cSCC cell line abrogates the Chemerin-mediated chemotaxis. Chemerin triggers the MAPK cascade via JNK and ERK1 activation, whereby the inhibition impairs the SASP- or Chemerin-mediated cSCC cell migration. Taken together, we uncover a key role for Chemerin, as a major factor in the secretome of senescent fibroblasts, promoting cSCC cell migration and possibly progression, relaying its signals through CCRL2 and GPR1 receptors with subsequent MAPK activation. These findings might have implications for targeted therapeutic interventions in elderly patients.
Collapse
Affiliation(s)
- Vida Farsam
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Martina Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Nicolai Treiber
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Lars A Schneider
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, University of Ulm, Germany
| | - Tanja Lucas
- Department of Gene Therapy, University of Ulm, Germany
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Switzerland
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | | |
Collapse
|
25
|
Mikuła-Pietrasik J, Uruski P, Tykarski A, Książek K. The peritoneal "soil" for a cancerous "seed": a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci 2018; 75:509-525. [PMID: 28956065 PMCID: PMC5765197 DOI: 10.1007/s00018-017-2663-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023]
Abstract
Various types of tumors, particularly those originating from the ovary and gastrointestinal tract, display a strong predilection for the peritoneal cavity as the site of metastasis. The intraperitoneal spread of a malignancy is orchestrated by a reciprocal interplay between invading cancer cells and resident normal peritoneal cells. In this review, we address the current state-of-art regarding colonization of the peritoneal cavity by ovarian, colorectal, pancreatic, and gastric tumors. Particular attention is paid to the pro-tumoral role of various kinds of peritoneal cells, including mesothelial cells, fibroblasts, adipocytes, macrophages, the vascular endothelium, and hospicells. Anatomo-histological considerations on the pro-metastatic environment of the peritoneal cavity are presented in the broader context of organ-specific development of distal metastases in accordance with Paget's "seed and soil" theory of tumorigenesis. The activity of normal peritoneal cells during pivotal elements of cancer progression, i.e., adhesion, migration, invasion, proliferation, EMT, and angiogenesis, is discussed from the perspective of well-defined general knowledge on a hospitable tumor microenvironment created by the cellular elements of reactive stroma, such as cancer-associated fibroblasts and macrophages. Finally, the paper addresses the unique features of the peritoneal cavity that predispose this body compartment to be a niche for cancer metastases, presents issues that are topics of an ongoing debate, and points to areas that still require further in-depth investigations.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland.
| |
Collapse
|
26
|
Malignant ascites determine the transmesothelial invasion of ovarian cancer cells. Int J Biochem Cell Biol 2017; 92:6-13. [DOI: 10.1016/j.biocel.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/29/2023]
|
27
|
Zang J, Sha M, Zhang C, Ye J, Zhang K, Gao J. Senescent hepatocyte secretion of matrix metalloproteinases is regulated by nuclear factor-κB signaling. Life Sci 2017; 191:205-210. [PMID: 29054454 DOI: 10.1016/j.lfs.2017.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
AIMS Cellular senescence and matrix metalloproteinases (MMPs) play an important role in liver diseases. The source and regulating factors of MMPs in senescent hepatocytes are not known. We investigated whether senescent hepatocytes secreted MMPs and if this was regulated by nuclear factor (NF)-κB. MATERIALS AND METHODS The TGF-α transgenic mouse hepatocyte line AML12 was treated with H2O2 to induce senescence. NF-κB signaling was examined by Western blotting and luciferase reporter assays. Quantitative reverse transcription polymerase chain reaction was used to evaluated expression of MMP-2, -9 and -13. KEY FINDINGS AML12 cells treated with H2O2 showed the characteristic morphology of senescence. The activity of NF-κB and expression of MMP-2, -9 and -13 were increased in senescent AML12 cells. The NF-κB inhibitor BAY 11-7082 decreased the levels of MMPs. SIGNIFICANCE These results suggest that senescent hepatocytes are involved in the pathology of liver diseases through remodeling the extracellular matrix.
Collapse
Affiliation(s)
- Jinfeng Zang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China.
| | - Min Sha
- Central Laboratory, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Jun Ye
- Central Laboratory, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Kezhi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Junye Gao
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| |
Collapse
|
28
|
Mikuła-Pietrasik J, Uruski P, Pakuła M, Maksin K, Szubert S, Woźniak A, Naumowicz E, Szpurek D, Tykarski A, Książek K. Oxidative stress contributes to hepatocyte growth factor-dependent pro-senescence activity of ovarian cancer cells. Free Radic Biol Med 2017; 110:270-279. [PMID: 28652056 DOI: 10.1016/j.freeradbiomed.2017.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022]
Abstract
The cancer-promoting activity of senescent peritoneal mesothelial cells (HPMCs) has already been well evidenced both in vitro and in vivo. Here we sought to determine if ovarian cancer cells may activate senescence in HPMCs. The study showed that conditioned medium (CM) from ovarian cancer cells (OVCAR-3, SKOV-3, A2780) inhibited growth and promoted the development of senescence phenotype (increased SA-β-Gal, γ-H2A.X, 53BP1, and decreased Cx43) in HPMCs. An analysis of tumors isolated from the peritoneum of patients with ovarian cancer revealed an abundance of senescent HPMCs in proximity to cancerous tissue. The presence of senescent HPMCs was incidental when fragments of peritoneum free from cancer were evaluated. An analysis of the cells' secretome followed by intervention studies with exogenous proteins and neutralizing antibodies revealed hepatocyte growth factor (HGF) as the mediator of the pro-senescence impact of the cancer cells. The activity of cancerous CM and HGF was associated with an induction of mitochondrial oxidative stress. Signaling pathways involved in the senescence of HPMCs elicited by the cancer-derived CM and HGF included p38 MAPK, AKT and NF-κB. HPMCs that senesced prematurely in response to the cancer-derived CM promoted adhesion of ovarian cancer cells, however this effect was effectively prevented by the cell protection against oxidative stress. Collectively, our findings indicate that ovarian cancer cells can elicit HGF-dependent senescence in HPMCs, which may contribute to the formation of a metastatic niche for these cells within the peritoneal cavity.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Martyna Pakuła
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Konstantin Maksin
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland.
| | - Sebastian Szubert
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535 Poznań, Poland.
| | - Aldona Woźniak
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland.
| | - Eryk Naumowicz
- General Surgery Ward, Medical Centre HCP, 28 Czerwca 1956 r. 223/229 Str., 61-485 Poznań, Poland.
| | - Dariusz Szpurek
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535 Poznań, Poland.
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| |
Collapse
|
29
|
Feygenzon V, Loewenstein S, Lubezky N, Pasmanic-Chor M, Sher O, Klausner JM, Lahat G. Unique cellular interactions between pancreatic cancer cells and the omentum. PLoS One 2017. [PMID: 28632775 PMCID: PMC5478139 DOI: 10.1371/journal.pone.0179862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is a common cause of cancer-related mortality. Omental spread is frequent and usually represents an ominous event, leading to patient death. Omental metastasis has been studied in ovarian cancer, but data on its role in pancreatic cancer are relatively scarce and the molecular biology of this process has yet to be explored. We prepared tissue explants from human omental fat, and used conditioned medium from the explants for various in vitro and in vivo experiments designed to evaluate pancreatic cancer development, growth, and survival. Mass spectrometry identified the fat secretome, and mRNA array identified specific fat-induced molecular alternations in tumor cells. Omental fat increased pancreatic cancer cellular growth, migration, invasion, and chemoresistance. We identified diverse potential molecules secreted by the omentum, which are associated with various pro-tumorigenic biological processes. Our mRNA array identified specific omental-induced molecular alternations that are associated with cancer progression and metastasis. Omental fat increased the expression of transcription factors, mRNA of extracellular matrix proteins, and adhesion molecules. In support with our in vitro data, in vivo experiments demonstrated an increased pancreatic cancer tumor growth rate of PANC-1 cells co-cultured for 24 hours with human omental fat conditioned medium. Our results provide novel data on the role of omental tissue in omental metastases of pancreatic cancer. They imply that omental fat secreted factors induce cellular reprogramming of pancreatic cancer cells, resulting in increased tumor aggressiveness. Understanding the mechanisms of omental metastases may enable us to discover new potential targets for therapy.
Collapse
Affiliation(s)
- Valerya Feygenzon
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Loewenstein
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- * E-mail:
| | - Nir Lubezky
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Osnat Sher
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Joseph M. Klausner
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Guy Lahat
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
30
|
Lopez-Anton M, Rudolf A, Baird DM, Roger L, Jones RE, Witowski J, Fraser DJ, Bowen T. Telomere length profiles in primary human peritoneal mesothelial cells are consistent with senescence. Mech Ageing Dev 2017; 164:37-40. [PMID: 28373051 DOI: 10.1016/j.mad.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
Mesothelial cell (MC) senescence contributes to malignancy and tissue fibrosis. The role of telomere erosion in MC senescence remains controversial, with evidence for both telomere-dependent and telomere-independent mechanisms reported. Single telomere length analysis revealed considerable telomere length heterogeneity in freshly isolated human peritoneal MCs, reflecting a heterogeneous proliferative history and providing high-resolution evidence for telomere-dependent senescence. By contrast the attenuated replicative lifespan, lack of telomere erosion and induction of p16 expression in in vitro-aged cells was consistent with stress-induced senescence. Given the potential pathophysiological impact of senescence in mesothelial tissues, high-resolution MC telomere length analysis may provide clinically useful information.
Collapse
Affiliation(s)
- Melisa Lopez-Anton
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - András Rudolf
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Laureline Roger
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Rhiannon E Jones
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK.
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK.
| |
Collapse
|
31
|
Reha J, Katz SC. Regional immunotherapy for liver and peritoneal metastases. J Surg Oncol 2017; 116:46-54. [PMID: 28543176 DOI: 10.1002/jso.24641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic adenocarcinoma is a biologically aggressive disease, with liver and peritoneal metastases being a frequent cause of death. We examine how the pancreatic carcinoma microenvironment and immunosuppressive landscape favor tumor progression. Immunotherapy has shown promise in select solid tumors, yet challenges remain in applying these gains to stage IV pancreatic adenocarcinoma. We discuss how regional therapy strategies may be leveraged to open new avenues for treating pancreatic carcinoma metastases with immunotherapy.
Collapse
Affiliation(s)
- Jeffrey Reha
- Department of Surgery, Roger Williams Medical Center, RI/Boston University School of Medicine, Providence, Rhode Island
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, RI/Boston University School of Medicine, Providence, Rhode Island
| |
Collapse
|
32
|
Mikuła-Pietrasik J, Uruski P, Kucińska M, Tykarski A, Książek K. The protective activity of mesothelial cells against peritoneal growth of gastrointestinal tumors: The role of soluble ICAM-1. Int J Biochem Cell Biol 2017; 86:26-31. [PMID: 28323210 DOI: 10.1016/j.biocel.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/12/2017] [Accepted: 03/13/2017] [Indexed: 11/28/2022]
Abstract
In this project we examined how the presence of human peritoneal mesothelial cells (HPMCs) modifies (supports or inhibits) colorectal and pancreatic cancer cell progression in mice peritoneal cavity. Experiments were performed using primary, omentum-derived HPMCs, commercially available colorectal (SW-480) and pancreatic (PSN-1) cancer cells, and immunocompromised SCID mice. Tumor growth within the peritoneal cavity was monitored using bioluminescence. Adhesion of the cancer cells to HPMCs was examined using a fluorescence-based method, while the incidence of apoptosis was quantified using flow cytometry. Experiments showed that SW480 and PSN-1 cells formed tumors in vivo at higher efficiency when they were injected alone than in the presence of HPMCs. In vitro investigations confirmed that firm adhesion of SW480 and PSN-1 cells to HPMCs is mediated by interactions between ICAM-1 and CD43. They also revealed that IL-6 and TNFα up-regulate the expression of cell-bound ICAM-1 and the secretion of soluble ICAM-1 (sICAM-1). The basal release of sICAM-1 by HPMCs positively correlated with the expression of the cell-bound molecule. sICAM-1 inhibited dose-dependently the adhesion of SW480 and PSN-1 cells to HPMCs. Cancer cells that did not adhere to HPMCs displayed increased activity of caspase-3 and -9, increased incidence of apoptosis, and an inability to re-adhesion, as compared with their intact counterparts not exposed to sICAM-1. Our findings indicate that under certain conditions HPMCs are capable of inhibiting growth of gastrointestinal tumors in a mechanism involving the anti-adhesive capabilities of sICAM-1.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Małgorzata Kucińska
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30 Str., 60-631 Poznań, Poland.
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| |
Collapse
|
33
|
Senescent peritoneal mesothelium creates a niche for ovarian cancer metastases. Cell Death Dis 2016; 7:e2565. [PMID: 28032864 PMCID: PMC5261005 DOI: 10.1038/cddis.2016.417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
Although both incidence and aggressiveness of ovarian malignancy rise with age, the exact reason for this tendency, in particular the contribution of senescent cells, remains elusive. In this project we found that the patient's age determines the frequency of intraperitoneal metastases of ovarian cancer. Moreover, we documented that senescent human peritoneal mesothelial cells (HPMCs) stimulate proliferation, migration and invasion of ovarian cancer cells in vitro, and that this effect is related to both the activity of soluble agents released to the environment by these cells and direct cell-cell contact. The panel of mediators of the pro-cancerous activity of senescent HPMCs appeared to be cancer cell line-specific. The growth of tumors in a mouse peritoneal cavity was intensified when the cancer cells were co-injected together with senescent HPMCs. This effect was reversible when the senescence of HPMCs was slowed down by the neutralization of p38 MAPK. The analysis of lesions excised from the peritoneum of patients with ovarian cancer showed the abundance of senescent HPMCs in close proximity to the cancerous tissue. Collectively, our findings indicate that senescent HPMCs which accumulate in the peritoneum in vivo may create a metastatic niche facilitating intraperitoneal expansion of ovarian malignancy.
Collapse
|
34
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
35
|
Mikuła-Pietrasik J, Uruski P, Matuszkiewicz K, Szubert S, Moszyński R, Szpurek D, Sajdak S, Tykarski A, Książek K. Ovarian cancer-derived ascitic fluids induce a senescence-dependent pro-cancerogenic phenotype in normal peritoneal mesothelial cells. Cell Oncol (Dordr) 2016; 39:473-481. [PMID: 27444787 DOI: 10.1007/s13402-016-0289-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE After the seeding ovarian cancer cells into the peritoneal cavity, ascitic fluid creates a microenvironment in which these cells can survive and disseminate. The exact nature of the interactions between malignant ascitic fluids and peritoneal mesothelial cells (HPMCs) in ovarian cancer progression has so far remained elusive. Here we assessed whether malignant ascitic fluids may promote the senescence of HPMCs and, by doing so, enhance the acquisition of their pro-cancerogenic phenotype. METHODS Primary omentum-derived HPMCs, ovarian cancer-derived cell lines (A2780, OVCAR-3, SKOV-3), malignant ascitic fluids and benign ascitic fluids from non-cancerous patients were used in this study. Ovarian cancer cell proliferation, as well as HPMC proliferation and senescence, were determined using flow cytometry and β-galactosidase assays, respectively. Ovarian cancer cell migration was quantified using a Transwell assay. The concentrations of soluble agents in ascitic fluids, conditioned media and cell lysates were measured using DuoSet® Immunoassay Development kits. RESULTS We found that HPMCs, when exposed to malignant ascitic fluids, exhibited decreased proliferation and increased senescence rates. The malignant ascitic fluids were found to contain elevated levels of HGF, TGF-β1 and GRO-1, of which HGF and GRO-1 were able to induce senescence in HPMCs. We also found that HPMCs subjected to malignant ascitic fluids or exogenously added HGF and GRO-1 stimulated ovarian cancer cell progression, which was manifested by an increased production of HA (adhesion), uPA (proliferation), IL-8 and MCP-1 (migration). CONCLUSION Our results indicate that malignant ascitic fluids may contribute to ovarian cancer progression by accelerating the senescence of HPMCs.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Kinga Matuszkiewicz
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Sebastian Szubert
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Rafał Moszyński
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Dariusz Szpurek
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Stefan Sajdak
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland.
| |
Collapse
|
36
|
Nandi B, Shapiro M, Samur MK, Pai C, Frank NY, Yoon C, Prabhala RH, Munshi NC, Gold JS. Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages. Oncoimmunology 2016; 5:e1189052. [PMID: 27622061 DOI: 10.1080/2162402x.2016.1189052] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022] Open
Abstract
Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been implicated in promoting colon cancer; however, the mechanisms behind this effect are poorly understood. We have previously demonstrated that deficiency of CCR6 is associated with decreased tumor macrophage accumulation in a model of sporadic intestinal tumorigenesis. In this study, we aimed to determine the role of stromal CCR6 expression in a murine syngeneic transplantable colon cancer model. We show that deficiency of host CCR6 is associated with decreased growth of syngeneic CCR6-expressing colon cancers. Colon cancers adoptively transplanted into CCR6-deficient mice have decreased tumor-associated macrophages without alterations in the number of monocytes in blood or bone marrow. CCL20, the unique ligand for CCR6, promotes migration of monocytes in vitro and promotes accumulation of macrophages in vivo. Depletion of tumor-associated macrophages decreases the growth of tumors in the transplantable tumor model. Macrophages infiltrating the colon cancers in this model secrete the inflammatory mediators CCL2, IL-1α, IL-6 and TNFα. Ccl2, Il1α and Il6 are consequently downregulated in tumors from CCR6-deficient mice. CCL2, IL-1α and IL-6 also promote proliferation of colon cancer cells, linking the decreased macrophage migration into tumors mediated by CCL20-CCR6 interactions to the delay in tumor growth in CCR6-deficient hosts. The relevance of these findings in human colon cancer is demonstrated through correlation of CCR6 expression with that of the macrophage marker CD163 as well as that of CCL2, IL1α and TNFα. Our findings support the exploration of targeting the CCL20-CCR6 pathway for the treatment of colon cancer.
Collapse
Affiliation(s)
- Bisweswar Nandi
- Research Service, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mia Shapiro
- Research Service, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mehmet K Samur
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christine Pai
- Research Service, VA Boston Healthcare System , West Roxbury, MA, USA
| | - Natasha Y Frank
- Harvard Medical School, Boston, MA, USA; Medicine Service, VA Boston Healthcare System, West Roxbury, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Charles Yoon
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Rao H Prabhala
- Research Service, VA Boston Healthcare System, West Roxbury, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nikhil C Munshi
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Medicine Service, VA Boston Healthcare System, West Roxbury, MA, USA
| | - Jason S Gold
- Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA; Surgery Service, VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
37
|
Gremonprez F, Willaert W, Ceelen W. Animal models of colorectal peritoneal metastasis. Pleura Peritoneum 2016; 1:23-43. [PMID: 30911606 DOI: 10.1515/pp-2016-0006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer remains an important cause of mortality worldwide. The presence of peritoneal carcinomatosis (PC) causes significant symptoms and is notoriously difficult to treat. Therefore, informative preclinical research into the mechanisms and possible novel treatment options of colorectal PC is essential in order to improve the prognostic outlook in these patients. Several syngeneic and xenograft animal models of colorectal PC were established, studying a wide range of experimental procedures and substances. Regrettably, more sophisticated models such as those giving rise to spontaneous PC or involving genetically engineered mice are lacking. Here, we provide an overview of all reported colorectal PC animal models and briefly discuss their use, strengths, and limitations.
Collapse
Affiliation(s)
- Félix Gremonprez
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Wouter Willaert
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Wim Ceelen
- Department of Gastrointestinal Surgery, Ghent University Hospital, 2K12 IC UZ Gent De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|