1
|
de Winne C, Pascual FL, Lopez-Vicchi F, Etcheverry-Boneo L, Mendez-Garcia LF, Ornstein AM, Lacau-Mengido IM, Sorianello E, Becu-Villalobos D. Neuroendocrine control of brown adipocyte function by prolactin and growth hormone. J Neuroendocrinol 2024; 36:e13248. [PMID: 36932836 DOI: 10.1111/jne.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 03/06/2023]
Abstract
Growth hormone (GH) is fundamental for growth and glucose homeostasis, and prolactin for optimal pregnancy and lactation outcome, but additionally, both hormones have multiple functions that include a strong impact on energetic metabolism. In this respect, prolactin and GH receptors have been found in brown, and white adipocytes, as well as in hypothalamic centers regulating thermogenesis. This review describes the neuroendocrine control of the function and plasticity of brown and beige adipocytes, with a special focus on prolactin and GH actions. Most evidence points to a negative association between high prolactin levels and the thermogenic capacity of BAT, except in early development. During lactation and pregnancy, prolactin may be a contributing factor that limits unneeded thermogenesis, downregulating BAT UCP1. Furthermore, animal models of high serum prolactin have low BAT UCP1 levels and whitening of the tissue, while lack of Prlr induces beiging in WAT depots. These actions may involve hypothalamic nuclei, particularly the DMN, POA and ARN, brain centers that participate in thermogenesis. Studies on GH regulation of BAT function present some controversies. Most mouse models with GH excess or deficiency point to an inhibitory role of GH on BAT function. Even so, a stimulatory role of GH on WAT beiging has also been described, in accordance with whole-genome microarrays that demonstrate divergent response signatures of BAT and WAT genes to the loss of GH signaling. Understanding the physiology of BAT and WAT beiging may contribute to the ongoing efforts to curtail obesity.
Collapse
Affiliation(s)
- Catalina de Winne
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Florencia L Pascual
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Felicitas Lopez-Vicchi
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luz Etcheverry-Boneo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luis F Mendez-Garcia
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Ana Maria Ornstein
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Isabel Maria Lacau-Mengido
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Young JA, Hinrichs A, Bell S, Geitgey DK, Hume-Rivera D, Bounds A, Soneson M, Laron Z, Yaron-Shaminsky D, Wolf E, List EO, Kopchick JJ, Berryman DE. Growth hormone insensitivity and adipose tissue: tissue morphology and transcriptome analyses in pigs and humans. Pituitary 2023; 26:660-674. [PMID: 37747600 PMCID: PMC10956721 DOI: 10.1007/s11102-023-01355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Growth hormone receptor knockout (GHR-KO) pigs have recently been developed, which serve as a large animal model of Laron syndrome (LS). GHR-KO pigs, like individuals with LS, are obese but lack some comorbidities of obesity. The purpose of this study was to examine the histological and transcriptomic phenotype of adipose tissue (AT) in GHR-KO pigs and humans with LS. METHODS Intraabdominal (IA) and subcutaneous (SubQ) AT was collected from GHR-KO pigs and examined histologically for adipocyte size and collagen content. RNA was isolated and cDNA sequenced, and the results were analyzed to determine differentially expressed genes that were used for enrichment and pathway analysis in pig samples. For comparison, we also performed limited analyses on human AT collected from a single individual with and without LS. RESULTS GHR-KO pigs have increased adipocyte size, while the LS AT had a trend towards an increase. Transcriptome analysis revealed 55 differentially expressed genes present in both depots of pig GHR-KO AT. Many significant terms in the enrichment analysis of the SubQ depot were associated with metabolism, while in the IA depot, IGF and longevity pathways were negatively enriched. In pathway analysis, multiple expected and novel pathways were significantly affected by genotype, i.e. KO vs. controls. When GH related gene expression was analyzed, SOCS3 and CISH showed species-specific changes. CONCLUSION AT of GHR-KO pigs has several similarities to that of humans with LS in terms of adipocyte size and gene expression profile that help describe the depot-specific adipose phenotype of both groups.
Collapse
Affiliation(s)
- Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Stephen Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | | | | | - Addison Bounds
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Maggie Soneson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Danielle Yaron-Shaminsky
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
3
|
Al-Sayegh M, Ali H, Jamal MH, ElGindi M, Chanyong T, Al-Awadi K, Abu-Farha M. Mouse Embryonic Fibroblast Adipogenic Potential: A Comprehensive Transcriptome Analysis. Adipocyte 2021; 10:1-20. [PMID: 33345692 PMCID: PMC7757854 DOI: 10.1080/21623945.2020.1859789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of adipose tissue has progressed from an inert tissue for energy storage to be one of the largest endocrine organs regulating metabolic homoeostasis through its ability to synthesize and release various adipokines that regulate a myriad of pathways. The field of adipose tissue biology is growing due to this association with various chronic metabolic diseases. An important process in the regulation of adipose tissue biology is adipogenesis, which is the formation of new adipocytes. Investigating adipogenesis in vitro is currently a focus for identifying factors that might be utilized in clinically. A powerful tool for such work is high-throughput sequencing which can rapidly identify changes at gene expression level. Various cell models exist for studying adipogenesis and has been used in high-throughput studies, yet little is known about transcriptome profile that underlies adipogenesis in mouse embryonic fibroblasts. This study utilizes RNA-sequencing and computational analysis with DESeq2, gene ontology, protein–protein networks, and robust rank analysis to understand adipogenesis in mouse embryonic fibroblasts in-depth. Our analyses confirmed the requirement of mitotic clonal expansion prior to adipogenesis in this cell model and highlight the role of Cebpa and Cebpb in regulating adipogenesis through interactions of large numbers of genes.
Collapse
Affiliation(s)
- Mohamed Al-Sayegh
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
| | - Mei ElGindi
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Tina Chanyong
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Khulood Al-Awadi
- New York University Abu Dhabi, Design Studio, Abu Dhabi, United Arab Emirates
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| |
Collapse
|
4
|
Schneider A, Victoria B, Schiavon Cousen MI, Fang Y, McFadden S, Darcy J, Gesing A, Hascup ER, Hascup KN, Bartke A, Masternak MM. Growth hormone signaling shapes the impact of environmental temperature on transcriptomic profile of different adipose tissue depots in male mice. J Gerontol A Biol Sci Med Sci 2021; 77:941-946. [PMID: 34614153 PMCID: PMC9071461 DOI: 10.1093/gerona/glab291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Growth hormone receptor knockout (GHRKO) mice are smaller, long living and have an increased metabolic rate compared with normal (N) littermates. However, it is known that thermoneutral conditions (30°-32°C) elicit metabolic adaptations in mice, increasing the metabolic rate. Therefore, we hypothesized that environmental temperature would affect the expression profile of different adipose tissue depots in GHRKO mice. For this, N (n=12) and GHRKO (n=11) male mice were maintained at 23°C or 30°C from weaning until 11 months of age. RNA sequencing from adipose tissue depots (epididymal - eWAT, perirenal - pWAT, subcutaneous - sWAT and brown fat - BAT) was performed. Thermoneutrality increased body weight gain in GHRKO but not N mice. Only a few genes were commonly regulated by temperature in N and GHRKO mice. The BAT was the most responsive to changes in temperature in both N and GHRKO mice. BAT Ucp1 and Ucp3 expression were decreased to a similar extent in both N and GHRKO mice under thermoneutrality. In contrast, eWAT was mostly unresponsive to changes in temperature. The response to thermoneutrality in GHRKO mice was most divergent from N mice in sWAT. Relative weight of sWAT was almost four times greater in GHRKO mice. Very few genes were regulated in N mice sWAT when compared to GHRKO mice. This suggest that this WAT depot has a central role in the adaptation of GHRKO mice to changes in temperature.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Berta Victoria
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL
| | | | - Yimin Fang
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Depts of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel McFadden
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Depts of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Poland
| | - Erin R Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Depts of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Depts of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrzej Bartke
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Depts of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL.,Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
5
|
Liu Y, Masternak MM, Schneider A, Zhi X. Dwarf mice as models for reproductive ageing research. Reprod Biomed Online 2021; 44:5-13. [PMID: 34794884 DOI: 10.1016/j.rbmo.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
Dwarf mice are characterized by extremely long lifespan, delayed ovarian ageing, altered metabolism, lower age-related oxidative damage and cancer incidence rate. Snell dwarf, Ames dwarf and growth hormone receptor knockout mice are three commonly used models. Despite studies focusing on ageing and metabolism, the reproductive features of female dwarf mice have also attracted interest over the last decade. Female Snell and Ames dwarf mice have regular oestrous cycles and ovulation rates, as in normal mice, but with a larger ovarian reserve and delayed ovarian ageing. The primordial follicle reserve in dwarf mice is greater than in normal littermates. Anti-Müllerian hormone (AMH) concentration is seven times higher in Ames dwarf mice than in their normal siblings, and ovarian transcriptomic profiling showed distinctive patterns in older Ames dwarf mice, especially enriched in inflammatory and immune response-related pathways. In addition, microRNA profiles also showed distinctive differences in Ames dwarf mice compared with normal control littermates. This review aims to summarize research progress on dwarf mice as models in the reproductive ageing field. Investigations focusing on the mechanisms of their reserved reproductive ability are much needed and are expected to provide additional molecular biological bases for the clinical practice of reproductive medicine in women.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China.
| |
Collapse
|
6
|
Young JA, Buchman M, Duran-Ortiz S, Kruse C, Bell S, Kopchick JJ, Berryman DE, List EO. Transcriptome profiling of insulin sensitive tissues from GH deficient mice following GH treatment. Pituitary 2021; 24:384-399. [PMID: 33433889 PMCID: PMC8122029 DOI: 10.1007/s11102-020-01118-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Most studies that have examined the transcriptional response to GH have been performed with a single tissue. Thus, the current study performed RNASeq across three insulin-sensitive tissues of GH-treated GH deficient (GHKO) mice. METHODS GHKO mice were injected with recombinant human GH (hGH) or vehicle daily for 5 days and adipose, liver, and muscle tissues were collected 4 h after the final injection. RNA was isolated from the tissues and sequenced. Genes that were differentially expressed between GH and vehicle treatments were further analyzed. Enrichment analysis and topology-aware pathway analysis were performed. RESULTS GHKO mice treated with hGH had expected phenotypic alterations, with increased body, fat, fluid, liver, and muscle mass, and increased serum IGF-1 and insulin. 55 Genes were differentially expressed in all three tissues, including the canonical GH targets Igf1, Igfals, and Cish. Enrichment analysis confirmed the canonical GH response in select tissues, such as cell proliferation, metabolism, and fibrosis. The JAK/STAT pathway was the only pathway significantly altered in all three tissues. CONCLUSIONS As expected, GH caused expression changes of many known target genes, although new candidate GH targets were identified. Liver and muscle appear to be more GH sensitive than adipose tissue due to the larger number of DEG and pathways significantly altered, but adipose still has a characteristic GH response. The diversity of changes uncovered in all three tissues after 5 days of GH treatment highlights the multiplicity of GH's effects in its target tissues.
Collapse
Affiliation(s)
- Jonathan A. Young
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | | | - Colin Kruse
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Stephen Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute at Ohio University, Ohio University, Athens, OH 45701, USA
- Indicates co-senior authors. Please send correspondence to Edward O. List, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Indicates co-senior authors. Please send correspondence to Edward O. List, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
7
|
Little-Letsinger SE, Pagnotti GM, McGrath C, Styner M. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep 2020; 18:774-789. [PMID: 33068251 PMCID: PMC7736569 DOI: 10.1007/s11914-020-00634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.
Collapse
Affiliation(s)
- Sarah E Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA.
| | - Gabriel M Pagnotti
- Department of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Kopchick JJ, Berryman DE, Puri V, Lee KY, Jorgensen JOL. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol 2020; 16:135-146. [PMID: 31780780 PMCID: PMC7180987 DOI: 10.1038/s41574-019-0280-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
The ability of growth hormone (GH) to induce adipose tissue lipolysis has been known for over five decades; however, the molecular mechanisms that mediate this effect and the ability of GH to inhibit insulin-stimulated glucose uptake have scarcely been documented. In this same time frame, our understanding of adipose tissue has evolved to reveal a complex structure with distinct types of adipocyte, depot-specific differences, a biologically significant extracellular matrix and important endocrine properties mediated by adipokines. All these aforementioned features, in turn, can influence lipolysis. In this Review, we provide a historical and current overview of the lipolytic effect of GH in humans, mice and cultured cells. More globally, we explain lipolysis in terms of GH-induced intracellular signalling and its effect on obesity, insulin resistance and lipotoxicity. In this regard, findings that define molecular mechanisms by which GH induces lipolysis are described. Finally, data are presented for the differential effect of GH on specific adipose tissue depots and on distinct classes of metabolically active adipocytes. Together, these cellular, animal and human studies reveal novel cellular phenotypes and molecular pathways regulating the metabolic effects of GH on adipose tissue.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA.
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA.
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Vishwajeet Puri
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Kevin Y Lee
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Darcy J, Tseng YH. ComBATing aging-does increased brown adipose tissue activity confer longevity? GeroScience 2019; 41:285-296. [PMID: 31230192 DOI: 10.1007/s11357-019-00076-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Brown and its related beige adipose tissue (BAT) play a definitive role in maintaining body temperature by producing heat through uncoupling protein 1 (UCP1), which acts by dissociating oxidative phosphorylation from ATP production, resulting in the release of heat. Therefore, in order to maintain high thermogenic capacity, BAT must act as a metabolic sink by taking up vast amounts of circulating glucose and lipids for oxidation. This, along with the rediscovery of BAT in adult humans, has fueled the study of BAT as a putative therapeutic approach to manage the growing rates of obesity and metabolic syndromes. Notably, many of the beneficial consequences of BAT activity overlap with metabolic biomarkers of extended lifespan and healthspan. In this review, we provide background about BAT including the thermogenic program, BAT's role as a secretory organ, and differences between BAT in mice and humans. We also provide details on BAT during aging, and perspectives on the potential of targeting BAT to promote lifespan and healthspan.
Collapse
Affiliation(s)
- Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Abstract
Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.
Collapse
Affiliation(s)
- Seung-Soo Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
| | - Cheol-Koo Lee
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02481, Korea
| |
Collapse
|
11
|
Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. Endocr Rev 2019; 40:575-601. [PMID: 30576428 PMCID: PMC6416709 DOI: 10.1210/er.2018-00216] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
The important role of GH in the control of mammalian longevity was first deduced from extended longevity of mice with genetic GH deficiency (GHD) or GH resistance. Mice with isolated GHD (IGHD) due to GHRH or GHRH receptor mutations, combined deficiency of GH, prolactin, and TSH, or global deletion of GH receptors live longer than do their normal siblings. They also exhibit multiple features of delayed and/or slower aging, accompanied by extension of healthspan. The unexpected, remarkable longevity benefit of severe endocrine defects in these animals presumably represents evolutionarily conserved trade-offs among aging, growth, maturation, fecundity, and the underlying anabolic processes. Importantly, the negative association of GH signaling with longevity extends to other mammalian species, apparently including humans. Data obtained in humans with IGHD type 1B, owing to a mutation of the GHRH receptor gene, in the Itabaianinha County, Brazil, provide a unique opportunity to study the impact of severe reduction in GH signaling on age-related characteristics, health, and functionality. Individuals with IGHD are characterized by proportional short stature, doll facies, high-pitched voices, and central obesity. They have delayed puberty but are fertile and generally healthy. Moreover, these IGHD individuals are partially protected from cancer and some of the common effects of aging and can attain extreme longevity, 103 years of age in one case. We think that low, but detectable, residual GH secretion combined with life-long reduction of circulating IGF-1 and with some tissue levels of IGF-1 and/or IGF-2 preserved may account for the normal longevity and apparent extension of healthspan in these individuals.
Collapse
Affiliation(s)
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
12
|
|
13
|
Liu Z, Solesio ME, Schaffler MB, Frikha-Benayed D, Rosen CJ, Werner H, Kopchick JJ, Pavlov EV, Abramov AY, Yakar S. Mitochondrial Function Is Compromised in Cortical Bone Osteocytes of Long-Lived Growth Hormone Receptor Null Mice. J Bone Miner Res 2019; 34:106-122. [PMID: 30216544 PMCID: PMC7080402 DOI: 10.1002/jbmr.3573] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Despite increased longevity and resistance to multiple stressors, growth hormone receptor null (GHRKO) mice exhibit severe skeletal impairment. The role of GHR in maintaining osteocyte mitochondrial function is unknown. We found that GHR ablation was detrimental to osteocyte mitochondrial function. In vivo multiphoton microscopy revealed significant reductions of >10% in mitochondrial membrane potential (MMP) in GHRKO osteocytes and reduced mitochondrial volumetric density. Reductions in MMP were accompanied by reductions in glucose transporter-1 levels, steady state ATP, NADH redox index, oxygen consumption rate, and mitochondrial reserve capacity in GHRKO osteocytes. Glycolytic capacity did not differ between control and GHRKO males' osteocytes. However, osteocytes from aged female GHRKO mice exhibited reductions in glycolytic parameters, indicating impairments in glucose metabolism, which may be sex dependent. GHRKO osteocytes exhibited increased levels of cytoplasmic reactive oxygen species (ROS) (both basal and in response to high glucose), insulin-like growth factor-1 (IGF-1), and insulin. Mitochondrial ROS levels were increased and correlated with reduced glutathione in GHRKO osteocytes. Overall, the compromised osteocyte mitochondrial function and responses to metabolic insults strongly correlated with skeletal impairments, suggesting that despite increased life span of the GHRKO mice, skeletal health span is decreased. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhongbo Liu
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Maria E Solesio
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dorra Frikha-Benayed
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | | | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John J Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Evgeny V Pavlov
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
14
|
Bartke A. Growth Hormone and Aging: Updated Review. World J Mens Health 2018; 37:19-30. [PMID: 29756419 PMCID: PMC6305861 DOI: 10.5534/wjmh.180018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/28/2023] Open
Abstract
Role of growth hormone (GH) in mammalian aging is actively explored in clinical, epidemiological, and experimental studies. The age-related decline in GH levels is variously interpreted as a symptom of neuroendocrine aging, as one of causes of altered body composition and other unwelcome symptoms of aging, or as a mechanism of natural protection from cancer and other chronic diseases. Absence of GH signals due to mutations affecting anterior pituitary development, GH secretion, or GH receptors produces an impressive extension of longevity in laboratory mice. Extension of healthspan in these animals and analysis of survival curves suggest that in the absence of GH, aging is slowed down or delayed. The corresponding endocrine syndromes in the human have no consistent impact on longevity, but are associated with remarkable protection from age-related disease. Moreover, survival to extremely old age has been associated with reduced somatotropic (GH and insulin-like growth factor-1) signaling in women and men. In both humans and mice, elevation of GH levels into the supranormal (pathological) range is associated with increased disease risks and reduced life expectancy likely representing acceleration of aging. The widely advertised potential of GH as an anti-aging agent attracted much interest. However, results obtained thus far have been disappointing with few documented benefits and many troublesome side effects. Possible utility of GH in the treatment of sarcopenia and frailty remains to be explored.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
15
|
Swindell WR, Xing X, Fritz Y, Diaconu D, Simon DI, Ward NL, Gudjonsson JE. Deficiency of myeloid-related proteins 8 and 14 (Mrp8/Mrp14) does not block inflammaging but prevents steatosis. Oncotarget 2018; 7:35535-35551. [PMID: 27224926 PMCID: PMC5094943 DOI: 10.18632/oncotarget.9550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
The Mrp8 and Mrp14 proteins (calprotectin) accumulate within tissues during aging and may contribute to chronic inflammation. To address this possibility, we evaluated female calprotectin-deficient Mrp14-KO and wild-type (WT) mice at 5 and 24 months of age. However, there was no evidence that age-related inflammation is blunted in KO mice. Inflammation markers were in fact elevated in livers from old KO mice, and microarray analysis revealed more consistent elevation of genes specifically expressed by B-cells and T-cells. Adipose-specific genes, however, were less consistently elevated in aged KO mice, suggesting an anti-steatosis effect of Mrp8/14 deficiency. Consistent with this, genes decreased by the anti-steatosis agent SRT1720 were decreased in old KO compared to old WT mice. Expression of lipid metabolism genes was altered in KO mice at 5 months of age, along with genes associated with development, biosynthesis and immunity. These early-age effects of Mrp8/14 deficiency, in the absence of any external stressor, were unexpected. Taken together, our findings demonstrate a pro-steatosis rather than pro-inflammatory role of calprotectin within the aging liver. This appears to reflect a developmental-metabolic phenotype of Mrp14-KO mice that is manifest at a young age in the absence of pro-inflammatory stimuli.
Collapse
Affiliation(s)
- William R Swindell
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA.,Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Fritz
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Doina Diaconu
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel I Simon
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.,The Murdough Family Center for Psoriasis, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
16
|
Masternak MM, Darcy J, Victoria B, Bartke A. Dwarf Mice and Aging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 155:69-83. [DOI: 10.1016/bs.pmbts.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology (Bethesda) 2017; 32:9-19. [PMID: 27927801 DOI: 10.1152/physiol.00012.2016] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age.
Collapse
Affiliation(s)
- Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jamie N Justice
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Barbara J Nicklas
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Berryman DE, List EO. Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. Int J Mol Sci 2017; 18:ijms18081621. [PMID: 28933734 PMCID: PMC5578013 DOI: 10.3390/ijms18081621] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is an excessive accumulation or expansion of adipose tissue (AT) due to an increase in either the size and/or number of its characteristic cell type, the adipocyte. As one of the most significant public health problems of our time, obesity and its associated metabolic complications have demanded that attention be given to finding effective therapeutic options aimed at reducing adiposity or the metabolic dysfunction associated with its accumulation. Growth hormone (GH) has therapeutic potential due to its potent lipolytic effect and resultant ability to reduce AT mass while preserving lean body mass. However, AT and its resident adipocytes are significantly more dynamic and elaborate than once thought and require one not to use the reduction in absolute mass as a readout of efficacy alone. Paradoxically, therapies that reduce GH action may ultimately prove to be healthier, in part because GH also possesses potent anti-insulin activities along with concerns that GH may promote the growth of certain cancers. This review will briefly summarize some of the newer complexities of AT relevant to GH action and describe the current understanding of how GH influences this tissue using data from both humans and mice. We will conclude by considering the therapeutic use of GH or GH antagonists in obesity, as well as important gaps in knowledge regarding GH and AT.
Collapse
Affiliation(s)
- Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
19
|
Troike KM, Henry BE, Jensen EA, Young JA, List EO, Kopchick JJ, Berryman DE. Impact of Growth Hormone on Regulation of Adipose Tissue. Compr Physiol 2017. [PMID: 28640444 DOI: 10.1002/cphy.c160027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.
Collapse
Affiliation(s)
- Katie M Troike
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Brooke E Henry
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Elizabeth A Jensen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Jonathan A Young
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
20
|
Darcy J, McFadden S, Bartke A. Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte 2017; 6:69-75. [PMID: 28425851 DOI: 10.1080/21623945.2017.1308990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major focus of biogerontology is elucidating the role(s) of the endocrine system in aging and the accumulation of age-related diseases. Endocrine control of mammalian longevity was first reported in Ames dwarf (Prop1df) mice, which are long-lived due to a recessive Prop1 loss-of-function mutation resulting in deficiency of growth hormone (GH), thyroid-stimulating hormone, and prolactin. Following this report, several other GH-related mutants with altered longevity have been described including long-lived Snell dwarf and growth hormone receptor knockout mice, and short-lived GH overexpressing transgenic mice. One of the emerging areas of interest in these mutant mice is the role of adipose tissue in their altered healthspan and lifespan. Here, we provide an overview of the alterations in body composition of GH-related mutants, as well as the altered thermogenic potential of their brown adipose tissue and the altered cellular senescence and adipokine production of their white adipose tissue.
Collapse
Affiliation(s)
- Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
21
|
Bennis MT, Schneider A, Victoria B, Do A, Wiesenborn DS, Spinel L, Gesing A, Kopchick JJ, Siddiqi SA, Masternak MM. The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. GeroScience 2017; 39:51-59. [PMID: 28299640 PMCID: PMC5352587 DOI: 10.1007/s11357-017-9957-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022] Open
Abstract
Growth hormone receptor knockout mice (GHRKO) are characterized by high insulin sensitivity and extended lifespan. Interestingly, the secretory activity of visceral fat in GHRKO mice is altered, stimulating whole body insulin sensitivity. In this study, we transplanted normal (N) mice with visceral fat pads from GHRKO or N mice to determine the role of visceral fat on the insulin signaling. We found that the transplant of visceral fat from GHRKO mice to N mice (N-GHRKO) improved whole body insulin sensitivity when comparing with sham-operated mice (N-S) and with mice that received visceral fat from N mice (N-N). This was associated with increased hepatic insulin sensitivity as observed by the increased phosphorylated insulin receptor and increased hepatic expression of Pparα and Pparγ. In conclusion, we demonstrated that visceral fat transplant from GHRKO mice into normal mice enhanced insulin sensitivity and glucose tolerance. These results further confirm the differential physiological role played by visceral adipose tissue from GH receptor deficient mice, indicating that the increase of this fat depot can be associated with beneficial effects on insulin signaling and longevity.
Collapse
Affiliation(s)
- Mohammed T Bennis
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Berta Victoria
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Andrew Do
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Denise S Wiesenborn
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, 66421, Homburg, Germany
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482, Zweibrücken, Germany
| | - Lina Spinel
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - John J Kopchick
- Edison Biotechnology Institute, Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Shadab A Siddiqi
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland.
| |
Collapse
|
22
|
Abstract
Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1df/df) mice, which have a 40%-60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.
Collapse
Affiliation(s)
- Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
23
|
Berryman DE, Henry B, Hjortebjerg R, List EO, Kopchick JJ. Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Rev Endocrinol Metab 2016; 11:197-207. [PMID: 28435436 PMCID: PMC5397118 DOI: 10.1586/17446651.2016.1147950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adipose tissue (AT) is a well-established target of growth hormone (GH) and is altered in clinical conditions associated with excess, deficiency and absence of GH action. Due to the difficulty in collecting AT from clinical populations, genetically modified mice have been useful in better understanding how GH affects this tissue. Recent findings in mice would suggest that the impact of GH on AT is beyond alterations of lipolysis, lipogenesis or proliferation/ differentiation. AT depot-specific alterations in immune cells, extracellular matrix, adipokines, and senescence indicate an expanded role for GH in AT physiology. This mouse data will guide additional studies necessary to evaluate the therapeutic potential and safety of GH for conditions associated with altering AT, such as obesity. In this review, we introduce several relatively new intricacies of GH's effect on AT, focusing on recent studies in mice. Finally, we summarize the clinical implications of these findings.
Collapse
Affiliation(s)
- Darlene E Berryman
- Executive Director, The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, (740) 593-9661 - phone, (740) 593-4795 - fax
| | - Brooke Henry
- 108 Konneker Research Labs, Ohio University, (740) 593-9665
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Noerrebrogade 44, 8000 Aarhus C, Denmark, +45 6166 8045 - phone, +45 7846 2150 - fax
| | - Edward O List
- Senior Scientist, 218 Konneker Research Labs, Edison Biotechnology Institute, Ohio University, (740) 593-4620 - phone, (740) 593-4795 - fax
| | - John J Kopchick
- Distinguished Professor, Goll Ohio Eminent Scholar, 172 Water Tower Drive, Ohio University, (740) 593-4534 - phone, (740) 593-4795 - fax
| |
Collapse
|