1
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 PMCID: PMC11569378 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
2
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Mobinikhaledi M, Faridzadeh A, Farkhondeh T, Pourhanifeh MH, Samarghandian S. The Roles of Autophagy-related miRNAs in Gynecologic Tumors: A Review of Current Knowledge for Possible Targeted Therapy. Curr Mol Med 2024; 24:1269-1281. [PMID: 39300715 DOI: 10.2174/0115665240263059231002093454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are the leading cause of malignancy-related death and disability in the world. These cancers are diagnosed at end stages, and unfortunately, the standard therapeutic strategies available for the treatment of affected women [including chemotherapy, radiotherapy and surgery] are not safe and effective enough. Moreover, the unwanted side-effects lowering the patients' life quality is another problem for these therapies. Therefore, researchers should search for better alternative/complementary treatments. The involvement of autophagy in the pathogenesis of various cancers has been demonstrated. Recently, a novel crosstalk between microRNAs, small non-coding RNAs with important regulatory functions, and autophagy machinery has been highlighted. In this review, we indicate the importance of this interaction for targeted therapy in the treatment of cancers including gynecological cancers, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Mahya Mobinikhaledi
- Department of Pediatrics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Molodtsova D, Guryev DV, Osipov AN. Composition of Conditioned Media from Radioresistant and Chemoresistant Cancer Cells Reveals miRNA and Other Secretory Factors Implicated in the Development of Resistance. Int J Mol Sci 2023; 24:16498. [PMID: 38003688 PMCID: PMC10671404 DOI: 10.3390/ijms242216498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Resistance to chemo- or radiotherapy is the main obstacle to consistent treatment outcomes in oncology patients. A deeper understanding of the mechanisms driving the development of resistance is required. This review focuses on secretory factors derived from chemo- and radioresistant cancer cells, cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), and cancer stem cells (CSCs) that mediate the development of resistance in unexposed cells. The first line of evidence considers the experiments with conditioned media (CM) from chemo- and radioresistant cells, CAFs, MSCs, and CSCs that elevate resistance upon the ionizing radiation or anti-cancer drug exposure of previously untreated cells. The composition of CM revealed factors such as circular RNAs; interleukins; plasminogen activator inhibitor; and oncosome-shuttled lncRNAs, mRNAs, and miRNAs that aid in cellular communication and transmit signals inducing the chemo- and radioresistance of sensitive cancer cells. Data, demonstrating that radioresistant cancer cells become resistant to anti-neoplastic drug exposure and vice versa, are also discussed. The mechanisms driving the development of cross-resistance between chemotherapy and radiotherapy are highlighted. The secretion of resistance-mediating factors to intercellular fluid and blood brings attention to its diagnostic potential. Highly stable serum miRNA candidates were proposed by several studies as prognostic markers of radioresistance; however, clinical studies are needed to validate their utility. The ability to predict a treatment response with the help of the miRNA resistance status database will help with the selection of an effective therapeutic strategy. The possibility of miRNA-based therapy is currently being investigated with ongoing clinical studies, and such approaches can be used to alleviate resistance in oncology patients.
Collapse
Affiliation(s)
- Daria Molodtsova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
| | - Denis V. Guryev
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
| | - Andreyan N. Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia
| |
Collapse
|
5
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
6
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|
7
|
Sun MX, An HY, Sun YB, Sun YB, Bai B. LncRNA EBLN3P attributes methotrexate resistance in osteosarcoma cells through miR-200a-3p/O-GlcNAc transferase pathway. J Orthop Surg Res 2022; 17:557. [PMID: 36544170 PMCID: PMC9773527 DOI: 10.1186/s13018-022-03449-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Osteosarcoma is highly malignant. The migration, invasion, and chemoresistance contribute to poor prognosis of osteosarcoma. Research reported that endogenous bornavirus-like nucleoprotein 3 pseudogene (EBLN3P) promotes the progression of osteosarcoma. METHODS In this study, the expression of EBLN3P in osteosarcoma tissue with different methotrexate (MTX) treatment responses was measured. Osteosarcoma cell lines with MTX resistance were constructed, and bioinformatic analysis was performed to explore the potential involved targets and pathways. RESULTS Higher EBLN3P was associated with MTX resistance. Downregulation of LncEBLN3P decreased the MTX resistance of osteosarcoma cells by sponging miR-200a-3p, an important microRNA that affects epithelial-mesenchymal transition (EMT). The decreased miR-200a-3p resulted in the upregulation of its target gene O-GlcNAc transferase (OGT), which in turn promoted the EMT process of osteosarcoma cells. Further analysis confirmed that the loss of OGT and over-expression of miR-200a-3p could partly abolish the MTX resistance induced by LncEBLN3P. CONCLUSION LncEBLN3P is upregulated in osteosarcoma and increases the MTX resistance in osteosarcoma cells through downregulating miR-200a-3p, which in turn promoted the EMT process of osteosarcoma cells by increasing the OGT.
Collapse
Affiliation(s)
- Ming-Xia Sun
- The Operation Room, Chengde Central Hospital, Hebei, China
| | - Hai-Yan An
- The Operation Room, Chengde Central Hospital, Hebei, China
| | - Yan-Bin Sun
- Department of Anesthesiology, Chengde Central Hospital, Hebei, China
| | - Yan-bao Sun
- Department of Orthopaedics, Chengde Central Hospital, No. 11 Guangren Street, Shuangqiao District, Chengde, 067000 Hebei China
| | - Bing Bai
- Department of Orthopaedics, Chengde Central Hospital, No. 11 Guangren Street, Shuangqiao District, Chengde, 067000 Hebei China
| |
Collapse
|
8
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
9
|
Jiang M, Qi F, Zhang K, Zhang X, Ma J, Xia S, Chen L, Yu Z, Chen J, Chen D. MARCKSL1-2 reverses docetaxel-resistance of lung adenocarcinoma cells by recruiting SUZ12 to suppress HDAC1 and elevate miR-200b. Mol Cancer 2022; 21:150. [PMID: 35864549 PMCID: PMC9306054 DOI: 10.1186/s12943-022-01605-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are implicated in the development of multiple cancers. In our previous study, we demonstrated that HDAC1/4-mediated silencing of microRNA-200b (miR-200b) enhances docetaxel (DTX)-resistance of human lung adenocarcinoma (LAD) cells. Methods and results Herein, we probed the function of LncRNA MARCKSL1–2 (MARCKSL1-transcript variant 2, NR_052852.1) in DTX resistance of LAD cells. It was found that MARCKSL1–2 expression was markedly reduced in DTX-resistant LAD cells. Through gain- or loss- of function assays, colony formation assay, EdU assay, TUNEL assay, and flow cytometry analysis, we found that MARCKSL1–2 suppressed the growth and DTX resistance of both parental and DTX-resistant LAD cells. Moreover, we found that MARCKSL1–2 functioned in LAD through increasing miR-200b expression and repressing HDAC1. Mechanistically, MARCKSL1–2 recruited the suppressor of zeste 12 (SUZ12) to the promoter of histone deacetylase 1 (HDAC1) to strengthen histone H3 lysine 27 trimethylation (H3K27me3) of HDAC1 promoter, thereby reducing HDAC1 expression. MARCKSL1–2 up-regulated miR-200b by blocking the suppressive effect of HDAC1 on the histone acetylation modification at miR-200b promoter. Furthermore, in vivo analysis using mouse xenograft tumor model supported that overexpression of MARCKSL1–2 attenuated the DTX resistance in LAD tumors. Conclusions We confirmed that MARCKSL1–2 alleviated DTX resistance in LAD cells by abolishing the inhibitory effect of HDAC1 on miR-200b via the recruitment of SUZ12. MARCKSL1–2 could be a promising target to improve the chemotherapy of LAD. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01605-w.
Collapse
Affiliation(s)
- Min Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Feng Qi
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224005, Jiangsu, China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xiaofei Zhang
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Jingjing Ma
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Suhua Xia
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zhengyuan Yu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China.
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| | - Dongqin Chen
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China. .,Department of Medical Oncology, Baoshan Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1058 Huanzhen North Road, Baoshan District, Shanghai, 200444, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42 Baiziting Road, Xuanwu District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
10
|
Jo H, Shim K, Jeoung D. Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. Int J Mol Sci 2022; 23:ijms23115881. [PMID: 35682560 PMCID: PMC9180509 DOI: 10.3390/ijms23115881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that play significant roles in cell proliferation, development, invasion, cancer development, cancer progression, and anti-cancer drug resistance. miRNAs target multiple genes and play diverse roles. miRNAs can bind to the 3′UTR of target genes and inhibit translation or promote the degradation of target genes. miR-200 family miRNAs mostly act as tumor suppressors and are commonly decreased in cancer. The miR-200 family has been reported as a valuable diagnostic and prognostic marker. This review discusses the clinical value of the miR-200 family, focusing on the role of the miR-200 family in the development of cancer and anti-cancer drug resistance. This review also provides an overview of the factors that regulate the expression of the miR-200 family, targets of miR-200 family miRNAs, and the mechanism of anti-cancer drug resistance regulated by the miR-200 family.
Collapse
|
11
|
Zitkute V, Kukcinaviciute E, Jonusiene V, Starkuviene V, Sasnauskiene A. Differential effects of 5‐fluorouracil and oxaliplatin on autophagy in chemoresistant colorectal cancer cells. J Cell Biochem 2022; 123:1103-1115. [DOI: 10.1002/jcb.30267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Egle Kukcinaviciute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Violeta Jonusiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Vytaute Starkuviene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
- BioQuant Heidelberg University Heidelberg Germany
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| |
Collapse
|
12
|
Shahverdi M, Hajiasgharzadeh K, Sorkhabi AD, Jafarlou M, Shojaee M, Jalili Tabrizi N, Alizadeh N, Santarpia M, Brunetti O, Safarpour H, Silvestris N, Baradaran B. The regulatory role of autophagy-related miRNAs in lung cancer drug resistance. Biomed Pharmacother 2022; 148:112735. [DOI: 10.1016/j.biopha.2022.112735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
|
13
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Ma Q, Long S, Gan Z, Tettamanti G, Li K, Tian L. Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells 2022; 11:cells11030441. [PMID: 35159248 PMCID: PMC8833990 DOI: 10.3390/cells11030441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a widely conserved process in eukaryotes that is involved in a series of physiological and pathological events, including development, immunity, neurodegenerative disease, and tumorigenesis. It is regulated by nutrient deprivation, energy stress, and other unfavorable conditions through multiple pathways. In general, autophagy is synergistically governed at the RNA and protein levels. The upstream transcription factors trigger or inhibit the expression of autophagy- or lysosome-related genes to facilitate or reduce autophagy. Moreover, a significant number of non-coding RNAs (microRNA, circRNA, and lncRNA) are reported to participate in autophagy regulation. Finally, post-transcriptional modifications, such as RNA methylation, play a key role in controlling autophagy occurrence. In this review, we summarize the progress on autophagy research regarding transcriptional regulation, which will provide the foundations and directions for future studies on this self-eating process.
Collapse
Affiliation(s)
- Qiuqin Ma
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Zhending Gan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80138 Napoli, Italy
| | - Kang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Correspondence: (K.L.); (L.T.)
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (K.L.); (L.T.)
| |
Collapse
|
15
|
Nuclear factor I-C disrupts cellular homeostasis between autophagy and apoptosis via miR-200b-Ambra1 in neural tube defects. Cell Death Dis 2021; 13:17. [PMID: 34930914 PMCID: PMC8688449 DOI: 10.1038/s41419-021-04473-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Impaired autophagy and excessive apoptosis disrupt cellular homeostasis and contribute to neural tube defects (NTDs), which are a group of fatal and disabling birth defects caused by the failure of neural tube closure during early embryonic development. However, the regulatory mechanisms underlying NTDs and outcomes remain elusive. Here, we report the role of the transcription factor nuclear factor I-C (NFIC) in maintaining cellular homeostasis in NTDs. We demonstrated that abnormally elevated levels of NFIC in a mouse model of NTDs can interact with the miR-200b promoter, leading to the activation of the transcription of miR-200b, which plays a critical role in NTD formation, as reported in our previous study. Furthermore, miR-200b represses autophagy and triggers apoptosis by directly targeting the autophagy-related gene Ambra1 (Autophagy/Beclin1 regulator 1). Notably, miR-200b inhibitors mitigate the unexpected effects of NFIC on autophagy and apoptosis. Collectively, these results indicate that the NFIC-miR-200b-Ambra1 axis, which integrates transcription- and epigenome-regulated miRNAs and an autophagy regulator, disrupts cellular homeostasis during the closure of the neural tube, and may provide new insight into NTD pathogenesis.
Collapse
|
16
|
Mondal P, Meeran SM. microRNAs in cancer chemoresistance: The sword and the shield. Noncoding RNA Res 2021; 6:200-210. [PMID: 34977437 PMCID: PMC8669341 DOI: 10.1016/j.ncrna.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial disease and one of the leading causes of mortality worldwide. Cancer cells develop multiple strategies to reduce drug sensitivity and eventually lead to chemoresistance. Chemoresistance is initiated either by intrinsic factors or due to the prolonged use of chemotherapeutics as acquired resistance. Further, chemoresistance is also one of the major reasons behind tumor recurrence and metastasis. Therefore, overcoming chemoresistance is one of the primary challenges in cancer therapy. Several mechanisms are involved in chemoresistance. Among them, the key role of ABC transporters and tumor microenvironment have been well studied. Recently, microRNAs (miRNAs) regulation in tumor development, metastasis, and chemotherapy has got wider interest due to its role in regulating genes involved in cancer progression and therapy. Noncoding RNAs, including miRNAs, have been associated with the regulation of tumor-suppressor and tumor-promoter genes. Further, miRNA can also be used as a reliable diagnostic and prognostic marker to predict the stage and types of cancer. Recent evidences have revealed that miRNAs regulation also influences the function of drug transporters and the tumor microenvironment, which affects chemosensitivity to cancer cells. Therefore, miRNAs can be a promising target to reverse back chemosensitivity in cancer cells. This review comprehensively discusses the mechanisms involved in cancer chemoresistance and its regulation by miRNAs.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
Wu G, Xu Y, Zhang H, Ruan Z, Zhang P, Wang Z, Gao H, Che X, Xia Q, Chen F. A new prognostic risk model based on autophagy-related genes in kidney renal clear cell carcinoma. Bioengineered 2021; 12:7805-7819. [PMID: 34636718 PMCID: PMC8806698 DOI: 10.1080/21655979.2021.1976050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore the potential role of autophagy-related genes in kidney renal clear cell carcinoma (KIRC) and develop a new prognostic-related risk model. In our research, we used multiple bioinformatics methods to perform a pan-cancer analysis of the CNV, SNV, mRNA expression, and overall survival of autophagy-related genes, and displayed the results in the form of heat maps. We then performed cluster analysis and LASSO regression analysis on these autophagy-related genes in KIRC. In the cluster analysis, we successfully divided patients with KIRC into five clusters and found that there was a clear correlation between the classification and two clinicopathological features: tumor, and stage. In LASSO regression analysis, we used 13 genes to create a new prognostic-related risk model in KIRC. The model showed that the survival rate of patients with KIRC in the high-risk group was significantly lower than that in the low-risk group, and that there was a correlation between this grouping and the patients’ metastasis, tumor, stage, grade, and fustat. The results of the ROC curve suggested that this model has good prediction accuracy. The results of multivariate Cox analysis show that the risk score of this model can be used as an independent risk factor for patients with KIRC. In summary, we believe that this research provides valuable data supporting future clinical treatment and scientific research.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayu Zhang
- Department of Plastic and Reconstructive Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zihao Ruan
- Department of Nursing, Zhengzhou University, Zhengzhou, China
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Han Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Górecki I, Rak B. The role of microRNAs in epithelial to mesenchymal transition and cancers; focusing on mir-200 family. Cancer Treat Res Commun 2021; 28:100385. [PMID: 34023767 DOI: 10.1016/j.ctarc.2021.100385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a process associated with cancer malignancy and metastases. Cells undergoing EMT lose their epithelial phenotype and acquire mesenchymal phenotype. This process is accompanied by several molecular changes such as decrease of E-cadherin and increase of N-cadherin which is called the "cadherin swich". MicroRNAs (miRNAs, miRs) are small non-coding RNAs having ability to regulate genes post-transcriptionally. Nowadays they are believed to take part in multiple physiological and pathological processes including cancer development. Comparison between TargetScan7 (www.targetscan.org) results for miR-200b and metanalysis of genes involved in EMT showed that miR-200b has a potential binding site in 60 genes that are involved in EMT (the majority of them were associated with mesenchymal phenotype). Our review summarizes literature findings contributing to experimentally proven interactions between miR-200b and genes involved in EMT process including cell receptors, signaling pathways, cell cycle or cell adhesion. The results of those interactions indicate that miR-200b may have an inhibitory impact on EMT or even in selected cases is able to restore epithelial phenotype.
Collapse
Affiliation(s)
- Ignacy Górecki
- Department of Histology and Embryology, Medical University of Warsaw, Street Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Beata Rak
- Department of Histology and Embryology, Medical University of Warsaw, Street Chałubińskiego 5, 02-004, Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Street Nielubowicza 5, 02-091, Warsaw, Poland; Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Street Banacha 1A, 02-097, Warsaw, Poland.
| |
Collapse
|
19
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
20
|
Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020; 83:269-282. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol 2020; 36:517-536. [PMID: 32875398 DOI: 10.1007/s10565-020-09553-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a complex phenomenon responsible for failure in response to chemotherapy agents and more than 90% of deaths in cancer patients. MicroRNAs (miRNAs), as a subgroup of non-coding RNAs with lengths between 21 and 25 nucleotides, are involved in various cancer processes like chemoresistance via interacting with their target mRNAs and suppressing their expression. Autophagy is a greatly conserved procedure involving the lysosomal degradation of cytoplasmic contents and organelles to deal with environmental stresses like hypoxia and starvation. Autophagy contributes to response to chemotherapy agents: autophagy can act as a protective mechanism for mediating the resistance in response to chemotherapy or can induce autophagic cell death and mediate the sensitivity to chemotherapy. On the other hand, one of the processes targeted by microRNAs in the regulation of chemoresistance is autophagy. Hence, we studied the literatures on chemoresistance mechanisms, the miRNAs' role in cancer, and the miRNAs' role in chemoresistance by modulating autophagy. Graphical Abstract.
Collapse
|
22
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
Wang H, Chen J, Zhang S, Zheng X, Xie S, Mao J, Cai Y, Lu X, Hu L, Shen J, Chai K, Chen W. MiR-223 regulates autophagy associated with cisplatin resistance by targeting FBXW7 in human non-small cell lung cancer. Cancer Cell Int 2020; 20:258. [PMID: 32577098 PMCID: PMC7304223 DOI: 10.1186/s12935-020-01284-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cisplatin is widely used as a first-line treatment for non-small cell lung cancer (NSCLC), but chemoresistance remains a major clinical obstacle for efficient use. As a microRNA, miR-223 was reported to promote the doxorubicin resistance of NSCLC. However, whether miR-223 is also involved in cisplatin resistance of NSCLC and the mechanism miR-223 involved in drug resistance is unclear. Accumulated evidence has shown that abnormal autophagy is associated with tumor chemoresistance. The study aimed to study the role of miR-223 on cisplatin sensitivity in NSCLC and uncover the potential mechanisms. Methods NSCLC cells transfected with mimic or inhibitor for miR-223 was assayed for chemoresistance in vitro. MiR-223 expression was assessed by quantitative real-time PCR (qRT-PCR). Western blot were used to study the expression level of F-box/WD repeat-containing protein 7 (FBXW7) and autophagy-related protein. The effect of miR-223 on cisplatin sensitivity was examined by using CCK-8, EdU assays and Autophagic flux assay. Luciferase assays, EdU assays and small interfering RNA were performed to identify the targets of miR-223 and the mechanism by which it promotes treatment resistance. Xenograft models were established to investigate the effect of mir-223 on cisplatin sensitivity. Results In the present study, we found that the level of miR-223 was significantly positively correlated with cisplatin resistance. MiR-223 overexpression made NSCLC cells resistant to cisplatin treatment. We further found that autophagy mediated miR-223-mediated cisplatin resistance in NSCLC cells. Further mechanistic research demonstrated that miR-223 directly targeted FBXW7. The overexpression of miR-223 could inhibit the level of FBXW7 protein expression, thus promoting autophagy and making NSCLC cells resistant to cisplatin. Finally, we confirmed the increased effect of cisplatin sensitivity by miR-223 Antagomir in xenograft models of NSCLC. Conclusions Our results demonstrate that miR-223 could enhance autophagy by targeting FBXW7 in NSCLC cells. Inhibition of autophagy by miR-223 knockdown provides a novel treatment strategy to alleviate cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053 Zhejiang China
| | - Jiabin Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Xuemei Lu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Liqiang Hu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Jian Shen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Kequn Chai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| |
Collapse
|
25
|
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18:88. [PMID: 32517694 PMCID: PMC7285723 DOI: 10.1186/s12964-020-00587-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract
Collapse
Affiliation(s)
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehsadat Hosseini
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
Pulakat L, Chen HH. Pro-Senescence and Anti-Senescence Mechanisms of Cardiovascular Aging: Cardiac MicroRNA Regulation of Longevity Drug-Induced Autophagy. Front Pharmacol 2020; 11:774. [PMID: 32528294 PMCID: PMC7264109 DOI: 10.3389/fphar.2020.00774] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronological aging as well as biological aging accelerated by various pathologies such as diabetes and obesity contribute to cardiovascular aging, and structural and functional tissue damage of the heart and vasculature. Cardiovascular aging in humans is characterized by structural pathologic remodeling including cardiac and vascular fibrosis, hypertrophy, stiffness, micro- and macro-circulatory impairment, left ventricular diastolic dysfunction precipitating heart failure with either reduced or preserved ejection fraction, and cardiovascular cell death. Cellular senescence, an important hallmark of aging, is a critical factor that impairs repair and regeneration of damaged cells in cardiovascular tissues whereas autophagy, an intracellular catabolic process is an essential inherent mechanism that removes senescent cells throughout life time in all tissues. Several recent reviews have highlighted the fact that all longevity treatment paradigms to mitigate progression of aging-related pathologies converge in induction of autophagy, activation of AMP kinase (AMPK) and Sirtuin pathway, and inhibition of mechanistic target of rapamycin (mTOR). These longevity treatments include health style changes such as caloric restriction, and drug treatments using rapamycin, the first FDA-approved longevity drug, as well as other experimental longevity drugs such as metformin, rapamycin, aspirin, and resveratrol. However, in the heart tissue, autophagy induction has to be tightly regulated since evidence show excessive autophagy results in cardiomyopathy and heart failure. Here we discuss emerging evidence for microRNA-mediated tight regulation of autophagy in the heart in response to treatment with rapamycin, and novel approaches to monitor autophagy progression in a temporal manner to diagnose and regulate autophagy induction by longevity treatments.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Howard H Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
27
|
Ma J, Weng L, Jia Y, Liu B, Wu S, Xue L, Yin X, Mao A, Wang Z, Shang M. PTBP3 promotes malignancy and hypoxia-induced chemoresistance in pancreatic cancer cells by ATG12 up-regulation. J Cell Mol Med 2020; 24:2917-2930. [PMID: 31989778 PMCID: PMC7077536 DOI: 10.1111/jcmm.14896] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/17/2019] [Accepted: 11/23/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumours exhibit a high level of heterogeneity which is associated with hypoxia and strong resistance to chemotherapy. The RNA splicing protein polypyrimidine tract-binding protein 3 (PTBP3) regulates hypoxic gene expression by selectively binding to hypoxia-regulated transcripts. We have investigated the role of PTBP3 in tumour development and chemotherapeutic resistance in human PDAC tissues and pancreatic cancer cells. In addition, we determined the sensitivity of cancer cells to gemcitabine with differential levels of PTBP3 and whether autophagy and hypoxia affect gemcitabine resistance in vitro. PTBP3 expression was higher in human pancreatic cancer than in paired adjacent tissues. PTBP3 overexpression promoted PDAC proliferation in vitro and tumour growth in vivo, whereas PTBP3 depletion had opposing effects. Hypoxia significantly increased the expression of PTBP3 in pancreatic cancer cells in vitro. Under hypoxic conditions, cells were more resistance to gemcitabine. Knockdown of PTBP3 results in decreased resistance to gemcitabine, which was attributed to attenuated autophagy. We propose that PTBP3 binds to multiple sites in the 3'-UTR of ATG12 resulting in overexpression. PTBP3 increases cancer cell proliferation and autophagic flux in response to hypoxic stress, which contributes to gemcitabine resistance.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy-Related Protein 12/genetics
- Autophagy-Related Protein 12/metabolism
- Base Sequence
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Polypyrimidine Tract-Binding Protein/metabolism
- Stress, Physiological/drug effects
- Tumor Hypoxia/drug effects
- Tumor Hypoxia/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Gemcitabine
Collapse
Affiliation(s)
- Jun Ma
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Weng
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiping Jia
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingyan Liu
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shaoqiu Wu
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei Xue
- Shanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Xiang Yin
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Aiwu Mao
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmin Wang
- Department of interventional radiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingyi Shang
- Department of Interventional RadiologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
28
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
29
|
Mondal P, Natesh J, Kamal MA, Meeran SM. Non-coding RNAs in Lung Cancer Chemoresistance. Curr Drug Metab 2020; 20:1023-1032. [DOI: 10.2174/1389200221666200106105201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Background:
Lung cancer is the leading cause of cancer-associated death worldwide with limited
treatment options. The major available treatment options are surgery, radiotherapy, chemotherapy and combinations
of these treatments. In chemotherapy, tyrosine kinase inhibitors and taxol are the first lines of chemotherapeutics
used for the treatment of lung cancer. Often drug resistance in the clinical settings hinders the efficiency of the
treatment and intrigues the tumor relapse. Drug-resistance is triggered either by intrinsic factors or due to the
prolonged cycles of chemotherapy as an acquired-resistance. There is an emerging role of non-coding RNAs
(ncRNAs), including notorious microRNAs (miRNAs), proposed to be actively involved in the regulations of various
tumor-suppressor genes and oncogenes.
Result:
The altered gene expression by miRNA is largely mediated either by the degradation or by interfering with
the translation of targeted mRNA. Unlike miRNA, other type of ncRNAs, such as long non-coding RNAs
(lncRNAs), can target the transcriptional activator or the repressor, RNA polymerase, and even DNA-duplex to
regulate the gene expressions. Many studies have confirmed the crucial role of ncRNAs in lung adenocarcinoma
progression and importantly, in the acquisition of chemoresistance. Recently, ncRNAs have become early biomarkers
and therapeutic targets for lung cancer.
Conclusion:
Targeting ncRNAs could be an effective approach for the development of novel therapeutics against
lung cancer and to overcome the chemoresistance.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
30
|
Jiang PC, Bu SR. Clinical value of circular RNAs and autophagy-related miRNAs in the diagnosis and treatment of pancreatic cancer. Hepatobiliary Pancreat Dis Int 2019; 18:511-516. [PMID: 31610988 DOI: 10.1016/j.hbpd.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a special group of long-chain and non-coding RNAs characterized by a closed-loop structure without 3' and 5' polarity. In recent years, studies have demonstrated that circRNAs act as microRNA (miRNA) sponges to regulate the function of miRNAs. Increasing evidence indicates that circRNAs and targeted miRNAs are involved in the development, progression and metastasis of various cancers and drug resistance. A number of miRNAs are known to be associated with the pathogenesis, development and treatment of pancreatic cancer by regulating the autophagic activity. DATA SOURCES A comprehensive literature search was executed in PubMed and EMBASE using the medical subject headings (MeSH) terms "Pancreatic Neoplasms", "autophagy", "RNA, circular" and "microRNA". We also used text terms such as "diagnosis", "prognosis" and "biomarker" to supplement the results. RESULTS Autophagy-related miRNAs is closely related to pancreatic cancer. On basis of the retrieval results, we summarized the synthesis, features and functions of circRNAs and analyzed the association between autophagy-related miRNAs and pancreatic cancer. CONCLUSIONS circRNAs act as the miRNA sponges and there is an association between miRNAs and autophagy, which provides a new concept to broaden the knowledge about the mechanisms underlying the development, progression and metastasis of pancreatic cancer. Additionally, clinical value of circRNAs and autophagy-related miRNAs in the diagnosis and treatment of pancreatic cancer would be further verified with in-depth researches.
Collapse
Affiliation(s)
- Pei-Cheng Jiang
- Department of Gastroenterology and Hepatology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China
| | - Shu-Rui Bu
- Department of Gastroenterology and Hepatology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
31
|
Xiong R, Sun XX, Wu HR, Xu GW, Wang GX, Sun XH, Xu MQ, Xie MR. Mechanism research of miR-34a regulates Axl in non-small-cell lung cancer with gefitinib-acquired resistance. Thorac Cancer 2019; 11:156-165. [PMID: 31777195 PMCID: PMC6938762 DOI: 10.1111/1759-7714.13258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/15/2023] Open
Abstract
Background To investigate the regulatory mechanism behind miR‐34a‐altered Axl levels in non‐small‐cell lung cancer (NSCLC) with gefitinib‐acquired resistance. Methods The expression of miR‐34a, Axl, Gas6 and related downstream signaling proteins in the EGFR mutant NSCLC cell lines were determined by qRT‐PCR and Western blot; PC9‐Gef‐miR‐34a and HCC827‐Gef‐miR‐34a cells were established by transfecting the parent cells with a miR‐34a overexpressing virus, then the expression of Axl, Gas6 and the downstream channel‐related proteins were also compared in PC9‐Gef‐miR‐34a and HCC827‐Gef‐miR‐34a and drug‐resistant strains. The survival rate of the cells were measured by CCK8 assay. A luciferase reporter detected whether Axl was the target of miR‐34a. Finally, a tumor‐bearing nude mouse model was established to verify the relationship between the expression of miR‐34a, Axl and Gas6 mRNA in vivo. Results The expression levels of Axl mRNA and protein, Gas6 mRNA and protein, and related downstream proteins in PC9‐Gef and HCC827‐Gef cell lines were higher than those in PC9 and HCC827 parental cell lines, while the expression of miR‐34a was lower than it was in the parental cell lines (P < 0.05). The expression of Axl mRNA and protein, Gas6 mRNA and protein, and related downstream signaling proteins in PC9‐Gef and HCC827‐Gef cell lines was higher than the expression in PC9‐Gef‐miR‐34a and HCC827‐Gef‐miR‐34a cells, which overexpressed miR‐34a (P < 0.05). Conclusion The miR‐34a regulation of Axl plays an important role in NSCLC‐acquired gefitinib resistance, and their expression is inversely correlated, which suggests that they can be used as prognostic markers or potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Ran Xiong
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang-Xiang Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Han-Ran Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guang-Wen Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gao-Xiang Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Hui Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mei-Qing Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming-Ran Xie
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Hai B, Ma Y, Pan X, Yong L, Liang C, He G, Yang C, Zhu B, Liu X. Melatonin benefits to the growth of human annulus fibrosus cells through inhibiting miR-106a-5p/ATG7 signaling pathway. Clin Interv Aging 2019; 14:621-630. [PMID: 30992660 PMCID: PMC6445191 DOI: 10.2147/cia.s193765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Disc degeneration (DD) is one of the common diseases worldwide, which deeply influences normal life and leads to excruciating pain. However, an effective treatment for DD is still not identified. METHOD The present study systemically examined the effect of melatonin on annulus fibrosus (AF) cells of patients with DD. RESULTS Melatonin had the effect of promoting proliferation, inducing autophagy, and suppressing apoptosis on AF cells of patients with DD. Moreover, melatonin contributed to the translation and transcription of autophagy-related protein ATG7 and inhibited the function of miR-106a-5p in AF cells. In addition, the results suggested that miR-106a-5p mediated the expression of ATG7 by directly binding to its 3'UTR in AF cells. CONCLUSION This research not only gained a deep insight of melatonin mode of action, but also indicated its potential target signaling pathway in AF cells.
Collapse
Affiliation(s)
- Bao Hai
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Yunlong Ma
- The Center for Pain Medicine, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Lei Yong
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Chen Liang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Guanping He
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Chenlong Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Bin Zhu
- The Center for Pain Medicine, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China,
| |
Collapse
|
34
|
Funamizu N, Lacy CR, Kamada M, Yanaga K, Manome Y. MicroRNA-200b and -301 are associated with gemcitabine response as biomarkers in pancreatic carcinoma cells. Int J Oncol 2019; 54:991-1000. [PMID: 30628651 DOI: 10.3892/ijo.2019.4676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/13/2018] [Indexed: 11/05/2022] Open
Abstract
Chemotherapy resistance (congenital or acquired) is one of the principal challenges for the treatment of pancreatic carcinoma. Recent evidence has demonstrated that epithelial to mesenchymal transition (EMT) is associated with chemoresistance in pancreatic carcinoma cells. However, the molecular mechanism underlying the development of chemoresistance remains unknown, and limited therapeutic options are available. Therefore, to anticipate individual chemosensitivity or acquired chemoresistance for patients with pancreatic carcinoma, predictive biomarkers are urgently required. Extensive evidence suggests that microRNAs (miRNAs) serve a crucial role in regulating EMT. The aim of this study was to examine the potential role of miRNA (miR)‑200b and miR‑301 in predicting the chemo‑responses to treatment for pancreatic carcinoma. The present results demonstrate that miR‑200b expression predicted chemo‑sensitivity and may have potential as a biomarker. In six different pancreatic carcinoma cell lines (Capan‑1, Capan‑2, Panc‑1, MIAPaCa‑2, BxPC‑3 and PL45 cells), the expression of miR‑200b correlated positively with chemosensitivity. Moreover, the enhanced expression of miR‑200b increased chemosensitivity and induced mesenchymal to epithelial transition. Conversely, miR‑301 modulated gemcitabine resistance and induced EMT through the downregulation of cadherin 1 expression. In addition, gemcitabine‑resistant cells (Capan‑2 and Panc‑1) exhibited upregulated miR‑301 expression and downregulated gemcitabine‑induced apoptosis. In summary, these two miRNAs may serve roles as biomarkers in pancreatic carcinoma, miR‑200b expression may predict chemosensitivity, and elevated miR‑301 expression may have potential applications in the prediction of acquired gemcitabine resistance.
Collapse
Affiliation(s)
- Naotake Funamizu
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Curtis Ray Lacy
- Howard University School of Medicine, Washington DC 20059, USA
| | - Minori Kamada
- Department of Molecular Cell Biology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yoshinobu Manome
- Department of Molecular Cell Biology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
35
|
Zhou X, Dai E, Song Q, Ma X, Meng Q, Jiang Y, Jiang W. In silico drug repositioning based on drug-miRNA associations. Brief Bioinform 2019; 21:498-510. [DOI: 10.1093/bib/bbz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Drug repositioning has become a prevailing tactic as this strategy is efficient, economical and low risk for drug discovery. Meanwhile, recent studies have confirmed that small-molecule drugs can modulate the expression of disease-related miRNAs, which indicates that miRNAs are promising therapeutic targets for complex diseases. In this study, we put forward and verified the hypothesis that drugs with similar miRNA profiles may share similar therapeutic properties. Furthermore, a comprehensive drug–drug interaction network was constructed based on curated drug-miRNA associations. Through random network comparison, topological structure analysis and network module extraction, we found that the closely linked drugs in the network tend to treat the same diseases. Additionally, the curated drug–disease relationships (from the CTD) and random walk with restarts algorithm were utilized on the drug–drug interaction network to identify the potential drugs for a given disease. Both internal validation (leave-one-out cross-validation) and external validation (independent drug–disease data set from the ChEMBL) demonstrated the effectiveness of the proposed approach. Finally, by integrating drug-miRNA and miRNA-disease information, we also explain the modes of action of drugs in the view of miRNA regulation. In summary, our work could determine novel and credible drug indications and offer novel insights and valuable perspectives for drug repositioning.
Collapse
Affiliation(s)
- Xu Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Enyu Dai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qian Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Xueyan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Qianqian Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| |
Collapse
|
36
|
MALAT1 lncRNA Induces Autophagy and Protects Brain Microvascular Endothelial Cells Against Oxygen-Glucose Deprivation by Binding to miR-200c-3p and Upregulating SIRT1 Expression. Neuroscience 2018; 397:116-126. [PMID: 30496821 DOI: 10.1016/j.neuroscience.2018.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023]
Abstract
There is growing evidence that long noncoding RNAs (lncRNAs) play important roles in various biological processes. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most highly upregulated lncRNAs in cerebral ischemia. However, the molecular mechanism of MALAT1 during cerebral ischemia is still unclear. This experiment is intended to investigate the role of MALAT1 in cerebral ischemia and its relationship with autophagy. Oxygen-glucose deprivation (OGD) in brain microvascular endothelial cells (BMECs) was used to mimic ischemic-like conditions in vitro. Real-time PCR, MTT, LDH assay and western blot were used to evaluate the levels of MALAT1, miR-200c-3p, SIRT1, cell survival and proteins. We found that the expression of MALAT1 and LC3BII were upregulated and p62 was downregulated by OGD. Inhibition of MALAT1 attenuated the autophagy activation and promoted cell death. We further revealed that MALAT1 downregulated the expression of miR-200c-3p by directly binding to miR-200c-3p. Furthermore, miR-200c-3p inhibited the autophagy and survival in BMECs by binding to 3'UTR of SIRT1, whereas MALAT1 overturned the inhibitory effect of miR-200c-3p. In conclusion, our study illuminated a novel Malat1-miR-200c-3p-SIRT1 pathway in the regulation of autophagy, in which, MALAT1 activates autophagy and promotes cell survival by binding to miR-200c-3p and upregulating SIRT1 expression.
Collapse
|
37
|
Nazeri E, Gouran Savadkoohi M, Majidzadeh-A K, Esmaeili R. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets. Crit Rev Oncol Hematol 2018; 131:102-109. [PMID: 30293700 DOI: 10.1016/j.critrevonc.2018.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Sarcomas are known as a heterogeneous class of cancers arisen in the connective tissues and demonstrated various histological subtypes including both soft tissue and bone origin. Chondrosarcoma is one of the main types of bone sarcoma that shows a considerable deficiency in response to chemotherapy and radiotherapy. While conventional treatment based on surgery, chemo-and radiotherapy are used in this tumor, high rate of death especially among children and adolescents are reported. Due to high resistance to current conventional therapies in chondrosarcoma, there is an urgent requirement to recognize factors causing resistance and discover new strategies for optimal treatment. In the past decade, dysregulation of genes associated with tumor development and therapy resistance has been studied to find potential therapeutic targets to overcome resistance. In this review, clinical aspects of chondrosarcoma are summarized. Moreover, it gives a summary of gene dysregulation, mutation, histone modifications and non-coding RNAs associated with tumor development and therapeutic response modulation. Finally, the probable role of tumor microenvironment in chondrosarcoma drug resistance and targeted therapies as a promising molecular therapeutic approach are summarized.
Collapse
Affiliation(s)
- Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | | | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
38
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
39
|
Pucci P, Rescigno P, Sumanasuriya S, de Bono J, Crea F. Hypoxia and Noncoding RNAs in Taxane Resistance. Trends Pharmacol Sci 2018; 39:695-709. [PMID: 29891252 DOI: 10.1016/j.tips.2018.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Taxanes are chemotherapeutic drugs employed in the clinic to treat a variety of malignancies. Despite their overall efficacy, cancer cells often display resistance to taxanes. Therefore, new strategies to increase the effectiveness of taxane-based chemotherapeutics are urgently needed. Multiple molecular players are linked to taxane resistance; these include efflux pumps, DNA repair mechanisms, and hypoxia-related pathways. In addition, emerging evidence indicates that both non-coding RNAs and epigenetic effectors might also be implicated in taxane resistance. Here we focus on the causes of taxane resistance, with the aim to envisage an integrated model of the 'taxane resistance phenome'. This model could help the development of novel therapeutic strategies to treat taxane-resistant neoplasms.
Collapse
Affiliation(s)
- Perla Pucci
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Pasquale Rescigno
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK; Department of Clinical Medicine, University of Naples 'Federico II', Naples, Italy
| | - Semini Sumanasuriya
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK
| | - Johann de Bono
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK
| | - Francesco Crea
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
40
|
Liao YW, Yu CC, Hsieh PL, Chang YC. miR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB2. J Cell Mol Med 2018; 22:4130-4138. [PMID: 29893466 PMCID: PMC6111815 DOI: 10.1111/jcmm.13690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
Oral submucous fibrosis (OSF) is a progressive scarring disease. MicroRNA-200b (miR-200b) has been reported as a tumour suppressor, but its role in the precancerous OSF remains unknown. In this study, we investigated the impact of miR-200b on myofibroblastic differentiation activity. Arecoline is a major areca nut alkaloid and has been employed to induce the elevated myofibroblast activity in human buccal mucosal fibroblasts (BMFs). Treatment of arecoline in BMFs dose-dependently reduced gene expression of miR-200b, which corresponded with the decreased expression of miR-200b in fBMFs. The arecoline-induced myofibroblast activities were abolished by overexpression of miR-200b in BMFs, and the same results were observed in fBMFs. In addition, α-SMA was inhibited by an increase in miR-200b. We further demonstrated that miR-200b-mediated decrease in ZEB2 led to down-regulation of α-SMA, vimentin. Loss of miR-200b resulted in enhanced collagen contraction and migration capabilities, and knockdown of ZEB2 reversed these phenomena. Lastly, we showed the expression of miR-200b was significantly less and ZEB2 was markedly higher in OSF tissues. These results suggested that down-regulation of miR-200b may contribute to the pathogenesis of areca quid-associated OSF through the regulation of ZEB2 and myofibroblast hallmarks.
Collapse
Affiliation(s)
- Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
41
|
Soni M, Patel Y, Markoutsa E, Jie C, Liu S, Xu P, Chen H. Autophagy, Cell Viability, and Chemoresistance Are Regulated By miR-489 in Breast Cancer. Mol Cancer Res 2018; 16:1348-1360. [PMID: 29784669 DOI: 10.1158/1541-7786.mcr-17-0634] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/13/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
It is postulated that the complexity and heterogeneity in cancer may hinder most efforts that target a single pathway. Thus, discovery of novel therapeutic agents targeting multiple pathways, such as miRNAs, holds promise for future cancer therapy. One such miRNA, miR-489, is downregulated in a majority of breast cancer cells and several drug-resistant breast cancer cell lines, but its role and underlying mechanism for tumor suppression and drug resistance needs further investigation. The current study identifies autophagy as a novel pathway targeted by miR-489 and reports Unc-51 like autophagy activating kinase 1 (ULK1) and lysosomal protein transmembrane 4 beta (LAPTM4B) to be direct targets of miR-489. Furthermore, the data demonstrate autophagy inhibition and LAPTM4B downregulation as a major mechanism responsible for miR-489-mediated doxorubicin sensitization. Finally, miR-489 and LAPTM4B levels were inversely correlated in human tumor clinical specimens, and more importantly, miR-489 expression levels predict overall survival in patients with 8q22 amplification (the region in which LAPTM4B resides).Implications: These findings expand the understanding of miR-489-mediated tumor suppression and chemosensitization in and suggest a strategy for using miR-489 as a therapeutic sensitizer in a defined subgroup of resistant breast cancer patients. Mol Cancer Res; 16(9); 1348-60. ©2018 AACR.
Collapse
Affiliation(s)
- Mithil Soni
- Department of Biological Science, University of South Carolina, Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Yogin Patel
- Department of Biological Science, University of South Carolina, Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Eleni Markoutsa
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Chunfa Jie
- Master of Science in Biomedical Sciences Program, Des Moines University, Des Moines, Iowa
| | - Shou Liu
- Department of Biological Science, University of South Carolina, Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Hexin Chen
- Department of Biological Science, University of South Carolina, Columbia, South Carolina. .,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
42
|
Tan D, Zhou C, Han S, Hou X, Kang S, Zhang Y. MicroRNA-378 enhances migration and invasion in cervical cancer by directly targeting autophagy-related protein 12. Mol Med Rep 2018; 17:6319-6326. [PMID: 29488616 PMCID: PMC5928611 DOI: 10.3892/mmr.2018.8645] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the second most common type of cancer among women worldwide and a leading cause of mortality in women. Metastases reduce the overall survival rate in patients with cervical cancer. Thus, it is clinically urgent to investigate the molecular mechanism of cervical cancer metastasis. The aim of the present study was to investigate the mechanism of microRNA (miR)‑378 in the metastasis of cervical cancer. In the present study, miR‑378 expression levels were significantly upregulated in cervical cancer tissues and cervical intraepithelial neoplasia III tissues when compared with normal cervix tissues. Re‑expression of miR‑378 significantly promoted tumor migration and invasion in vitro, and metastasis in vivo, while downregulation of miR‑378 suppressed the effect in vitro. Luciferase reporter assay revealed that autophagy‑related protein 12 (ATG12) was a direct target of miR‑378 and its expression was downregulated by miR‑378. In cervical cancer tissues with lymph node metastasis, miR‑378 was upregulated while ATG12 was downregulated when compared with lymph node negative cases. To the best of our knowledge, the present study is the first to provide evidence that miR‑378 may be associated with ATG12. Collectively, the data of the present study suggested that miR‑378 may function as an oncogene by promoting metastasis in cervical cancer. The finding that miR‑378 targets ATG12 indicated that miR‑378 may have a potential role in autophagy. These findings may provide novel insights into the mechanism of metastasis in cervical cancer and a novel therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Dongmei Tan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Obstetrics and Gynecology, Laiwu Maternal and Child Health Care Hospital, Laiwu, Shandong 271100, P.R. China
| | - Chao Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuetao Hou
- Department of Obstetrics and Gynecology, Laiwu Maternal and Child Health Care Hospital, Laiwu, Shandong 271100, P.R. China
| | - Shufang Kang
- Department of Obstetrics and Gynecology, Laiwu Maternal and Child Health Care Hospital, Laiwu, Shandong 271100, P.R. China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
43
|
Matuszcak C, Lindner K, Eichelmann AK, Hussey DJ, Haier J, Hummel R. microRNAs: Key regulators of chemotherapy response and metastatic potential via complex control of target pathways in esophageal adenocarcinoma. Surg Oncol 2018; 27:392-401. [PMID: 30217293 DOI: 10.1016/j.suronc.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Incidence of esophageal adenocarcinoma (EAC) increased significantly over the last decades. Lack of response to chemotherapy is a major problem in the treatment of this disease. This study aims to assess the biological relevance of characteristic microRNA profiles of chemotherapy resistant EAC cells with regards to response to chemotherapy and biological behavior. METHODS We selected 3 microRNAs from characteristic microRNA profiles of resistant EAC (miR-27b-3p, miR-200b-3p, and miR-148a-3p). Expression of microRNAs was modified in 6 EAC cell lines. Effects on chemotherapy, adhesion, migration, apoptosis and cell cycle were assessed using standard assays. Target analyses were performed using Western Blot and Luciferase techniques. RESULTS MiR-27b-3p significantly sensitized cells to 5FU and Cisplatin in 83% respectively in 33% of cell lines, miR-148a-3p in 67% respectively 33% of cases. MiR-200b-3p increased sensitivity only towards 5FU in 50% of cases. Co-transfections with miR-27b-3p/miR-148a-3p showed an additive effect on response to chemotherapy in 50% of cases. Upregulation of miR-148a-3p reduced protein expression levels of DNMT-1, MSK-1, Bcl-2 and Bim, and miR-27b upregulation led to downregulation of Sp1 and PPARy proteins implicating a potential negative post-transcriptional control via the respective microRNAs. Finally, we were able to confirm Bcl-2 for the first time as direct target of miR-148a-3p in EAC. CONCLUSION This study demonstrates that specific microRNA profiles of chemotherapy resistant EAC in fact determine their response to chemotherapy and biological behavior. Our data further show that microRNA-mediated regulation of chemotherapy resistance is complex, and several microRNAs seem to "co-operate" at various steps within a broad number of pathways what fits very well to our recently proposed understanding of microRNA-mediated regulation as function of cellular functional complexes. These data highlight the promising potential of microRNAs to predict or monitor treatment response to chemotherapy in EAC, and to potentially modulate tumor biology in a therapeutic approach.
Collapse
Affiliation(s)
- Christiane Matuszcak
- University Cancer Centre Hamburg (UCCH), University Hospital of Hamburg-Eppendorf, Martinistr. 52 (O24), 20246 Hamburg, Germany.
| | - Kirsten Lindner
- Department of Surgery, University of Schleswig-Holstein, Lübeck, Germany.
| | - Ann-Kathrin Eichelmann
- Department of General and Visceral Surgery, University Hospital of Münster, Waldeyerstrasse 1, 48149 Münster, Germany.
| | - Damian J Hussey
- Department of Surgery, Flinders Medical Centre, Flinders University Adelaide, Flinders Drive, Bedford Park 5042 SA, Australia.
| | - Jörg Haier
- The Nordakademie, Van-der-Smissen Str. 9, 22767 Hamburg, Germany.
| | - Richard Hummel
- Department of Surgery, University of Schleswig-Holstein, Lübeck, Germany.
| |
Collapse
|
44
|
Ning ZQ, Lu HL, Chen C, Wang L, Cai W, Li Y, Cao TH, Zhu J, Shu YQ, Shen H. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2018; 8:4572-4581. [PMID: 27992364 PMCID: PMC5354855 DOI: 10.18632/oncotarget.13944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in variousbiological processes,including malignancy. Here, we demonstrated that miR-30e levels were markedly reduced in human lung carcinoma specimens in comparisonwith adjacent normal tissues. In addition, miR-30eamounts were starkly lower in the resistant PC9/gefitinib (PC9G) cancer cells compared with PC9 cells. Meanwhile, miR-30eoverexpression inPC9G cells resulted in reduced cell proliferation and migration,reversing drug resistance to gefitinib.Conversely,miR-30e silencing in PC9 cells increased proliferation as well as migration, and conferred resistance to gefitinib.Moreover, HOXA1, which was identified asa new miR-30etarget, plays important roles in regulating cell fate, early developmental patterns and organogenesis.Importantly, miR-30ealso inhibited PC9G growth in vivo. Taken together, these findings demonstrated that miR-30eshould be considered a tumor suppressor miRNA, which could be used in treatinghuman lung cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Ning
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Hai-Lin Lu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Chao Chen
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Lin Wang
- Institute of Medcine, University of Zhengzhou, Henan Province, 450000, China
| | - Wei Cai
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yan Li
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Ting-Hua Cao
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Jing Zhu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
45
|
Wen J, Liu H, Wang L, Wang X, Gu N, Liu Z, Xu T, Gomez DR, Komaki R, Liao Z, Wei Q. Potentially Functional Variants of ATG16L2 Predict Radiation Pneumonitis and Outcomes in Patients with Non-Small Cell Lung Cancer after Definitive Radiotherapy. J Thorac Oncol 2018; 13:660-675. [PMID: 29454863 DOI: 10.1016/j.jtho.2018.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Autophagy not only plays an important role in the progression of cancer but is also involved in tissue inflammatory response. However, few published studies have investigated associations between functional genetic variants of autophagy-related genes and radiation pneumonitis (RP) as well as clinical outcomes in patients with NSCLC after definitive radiotherapy. METHODS We genotyped nine potentially functional single-nucleotide polymorphisms (SNPs) in four autophagy-related genes (autophagy related 2B gene [ATG2B], autophagy related 10 gene [ATG10], autophagy related 12 gene [ATG12], and autophagy related 16 like 2 gene [ATG16L2]) in 393 North American patients with NSCLC treated by definitive radiotherapy and assessed their associations with RP, local recurrence-free survival (LRFS), progression-free survival (PFS), and overall survival (OS) in multivariable Cox proportional hazard regression analyses. RESULTS We found that patients with the ATG16L2 rs10898880 CC variant genotype had a better LRFS, PFS, and OS (adjusted hazard ratio = 0.59, 0.64, and 0.64; 95% confidence interval: 0.45-0.79, 0.48-0.84, and 0.48-0.86; p = 0.0004, 0.002, and 0.003, respectively), but a greater risk for development of severe RP (adjusted hazard ratio = 1.80, 95% confidence interval: 1.04-3.12, p = 0.037) than did patients with AA/AC genotypes. Further functional analyses suggested that the ATG16L2 rs10898880 C variant allele modulated expression of the ATG16L2 gene. CONCLUSION This is the first report that one potentially functional SNP rs10898880 in ATG16L2 may be a predictor of RP, LRFS, PFS, and OS in patients with NSCLC after definitive radiotherapy. Additional larger, prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Juyi Wen
- Department of Radiation Oncology, Navy General Hospital, Beijing, People's Republic of China; Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Lili Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Xiaomeng Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Ning Gu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Ting Xu
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
46
|
Gao Y, Chen L, Song H, Chen Y, Wang R, Feng B. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells. Oncotarget 2018; 7:27613-26. [PMID: 27027446 PMCID: PMC5053675 DOI: 10.18632/oncotarget.8376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3'-untranslated region (3'-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis.
Collapse
Affiliation(s)
- Yanping Gao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| |
Collapse
|
47
|
MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma. Cancer Cell Int 2018; 18:5. [PMID: 29311760 PMCID: PMC5755308 DOI: 10.1186/s12935-017-0499-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Neuroblastoma (NB) is the most common malignant tumor originating from the extracranial sympathetic nervous system in children. The molecular mechanisms underlying this disease are complex, and not completely understood. Methods Quantitative real-time PCR (qRT-PCR) was applied to quantify the expression of miR-20a-5p and its target gene ATG7 in clinical NB tissues. The biological function of miR-20a-5p and ATG7 in SH-SY5Y cells was investigated through in vitro studies (Real-Time cell kinetic analyzer, colony formation assay, caspase-Glo 3/7 assay and western blotting). The luciferase reporter assay was conducted to verify the biological relationship between miR-20a-5p and ATG7. Results Here we found that miR-20a-5p expression was significantly downregulated whereas its target autophagy-related gene 7 (ATG7) was increased along with clinical staging of NB progression. Correlation analysis showed that miR-20a-5p had a negative correlation trend with ATG7. In SH-SY5Y cells, forced expression of miR-20a-5p suppressed ATG7 expression, autophagy initiation and cellular proliferation while promoted apoptosis, suggesting a potential association between miR-20a-5p and ATG7. Further bioinformatic target prediction combined with protein expression and luciferase reporter assay verified that miR-20a-5p inhibited ATG7 by directly binding to its 3′-UTR, confirming the involvement of miR-20a-5p in the regulation of ATG7 in NB. Conclusions These results clarified that miR-20a-5p inhibited cell proliferation and promoted apoptosis through negative regulation of ATG7 and thus autophagy suppression in SH-SY5Y cells. Therefore, defining the context-specific roles of autophagy in NB and regulatory mechanisms involved will be critical for developing autophagy-targeted therapeutics against NB. Both miR-20a-5p and ATG7 would be potential therapeutic targets for future NB treatment.
Collapse
|
48
|
Current updates on microRNAs as regulators of chemoresistance. Biomed Pharmacother 2017; 95:1000-1012. [DOI: 10.1016/j.biopha.2017.08.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022] Open
|
49
|
Zheng HC. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017; 8:59950-59964. [PMID: 28938696 PMCID: PMC5601792 DOI: 10.18632/oncotarget.19048] [Citation(s) in RCA: 441] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/24/2017] [Indexed: 12/11/2022] Open
Abstract
Overcoming intrinsic and acquired drug resistance is a major challenge in treating cancer patients because chemoresistance causes recurrence, cancer dissemination and death. This review summarizes numerous molecular aspects of multi-resistance, including transporter pumps, oncogenes (EGFR, PI3K/Akt, Erk and NF-κB), tumor suppressor gene (p53), mitochondrial alteration, DNA repair, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, and exosome. The chemoresistance-related proteins are localized to extracellular ligand, membrane receptor, cytosolic signal messenger, and nuclear transcription factors for various events, including proliferation, apoptosis, EMT, autophagy and exosome. Their cross-talk frequently appears, such as the regulatory effects of EGFR-Akt-NF-κB signal pathway on the transcription of Bcl-2, Bcl-xL and survivin or EMT-related stemness. It is essential for the realization of the target, individualized and combine therapy to clarify these molecular mechanisms, explore the therapy target, screen chemosensitive population, and determine the efficacy of chemoreagents by cell culture and orthotopic model.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
50
|
Abstract
Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| |
Collapse
|