1
|
Peluso-Iltis C, Pierrat N, Rovito D, Osz J, Sawada D, Kittaka A, Laverny G, Rochel N. 4-Hydroxy-1α,25-Dihydroxyvitamin D 3: Synthesis and Structure-Function Study. Biomolecules 2024; 14:551. [PMID: 38785958 PMCID: PMC11117473 DOI: 10.3390/biom14050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The active vitamin D metabolites, 25-hydroxyvitamin D3 (25D3) and 1,25-dihydroxyvitamin D3 (1,25D3), are produced by successive hydroxylation steps and play key roles in several cellular processes. However, alternative metabolic pathways exist, and among them, the 4-hydroxylation of 25D3 is a major one. This study aims to investigate the structure-activity relationships of 4-hydroxy derivatives of 1,25D3. Structural analysis indicates that 1,4α,25(OH)3D3 and 1,4β,25(OH)3D3 maintain the anchoring hydrogen bonds of 1,25D3 and form additional interactions, stabilizing the active conformation of VDR. In addition, 1,4α,25D3 and 1,4β,25D3 are as potent as 1,25D3 in regulating the expression of VDR target genes in rat intestinal epithelial cells and in the mouse kidney. Moreover, these two 4-hydroxy derivatives promote hypercalcemia in mice at a dose similar to that of the parent compound.
Collapse
Affiliation(s)
- Carole Peluso-Iltis
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Noé Pierrat
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Daniela Rovito
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Judit Osz
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan;
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan;
| | - Gilles Laverny
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Natacha Rochel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| |
Collapse
|
2
|
Dai C, Lin X, Qi Y, Wang Y, Lv Z, Zhao F, Deng Z, Feng X, Zhang T, Pu X. Vitamin D3 improved hypoxia-induced lung injury by inhibiting the complement and coagulation cascade and autophagy pathway. BMC Pulm Med 2024; 24:9. [PMID: 38166725 PMCID: PMC10759436 DOI: 10.1186/s12890-023-02784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pulmonary metabolic dysfunction can cause lung tissue injury. There is still no ideal drug to protect against hypoxia-induced lung injury, therefore, the development of new drugs to prevent and treat hypoxia-induced lung injury is urgently needed. We aimed to explore the ameliorative effects and molecular mechanisms of vitamin D3 (VD3) on hypoxia-induced lung tissue injury. METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: normoxia, hypoxia, and hypoxia + VD3. The rat model of hypoxia was established by placing the rats in a hypobaric chamber. The degree of lung injury was determined using hematoxylin and eosin (H&E) staining, lung water content, and lung permeability index. Transcriptome data were subjected to differential gene expression and pathway analyses. In vitro, type II alveolar epithelial cells were co-cultured with hepatocytes and then exposed to hypoxic conditions for 24 h. For VD3 treatment, the cells were treated with low and high concentrations of VD3. RESULTS Transcriptome and KEGG analyses revealed that VD3 affects the complement and coagulation cascade pathways in hypoxia-induced rats, and the genes enriched in this pathway were Fgb/Fga/LOC100910418. Hypoxia can cause increases in lung edema, inflammation, and lung permeability disruption, which are attenuated by VD3 treatment. VD3 weakened the complement and coagulation cascade in the lung and liver of hypoxia-induced rats, characterized by lower expression of fibrinogen alpha chain (Fga), fibrinogen beta chain (Fgb), protease-activated receptor 1 (PAR1), protease-activated receptor 3 (PAR3), protease-activated receptor 4 (PAR4), complement (C) 3, C3a, and C5. In addition, VD3 improved hypoxic-induced type II alveolar epithelial cell damage and inflammation by inhibiting the complement and coagulation cascades. Furthermore, VD3 inhibited hypoxia-induced autophagy in vivo and in vitro, which was abolished by the mitophagy inducer, carbonyl cyanide-m-chlorophenylhydrazone (CCCP). CONCLUSION VD3 alleviated hypoxia-induced pulmonary edema by inhibiting the complement and coagulation cascades and autophagy pathways.
Collapse
Affiliation(s)
- Chongyang Dai
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xue Lin
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610000, People's Republic of China
| | - Yinglian Qi
- Qinghai Normal University, Xining, Qinghai Province, 810008, People's Republic of China
| | - Yaxuan Wang
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhongkui Lv
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Fubang Zhao
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhangchang Deng
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xiaokai Feng
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, Qinghai University, Xining, Qinghai Province, 810007, People's Republic of China.
| | - Tongzuo Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, 810001, People's Republic of China.
| | - Xiaoyan Pu
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China.
| |
Collapse
|
3
|
Amraiz D, Kiani AK, Awan UA, Amraiz T, Awan BA, Irfan M. Cancer Prevention and Treatment Based on Lifestyles. Cancer Treat Res 2024; 191:245-279. [PMID: 39133411 DOI: 10.1007/978-3-031-55622-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cancer morbidity and mortality incidence are rapidly increasing over the period of time. Cancer prevention, alongside innovative therapies and earlier detection, is considered a key strategy for reducing the overall cancer burden. Substantial evidence indicates a clear correlation between lifestyle factors and changes in nutrient metabolism. Approximately 5-10% of all cancer cases are attributed to genetic factors, whereas 90-95% are due to environmental and lifestyle factors, suggesting that lifestyle interventions have significant prospects for preventing various cancers. Healthy lifestyle changes, in particular healthy diets, physical activity, staying at a healthy weight, reduction or elimination of tobacco/alcohol consumption, and avoiding exposure to radiation and other carcinogens, are significant factors to be considered to tackle the challenges associated with cancer in modern society. This chapter aims to provide lifestyle intervention strategies to improve cancer prevention and risk reduction while promoting the health of cancer patients. The therapeutic role of some dietary regimens and supplements, as well as complementary and alternative health approaches, in cancer treatment is also discussed.
Collapse
Affiliation(s)
- Deeba Amraiz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Aysha Karim Kiani
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Tayyaba Amraiz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Muhammad Irfan
- Department of Zoology Wildlife and Fisheries, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
4
|
Campolina-Silva G, Andrade ACDSP, Couto M, Bittencourt-Silva PG, Queiroz-Junior CM, Lacerda LDSB, Chaves IDM, de Oliveira LC, Marim FM, Oliveira CA, da Silva GSF, Teixeira MM, Costa VV. Dietary Vitamin D Mitigates Coronavirus-Induced Lung Inflammation and Damage in Mice. Viruses 2023; 15:2434. [PMID: 38140675 PMCID: PMC10748145 DOI: 10.3390/v15122434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 (β-CoV) betacoronavirus has posed a significant threat to global health. Despite the availability of vaccines, the virus continues to spread, and there is a need for alternative strategies to alleviate its impact. Vitamin D, a secosteroid hormone best known for its role in bone health, exhibits immunomodulatory effects in certain viral infections. Here, we have shown that bioactive vitamin D (calcitriol) limits in vitro replication of SARS-CoV-2 and murine coronaviruses MHV-3 and MHV-A59. Comparative studies involving wild-type mice intranasally infected with MHV-3, a model for studying β-CoV respiratory infections, confirmed the protective effect of vitamin D in vivo. Accordingly, mice fed a standard diet rapidly succumbed to MHV-3 infection, whereas those on a vitamin D-rich diet (10,000 IU of Vitamin D3/kg) displayed increased resistance to acute respiratory damage and systemic complications. Consistent with these findings, the vitamin D-supplemented group exhibited lower viral titers in their lungs and reduced levels of TNF, IL-6, IL-1β, and IFN-γ, alongside an enhanced type I interferon response. Altogether, our findings suggest vitamin D supplementation ameliorates β-CoV-triggered respiratory illness and systemic complications in mice, likely via modulation of the host's immune response to the virus.
Collapse
Affiliation(s)
- Gabriel Campolina-Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
- CHU de Québec Research Center (CHUL), Université Laval, Quebec, QC G1V 4G2, Canada
| | - Ana Cláudia dos Santos Pereira Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
- CHU de Québec Research Center (CHUL), Université Laval, Quebec, QC G1V 4G2, Canada
| | - Manoela Couto
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Paloma G. Bittencourt-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil (G.S.F.d.S.)
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Larisse de Souza B. Lacerda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Leonardo C. de Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| | - Fernanda Martins Marim
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil
| | - Cleida A. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Glauber S. F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil (G.S.F.d.S.)
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| |
Collapse
|
5
|
Fenizia S, Gaggini M, Vassalle C. Interplay between Vitamin D and Sphingolipids in Cardiometabolic Diseases. Int J Mol Sci 2023; 24:17123. [PMID: 38069444 PMCID: PMC10706901 DOI: 10.3390/ijms242317123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Sphingolipids (SLs) are structural, bioactive molecules with several key cellular roles, whereas 1,25-dihydroxyvitamin D (1,25(OH)D), the active form of vitamin D, is considered the major regulator of calcium homeostasis, although it also exerts other extraskeletal effects. Many studies reported the physiological connection between vitamin D and SLs, highlighting not only the effects of vitamin D on SL metabolism and signaling but also the influence of SLs on vitamin D levels and function, thus strongly suggesting a crosstalk between these molecules. After a brief description of 1,25(OH)D and SL metabolism, this review aims to discuss the preclinical and clinical evidence on the crosstalk between SLs and 1,25(OH)D, with a special focus on cardiometabolic diseases.
Collapse
Affiliation(s)
- Simona Fenizia
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Corso Trieste 15/A, I-28100 Novara, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, Corso Trieste 15/A, I-28100 Novara, Italy
| | - Melania Gaggini
- Istituto di Fisiologia Clinica, Italian National Research Council, Via Moruzzi 1, I-56124 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
6
|
Fu L, Wong BYL, Li Z, Horst RL, Williams R, Lee B, Miller J, Carpenter TO, Cole DEC. Genetic variants in the vitamin D pathway and their association with vitamin D metabolite levels: Detailed studies of an inner-city pediatric population suggest a modest but significant effect in early childhood. J Steroid Biochem Mol Biol 2023; 233:106369. [PMID: 37490983 DOI: 10.1016/j.jsbmb.2023.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES In a large cohort of healthy infants and toddlers 6-36 months of age (n = 776), we have been exploring the potential role of genetic variation in predisposition to vitamin D insufficiency. The genes encoding the key cytochrome P450 hydroxylases (CYP2R1, CYP24A1, and CYP27B1) harbour recurrent mutations of uncertain effect. This study was undertaken to look for biochemically relevant associations of these variants with inter-individual differences in vitamin D metabolism in an at-risk pediatric population. METHODS Genotyping for CYP2R1-CT (c.-1127 C>T, rs10741657), CYP24A1-AG (c.-686A>G, rs111622401), and CYP27B1-CA (c.-1261 C>A, rs10877012) mutations were performed using SNaPshot assay, followed by Sanger sequencing confirmation. Vitamin D metabolites and vitamin D binding protein (DBP) were measured by established methods. RESULTS In a multivariate regression model, with corrections for co-variates, subjects with the homozygous CYP2R1-TT variant had significantly higher concentrations of 25(OH)D, free 25(OH)D, and 24,25(OH)2D levels. In subjects with the CYP24A1-AG mutation, concentrations of 25(OH)D were significantly higher. CONCLUSIONS The CYP2R1-TT and CYP24A1-AG variants have measurable effects on the vitamin D pathway. It seems unlikely that they will be clinically relevant in isolation, but they may be members of the large pool of infrequent mutations contributing to different risks for the vitamin D deficiency phenotype.
Collapse
Affiliation(s)
- Lei Fu
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Betty Y L Wong
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Zhenyu Li
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | | | - Rashida Williams
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Bonnie Lee
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Jessica Miller
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Thomas O Carpenter
- Departments of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT, USA; Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| | - David E C Cole
- Pediatrics (Genetics), Toronto, ON, Canada; Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Childs-Sanford SE, Makowski AJ, Hilliard RL, Wakshlag JJ. EXPERIMENTAL CHOLECALCIFEROL SUPPLEMENTATION IN A HERD OF MANAGED ASIAN ELEPHANTS ( ELEPHAS MAXIMUS). J Zoo Wildl Med 2023; 54:219-230. [PMID: 37428684 DOI: 10.1638/2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 07/12/2023] Open
Abstract
Vitamin D supplementation may pose a significant health risk in species where levels of deficiency, sufficiency, and toxicity have not been clearly established, and species-specific research on vitamin D supplementation should be performed. This study documented the effect of vitamin D supplementation on serum vitamin D metabolites and other analytes of Ca homeostasis in Asian elephants (Elephas maximus). Six adult Asian elephants received PO supplementation with cholecalciferol at 300 IU/kg of body weight (BW) once a week for 24 wk. Serum was analyzed every 4 wk for 25-hydroxyvitamin D2/D3 [25(OH)D]; 24,25-dihydroxyvitamin D2/D3 [24,25(OH)2D]; 1,25-dihydroxyvitamin D [1,25(OH)2D]; parathyroid hormone (PTH); total Ca; ionized Ca (iCa); P; and Mg. After the supplement was discontinued, serum 25(OH)D2/D3 was measured every 4 wk until levels returned to baseline. At the start of the study, the average serum 25(OH)D3 was nondetectable (<1.5 ng/ml). With cholecalciferol supplementation, 25(OH)D3 increased at an average rate of 2.26 ng/ml per month and reached an average concentration of 12.9 ± 3.46 ng/ml at 24 wk. Both 24,25(OH)2D3 and 1,25(OH)2D increased over time with supplementation from an average of <1.5 to 12.9 ng/ml and from 9.67 to 36.4 pg/ml, respectively. PTH, iCa, Ca, P, and Mg remained within reported normal ranges throughout supplementation. After the supplement was discontinued, serum 25(OH)D3 demonstrated a slow decline to baseline, taking an average of 48 wk. Elephants demonstrated significant individual variation in response to supplementation and subsequent return to baseline. Supplementation of Asian elephants with a weekly dose of 300 IU/kg BW cholecalciferol for 24 wk appears to be effective and safe. Additional clinical studies would be necessary to investigate the safety of other routes of administration, dosages, and duration of vitamin D supplementation, as well as associated health benefits.
Collapse
Affiliation(s)
| | - Andrew J Makowski
- Heartland Assays, Iowa State University Research Park, Ames, Iowa 50010, USA
| | - Rachel L Hilliard
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Joseph J Wakshlag
- Department of Clinical Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
Beggs MR, Young K, Plain A, O'Neill DD, Raza A, Flockerzi V, Dimke H, Alexander RT. Maternal Epidermal Growth Factor Promotes Neonatal Claudin-2 Dependent Increases in Small Intestinal Calcium Permeability. FUNCTION 2023; 4:zqad033. [PMID: 37575484 PMCID: PMC10413934 DOI: 10.1093/function/zqad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by μCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allen Plain
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Demark
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
9
|
Donati S, Marini F, Giusti F, Palmini G, Aurilia C, Falsetti I, Iantomasi T, Brandi ML. Calcifediol: Why, When, How Much? Pharmaceuticals (Basel) 2023; 16:ph16050637. [PMID: 37242420 DOI: 10.3390/ph16050637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D deficiency is a constantly growing health problem worldwide. Adults affected with hypovitaminosis D could experience negative consequences on their musculoskeletal system and extra-skeletal health. In fact, an optimal vitamin D status is essential to ensure the correct bone, calcium, and phosphate homeostasis. To improve vitamin D status, it is important to not only increase the intake of food fortified with vitamin D, but also to administer vitamin D supplementation when required. Vitamin D3 (cholecalciferol) is the most widely used supplement. In recent years, the administration of calcifediol (25(OH)D3), the direct precursor of the biologically active form of vitamin D3, as oral vitamin D supplementation has progressively grown. Here, we report the potential medical benefits of some peculiar biological actions of calcifediol, discussing the possible specific clinical scenarios in which the oral intake of calcifediol could be most effective to restore the correct serum levels of 25(OH)D3. In summary, the aim of this review is to provide insights into calcifediol-related rapid non-genomic responses and the possible use of this vitamin D metabolite as a supplement for the treatment of people with a higher risk of hypovitaminosis D.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Francesca Marini
- Fondazione Italiana Ricerca Sulle Malattie dell'Osso (FIRMO Onlus), 50129 Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell'Osso (FIRMO Onlus), 50129 Florence, Italy
| |
Collapse
|
10
|
Kise S, Iijima A, Nagao C, Okada T, Mano H, Nishikawa M, Ikushiro S, Kanemoto Y, Kato S, Nakanishi T, Sato S, Yasuda K, Sakaki T. Functional analysis of vitamin D receptor (VDR) using adenovirus vector. J Steroid Biochem Mol Biol 2023; 230:106275. [PMID: 36854350 DOI: 10.1016/j.jsbmb.2023.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/25/2023] [Indexed: 02/27/2023]
Abstract
Recently, we generated type II rickets model rats, including Vdr(R270L), Vdr(H301Q), Vdr(R270L/H301Q), and Vdr-knockout (KO), by genome editing. All generated animals showed symptoms of rickets, including growth retardation and abnormal bone formation. Among these, only Vdr-KO rats exhibited abnormal skin formation and alopecia. To elucidate the relationship between VDR function and rickets symptoms, each VDR was expressed in human HaCaT-VDR-KO cells using an adenovirus vector. We also constructed an adenovirus vector expressing VDR(V342M) corresponding to human VDR(V346M) which causes alopecia. We compared the nuclear translocation of VDRs after adding 1α,25-dihydroxyvitamin D3 (1,25D3) or 25-hydroxyvitamin D3 (25D3) at final concentrations of 10 and 100 nM, respectively. Both 25D3 and 1,25D3 induced the nuclear translocation of wild type VDR and VDR(V342M). Conversely, VDR(R270L) translocation was observed in the presence of 100 nM 25D3, with almost no translocation following treatment with 10 nM 1,25D3. VDR(R270L/H301Q) failed to undergo nuclear translocation. These results were consistent with their affinity for each ligand. Notably, VDR(R270L/H301Q) may exist in an unliganded form under physiological conditions, and factors interacting with VDR(R270L/H301Q) may be involved in the hair growth cycle. Thus, this novel system using an adenovirus vector could be valuable in elucidating vitamin D receptor functions.
Collapse
Affiliation(s)
- Satoko Kise
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Ayano Iijima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Chika Nagao
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tadashi Okada
- Health Sciences Research Center, Iryo Sosei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551, Japan; Research Institute of Innovative Medicine (RIIM), Tokiwa Foundation, 57 Kaminodai Jyoban Kamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshiaki Kanemoto
- Research Institute of Innovative Medicine (RIIM), Tokiwa Foundation, 57 Kaminodai Jyoban Kamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Shigeaki Kato
- Health Sciences Research Center, Iryo Sosei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551, Japan; Research Institute of Innovative Medicine (RIIM), Tokiwa Foundation, 57 Kaminodai Jyoban Kamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Tomoko Nakanishi
- Center of Biomedical Research Resources, Juntendo University School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Center of Biomedical Research Resources, Juntendo University School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
11
|
Nishikawa M, Murose N, Mano H, Yasuda K, Isogai Y, Kittaka A, Takano M, Ikushiro S, Sakaki T. Robust osteogenic efficacy of 2α-heteroarylalkyl vitamin D analogue AH-1 in VDR (R270L) hereditary vitamin D-dependent rickets model rats. Sci Rep 2022; 12:12517. [PMID: 35869242 PMCID: PMC9307643 DOI: 10.1038/s41598-022-16819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Active vitamin D form 1α,25-dihydroxtvitamin D3 (1,25(OH)2D3) plays pivotal roles in calcium homeostasis and osteogenesis via its transcription regulation effect via binding to vitamin D receptor (VDR). Mutated VDR often causes hereditary vitamin D-dependent rickets (VDDR) type II, and patients with VDDR-II are hardly responsive to physiological doses of 1,25(OH)D3. Current therapeutic approaches, including high doses of oral calcium and supraphysiologic doses of 1,25(OH)2D3, have limited success and fail to improve the quality of life of affected patients. Thus, various vitamin D analogues have been developed as therapeutic options. In our previous study, we generated genetically modified rats with mutated Vdr(R270L), an ortholog of human VDR(R274L) isolated from the patients with VDDR-II. The significant reduced affinity toward 1,25(OH)2D3 of rat Vdr(R270L) enabled us to evaluate biological activities of exogenous VDR ligand without 1α-hydroxy group such as 25(OH)D3. In this study, 2α-[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (AH-1) exerted much higher affinity for Vdr(R270L) in in vitro ligand binding assay than both 25(OH)D3 and 1,25(OH)2D3. A robust osteogenic activity of AH-1 was observed in Vdr(R270L) rats. Only a 40-fold lower dose of AH-1 than that of 25(OH)D3 was effective in ameliorating rickets symptoms in Vdr(R270L) rats. Therefore, AH-1 may be promising for the therapy of VDDR-II with VDR(R274L).
Collapse
|
12
|
Zhang R, Zhang Y, Liu Z, Pei Y, Xu P, Chong W, Hai Y, He L, He Y, Yu J, Wang J, Fang F, Peng X. Association between Vitamin D Supplementation and Cancer Mortality: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14153717. [PMID: 35954381 PMCID: PMC9367315 DOI: 10.3390/cancers14153717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary It has been questioned whether vitamin D supplements can reduce the mortality and incidence of tumors. In this systematic review and meta-analysis of 12 randomized controlled trials with a total of 72,669 participants, vitamin D supplementation could not reduce the cancer mortality or cancer incidence. Our results suggest a reconsideration of the previous view that vitamin D supplementation could reduce overall cancer mortality is needed. Abstract Background: Vitamin D deficiency is related to increased cancer risk and deaths. However, whether vitamin D supplementation reduces cancer mortality remains unclear, and several randomized controlled trials yield inconsistent results. Methods: Medline, Embase, and the Cochrane Central Register of Controlled Trials were searched from their inception until 28 June 2022, for randomized controlled trials investigating vitamin D supplementation. Pooled relative risks (RRs) and their 95% confidence intervals (CIs) were estimated. Trials with vitamin D supplementation combined with calcium supplementation versus placebo alone and recruiting participants with cancer at baseline were excluded in the present study. Results: This study included 12 trials with a total of 72,669 participants. Vitamin D supplementation did not reduce overall cancer mortality (RR 0.96, 95% CI 0.80–1.16). However, vitamin D supplementation was associated with a reduction in lung cancer mortality (RR 0.63, 95% CI 0.45–0.90). Conclusions: Vitamin D supplementation could not reduce cancer mortality in this highly purified meta-analysis. Further RCTs that evaluate the association between vitamin D supplementation and total cancer mortality are still needed.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yu Zhang
- Evidence-Based Medicine Center, Affiliated Hospital of Chengdu University, Chengdu 610084, China;
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.L.); (Y.P.); (L.H.); (Y.H.); (J.W.)
| | - Yiyan Pei
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.L.); (Y.P.); (L.H.); (Y.H.); (J.W.)
| | - Ping Xu
- Sichuan University Library, Sichuan University, Chengdu 610047, China;
| | - Weelic Chong
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19144, USA;
| | - Yang Hai
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA;
| | - Ling He
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.L.); (Y.P.); (L.H.); (Y.H.); (J.W.)
| | - Yan He
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.L.); (Y.P.); (L.H.); (Y.H.); (J.W.)
| | - Jiayi Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Jingjing Wang
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.L.); (Y.P.); (L.H.); (Y.H.); (J.W.)
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.L.); (Y.P.); (L.H.); (Y.H.); (J.W.)
- Correspondence:
| |
Collapse
|
13
|
Total, bioavailable and free 25-hydroxyvitamin D are associated with the prognosis of patients with non-small cell lung cancer. Cancer Causes Control 2022; 33:983-993. [PMID: 35411490 DOI: 10.1007/s10552-022-01579-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To analyze the prognostic value of total, bioavailable and free 25-hydroxyvitamin D [25(OH)D] as well as vitamin D-binding protein (VDBP) in patients with non-small cell lung cancer (NSCLC). METHODS We prospectively collected and analyzed data for 395 patients diagnosed with NSCLC between January 2016 and December 2018 in two university-affiliated hospitals. Total and free 25(OH)D and VDBP were measured directly, and bioavailable 25(OH)D was calculated using a validated formula. Their prognostic values were evaluated by Cox proportional hazards model, and hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. RESULTS Patients with NSCLC had significantly lower levels of total, bioavailable, and free 25(OH)D and higher VDBP levels in comparison to healthy controls (all p < 0.001). In multivariate analyses, higher levels of total, bioavailable, and free 25(OH)D were independently associated better overall survival (OS) and progression-free survival (PFS). For OS, the adjusted HRs were 0.58 (95% CI, 0.40-0.87; p for trend = 0.008), 0.45 (95% CI, 0.30-0.67; p for trend < 0.001) and 0.49 (95% CI, 0.33-0.73; p for trend < 0.001) for the highest versus the lowest tertile of total, bioavailable and free 25(OH)D, respectively. The corresponding adjusted HRs for PFS were 0.61 (95% CI, 0.43-0.86; p for trend = 0.006), 0.56 (95% CI, 0.40-0.80; p for trend = 0.001) and 0.60 (95% CI, 0.42-0.85; p for trend = 0.004), respectively. However, VDBP was not associated with either OS or PFS. CONCLUSION The current study suggested that total, bioavailable and free 25(OH)D may be reliable prognosis indicators in NSCLC patients, though the optimal 25(OH)D form for NSCLC prognosis remains to be assessed in future studies.
Collapse
|
14
|
Rendina D, D′Elia L, Abate V, Rebellato A, Buondonno I, Succoio M, Martinelli F, Muscariello R, De Filippo G, D′Amelio P, Fallo F, Strazzullo P, Faraonio R. Vitamin D Status, Cardiovascular Risk Profile, and miRNA-21 Levels in Hypertensive Patients: Results of the HYPODD Study. Nutrients 2022; 14:nu14132683. [PMID: 35807864 PMCID: PMC9268320 DOI: 10.3390/nu14132683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
The vitamin D and microRNA (miR) systems may play a role in the pathogenesis of cardiometabolic disorders, including hypertension. The HYPODD study was a double-blind placebo-controlled trial aiming to assess the effects of cholecalciferol treatment in patients with well-controlled hypertension and hypovitaminosis D (25OHD levels < 50 nmol/L). In addition to this clinical trial, we also evaluated the effects of cholecalciferol and calcitriol treatment on miR-21 expression in vivo and in vitro, respectively. Changes in the cardiovascular risk profiles were evaluated in HYPODD patients treated with cholecalciferol (C-cohort) or with placebo (P-cohort). The miR-21circulating levels were measured in four C-cohort patients and five P-cohort patients. In vitro, the miR-21 levels were measured in HEK-293 cells treated with calcitriol or with ethanol vehicle control. Cholecalciferol treatment increased 25OHD levels and reduced parathormone, total cholesterol, and low-density lipoprotein cholesterol levels in C-cohort patients, whereas no significant changes in these parameters were observed in P-cohort patients. The miR-21 circulating levels did not change in the C- or the P-cohort patients upon treatment. Calcitriol treatment did not affect miR-21 levels in HEK-293 cells. In conclusion, hypovitaminosis D correction ameliorated the cardiovascular risk profiles in hypertensive patients treated with cholecalciferol but did not influence the miR-21 expression.
Collapse
Affiliation(s)
- Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (D.R.); (L.D.); (V.A.); (R.M.); (P.S.)
| | - Lanfranco D′Elia
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (D.R.); (L.D.); (V.A.); (R.M.); (P.S.)
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (D.R.); (L.D.); (V.A.); (R.M.); (P.S.)
| | - Andrea Rebellato
- Department of Medicine, Clinica Medica 3, University of Padova, 35122 Padova, Italy; (A.R.); (F.F.)
| | - Ilaria Buondonno
- Department of Medical Science, Geriatric and Bone Diseases Unit, University of Turin, 10124 Torino, Italy; (I.B.); (P.D.)
| | - Mariangela Succoio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy; (M.S.); (F.M.)
| | - Fabio Martinelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy; (M.S.); (F.M.)
| | - Riccardo Muscariello
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (D.R.); (L.D.); (V.A.); (R.M.); (P.S.)
| | - Gianpaolo De Filippo
- Assistance Publique—Hôpitaux de Paris, Hôpital Robert Debré, Service d’Endocrinologie et Diabétologie Pédiatrique, 75015 Paris, France;
| | - Patrizia D′Amelio
- Department of Medical Science, Geriatric and Bone Diseases Unit, University of Turin, 10124 Torino, Italy; (I.B.); (P.D.)
- Department of Internal Medicine, Service of Geriatric Medicine and Geriatric Rehabilitation, University of Lausanne Hospital Centre, 1011 Lausanne, Switzerland
| | - Francesco Fallo
- Department of Medicine, Clinica Medica 3, University of Padova, 35122 Padova, Italy; (A.R.); (F.F.)
| | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (D.R.); (L.D.); (V.A.); (R.M.); (P.S.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy; (M.S.); (F.M.)
- Correspondence:
| |
Collapse
|
15
|
Bhoora S, Pillay TS, Punchoo R. Cholecalciferol induces apoptosis via autocrine metabolism in epidermoid cervical cancer cells. Biochem Cell Biol 2022; 100:387-402. [PMID: 35724427 DOI: 10.1139/bcb-2022-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anti-cancer effects of vitamin D are of fundamental interest. Cholecalciferol is sequentially hydroxylated endogenously to calcidiol and calcitriol. Here, SiHa epidermoid cervical cancer cells were treated with cholecalciferol (10 - 2600 nM). Cell count and viability were assayed using crystal violet and trypan blue, respectively. Apoptosis was assessed using flow cytometry for early and late biomarkers along with brightfield microscopy and transmission electron microscopy. Autocrine vitamin D metabolism was analysed by qPCR and immunoblotting for activating enzymes; 25-hydroxylases (CYP2R1 and CYP27A1) and 1α-hydroxylase (CYP27B1); the catabolic 24-hydroxylase (CYP24A1); and the vitamin D receptor (VDR). Data were analysed using one-way ANOVA and Bonferroni post hoc test, and p<0.05 was considered significant. After cholecalciferol, cell count (p=0.011) and viability (p<0.0001) decreased, apoptotic biomarkers were positive, mitochondrial membrane potential decreased (p=0.0145), and phosphatidylserine externalisation (p=0.0439); terminal caspase activity (p=0.0025) and nuclear damage (p=0.004) increased. Microscopy showed classical features of apoptosis. Gene and protein expression were concordant. Immunoblots revealed increased CYP2R1 (p = 0.021), VDR (p=0.04) and CYP24A1 (p=0.0274) and decreased CYP27B1 (p=0.031). We conclude that autocrine activation of cholecalciferol to calcidiol may mediate VDR signalling of growth inhibition and apoptosis in SiHa cells.
Collapse
Affiliation(s)
- Sachin Bhoora
- Faculty of Health Sciences University of Pretoria, Department of Chemical Pathology, Pretoria, Gauteng, South Africa;
| | - Tahir S Pillay
- Faculty of Health Sciences University of Pretoria, Department of Chemical Pathology, Pretoria, Gauteng, South Africa.,National Health Laboratory Service, 70685, Tshwane Academic Division, Johannesburg, Gauteng, South Africa.,University of Cape Town, 37716, Chemical Pathology, Cape Town, South Africa;
| | - Rivak Punchoo
- National Health Laboratory Service, 70685, Chemical Pathology, Johannesburg, South Africa.,University of Pretoria Faculty of Health Sciences, 72042, Chemical Pathology, Pretoria, South Africa;
| |
Collapse
|
16
|
Comparative pharmacokinetic study of bicalutamide administration alone and in combination with vitamin D in rats. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Bicalutamide (BCL) has been approved for treatment of advanced prostate cancer (Pca), and vitamin D is inevitably used in combination with BCL in Pca patients for skeletal or anti-tumor strategies. Therefore, it is necessary to study the effect of vitamin D application on the pharmacokinetics of BCL.
We developed and validated a specific, sensitive and rapid UHPLC–MS/MS method to investigate the pharmacokinetic behaviours of BCL in rat plasma with and without the combined use of vitamin D. Plasma samples were extracted by protein precipitation with ether/dichloromethane (2:1 v/v), and the analytes were separated by a Kinetex Biphenyl 100A column (2.1 × 100 mm, 2.6 μm) with a mobile phase composed of 0.5 mM ammonium acetate (PH 6.5) in water (A) and acetonitrile (B) in a ratio of A:B = 35:65 (v/v). Analysis of the ions was run in the multiple reactions monitoring (MRM) mode. The linear range of BCL was 5–2000 ng mL−1. The intra- and inter-day precision were less than 14%, and the accuracy was in the range of 94.4–107.1%. The mean extraction recoveries, matrix effects and stabilities were acceptable for this method. The validated method was successfully applied to evaluate the pharmacokinetic behaviours of BCL in rat plasma. The results demonstrated that the pharmacokinetic property of BCL is significantly affected by combined use of vitamin D, which might help provide useful evidence for the clinical therapy and further pharmacokinetic study.
Collapse
|
17
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
18
|
Wang W, Hu W, Xue S, Chen Q, Jiang Y, Zhang H, Zuo W. Vitamin D and Lung Cancer; Association, Prevention, and Treatment. Nutr Cancer 2020; 73:2188-2200. [PMID: 33225744 DOI: 10.1080/01635581.2020.1844245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer is one of the common types of malignant disorders and the most prevalent cause of cancer-related mortality in the world. Although a wide range of approaches has been examined, strategies in prevention and treatment of lung cancer are still inadequate. Studies show that Vitamin D (VitD) is involved in various biological pathways and has been associated with the etiopathogenesis of several diseases, like cancers. In Vitro and In Vivo experiments have disclosed that VitD plays immunomodulatory and anti-tumor functions. Several lines of evidence have indicated that VitD is involved in the inflammatory settings of the lung. Epidemiological studies have reported that sufficient levels of VitD might be critical in the prevention of lung cancer. Polymorphisms in the genes encoding the different molecules involved in the signaling of VitD might affect the lung cancer risk as well as the quality and quantity of responses to different treatments. In this review article, we intended to clarify the implications of VitD in the normal biology and physiology of the lung and discuss diverse line of evidence about the possible role of VitD in the prevention or treatment of lung cancer.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Thoracic Surgery, The Affiliated Xiangshan Hospital of Wenzhou Medial University, Ningbo, P.R. China
| | - Wentao Hu
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, P.R. China
| | - Shihang Xue
- Department of Thoracic Surgery, The Affiliated Xiangshan Hospital of Wenzhou Medial University, Ningbo, P.R. China
| | - Qi Chen
- Department of Thoracic Surgery, The Affiliated Xiangshan Hospital of Wenzhou Medial University, Ningbo, P.R. China
| | - Yongsheng Jiang
- Department of Thoracic Surgery, The Affiliated Xiangshan Hospital of Wenzhou Medial University, Ningbo, P.R. China
| | - Haina Zhang
- Department of Thoracic Surgery, The Affiliated Xiangshan Hospital of Wenzhou Medial University, Ningbo, P.R. China
| | - Wei Zuo
- Department of Thoracic Surgery, The Affiliated Xiangshan Hospital of Wenzhou Medial University, Ningbo, P.R. China
| |
Collapse
|
19
|
Stenehjem JS, Støer NC, Ghiasvand R, Grimsrud TK, Babigumira R, Rees JR, Nilsen LT, Johnsen B, Thorsby PM, Veierød MB, Robsahm TE. Prediagnostic serum 25-hydroxyvitamin D and melanoma risk. Sci Rep 2020; 10:20129. [PMID: 33208828 PMCID: PMC7676247 DOI: 10.1038/s41598-020-77155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Previous studies of serum 25-hydroxyvitamin D (25(OH)D) in relation to melanoma have shown conflicting results. We conducted a nested case-control study of 708 cases and 708 controls, using prediagnostically collected serum, to study 25(OH)D and melanoma risk in the population-based Janus Serum Bank Cohort. Stratified Cox regression was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) adjusted for ultraviolet radiation (UVR) indicators and stratified by ambient UVB of residence and body mass index (BMI). Non-linear associations were studied by restricted cubic splines. Missing data were handled with multiple imputation by chained equations. We found an HR of melanoma risk of 1.01 (95% CI: 0.99, 1.04) and an HRimputed of 1.02 (95% CI: 1.00, 1.04) per 5-nmol/L increase. The spline model showed exposure-risk curves with significantly reduced melanoma risk between 60 and 85 nmol/L 25(OH)D (reference 50 nmol/L). Non-significant J-shaped curves were found in sub-analyses of subjects with high ambient UVB of residence and of subjects with BMI < 25 kg/m2. Our data did not yield persuasive evidence for an association between 25(OH)D and melanoma risk overall. Serum levels within the medium range might be associated with reduced risk, an association possibly mediated by BMI.
Collapse
Affiliation(s)
- Jo S Stenehjem
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Blindern, P.O. Box 1122, 0317, Oslo, Norway.
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.
| | | | - Reza Ghiasvand
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | | | - Judy R Rees
- New Hampshire State Cancer Registry, Lebanon, NH, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lill Tove Nilsen
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway
| | - Bjørn Johnsen
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Marit B Veierød
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Blindern, P.O. Box 1122, 0317, Oslo, Norway
| | - Trude E Robsahm
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
20
|
THE VITAMIN D STATUS OF ASIAN ELEPHANTS ( ELEPHAS MAXIMUS) MANAGED IN A NORTHERN TEMPERATE CLIMATE. J Zoo Wildl Med 2020; 51:1-12. [PMID: 32212541 DOI: 10.1638/2019-0097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
Knowledge about the normal metabolism and involvement of vitamin D in elephant calcium homeostasis is essential to understanding the possible role of vitamin D in Asian elephant (Elephas maximus) health, as well as to informing accurate diet formulation. This study provides an evaluation of analytes involved in vitamin D metabolism, in conjunction with dietary intake and ultraviolet light (UV) exposure, in Asian elephants managed in a northern temperate climate. Once monthly, for a total of 12 mo, serum from six adult Asian elephants was analyzed for 25-hydroxyvitamin D [25(OH)D], 24,25-dihydroxyvitamin D [24,25(OH)2D], 1,25-dihydroxyvitamin D [1,25(OH)2D], parathyroid hormone (PTH), total calcium (Ca), ionized calcium (iCa), phosphorus (P), and magnesium (Mg). The diet was analyzed monthly for vitamin D, Ca, and P. Monthly average vitamin D-weighted UV daily sums were determined to gauge average UV light exposure within the vitamin D action spectrum. No serum or diet parameters were affected by time or season. Average serum 25(OH)D2 was 7.02 ± 0.85 ng/ml. 25(OH)D3 levels were nondetectable in all samples despite supplementation of the diet with recommended levels of vitamin D3, and UV exposure was at sufficient levels for cutaneous vitamin D synthesis for 6 mo of the year. Levels of 24,25(OH)2D averaged 31.7% higher than 25(OH)D, and average 1,25(OH)2D2 was 11.24 ± 1.04 pg/ml. Values for PTH, Ca, iCa, P, and Mg were within expected ranges for Asian elephants. The information gained from this research expands the knowledge base for these analytes, evaluates 24,25-dihydroxyvitamin D for the first time, and provides new information regarding vitamin D metabolism and test interpretation in the Asian elephant.
Collapse
|
21
|
Reynolds CJ, Koszewski NJ, Horst RL, Beitz DC, Goff JP. Role of glucuronidated 25-hydroxyvitamin D on colon gene expression in mice. Am J Physiol Gastrointest Liver Physiol 2020; 319:G253-G260. [PMID: 32628073 PMCID: PMC7500262 DOI: 10.1152/ajpgi.00355.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
25-Hydroxyvitamin D3-3β-glucuronic acid (25OHD-Gluc) is produced in the liver and is a constituent of human blood and bile. Bacterial glucuronidases (GUS) in mammalian digestive microbiota cleave glucuronide conjugates, such as 25OHD-Gluc, and release the free aglycone (i.e., 25OHD) inside the intestinal lumen. We hypothesized that 25OHD-Gluc would elicit a VDR-dependent mRNA response in the colon after cleavage by gut microbiota. The activity of 25OHD-Gluc was investigated by measuring expression of cytochrome P450 24A1 (Cyp24) mRNA both in vitro and in vivo. In cell culture, Caco2 cells responded to 25OHD-Gluc, whereas HT29 cells did not. When coincubated with GUS, both cell lines elicited a robust response as indicated by a 5 Ct (32-fold) increase in Cyp24 mRNA. In vitamin D-sufficient mice, we found that both oral and subcutaneous administration of 1 nmol 25OHD-Gluc induced expression of Cyp24 mRNA in the colon whereas 25OHD did not. In contrast, 25OHD, but not 25OHD-Gluc, was active in the duodenum. When the jejunum was surgically ligated to block flow of digesta to the colon, neither oral nor subcutaneous administration of 2 nmol 25OHD-Gluc was able to induce expression of Cyp24 in the colon. Our findings suggest that 25OHD-Gluc, a vitamin D metabolite found in bile, induces VDR-mediated responses in the colon by crossing the apical membrane of the colon epithelium.NEW & NOTEWORTHY We found that 25OHD-Gluc, an endogenously produced metabolite, is delivered to the colon via bile to induce vitamin D-mediated responses in the colon.
Collapse
Affiliation(s)
| | | | | | - Donald C. Beitz
- 1Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jesse P. Goff
- 2Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| |
Collapse
|
22
|
The impact of vitamin D supplementation on VDR gene expression and body composition in monozygotic twins: randomized controlled trial. Sci Rep 2020; 10:11943. [PMID: 32686744 PMCID: PMC7371728 DOI: 10.1038/s41598-020-69128-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D supplementation is widely used. However, there is no consensus on the use and dosage of this supplement and the existing recommendations arise from studies based on the benefits that this nutrient can facilitate in bones. In addition, individual genetics can influence the response to supplementation, therefore, research involving monozygotic twins aims to reduce these differences in phenotypic responses. The objective of this randomised controlled study is to examine the effect of vitamin D supplementation on body composition and the expression of the vitamin D receptor (VDR) mRNA. An intervention was performed through supplementation with cholecalciferol at the concentration of 2000 IU in 90 healthy adult monozygotic twins (male or female pairs) for 2 months. The findings showed that serum vitamin D concentration increased by 65% and VDR gene expression sixty times (p = 0.001). Changes in body composition parameters were observed regarding body fat and lean mass. Our results indicate that an increase in serum vitamin D concentration may have potential therapeutic implications.
Collapse
|
23
|
Ware WA, Freeman LM, Rush JE, Ward JL, Makowski AJ, Zhang M. Vitamin D status in cats with cardiomyopathy. J Vet Intern Med 2020; 34:1389-1398. [PMID: 32557856 PMCID: PMC7379033 DOI: 10.1111/jvim.15833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Low vitamin D concentrations have been associated with advanced heart disease and poorer outcomes in people and dogs. Vitamin D status typically is assessed by serum 25(OH)D concentration. However, cats also produce notable amounts of a C-3 epimer of 25(OH)D (3-epi). HYPOTHESIS/OBJECTIVES Determine if vitamin D status, estimated by 25(OH)D3 alone or combined with 3-epi (summation vitD), is lower in cats with cardiomyopathy (CM) compared to clinically normal (N) cats and if indicators of disease severity are associated with vitamin D status. ANIMALS Privately owned cats, 44 with CM and 56 N. METHODS Cross-sectional observational study using clinical and echocardiographic findings, diet history, and serum 25(OH)D3 and 3-epi measurements. RESULTS Cat age was negatively related to vitamin D status. Summation vitD was lower in CM cats (median = 47.1 ng/mL) compared to N cats (median = 58.65 ng/mL) both before (P = .03) and after (P = .04) accounting for age. However, 25(OH)D3 became nonsignificant between CM and N cats after age was included. Summation vitD was related positively to survival time and fractional shortening (FS), but negatively to left atrial enlargement (LAE) severity, both before and after accounting for age. For 25(OH)D3 alone, only survival time and FS remained significant after including age. CONCLUSIONS AND CLINICAL IMPORTANCE We report 25(OH)D3 and 3-epi concentrations in CM and N cats. Age had an important (negative) relationship to vitamin D status. After accounting for age, summation vitD was lower in CM cats. Vitamin D status was related positively to survival time and FS, but negatively to LAE severity.
Collapse
Affiliation(s)
- Wendy A Ware
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Lisa M Freeman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - John E Rush
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Jessica L Ward
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Andrew J Makowski
- Heartland Assays LLC & Metabolic Technologies, Inc., Ames, Iowa, USA
| | - Min Zhang
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
24
|
Immunomodulatory effects of vitamin D3 on gene expression of MDGF, EGF and PDGFB in endometriosis. Reprod Biomed Online 2020; 41:782-789. [PMID: 32883565 DOI: 10.1016/j.rbmo.2020.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/20/2022]
Abstract
RESEARCH QUESTION Endometriosis, an inflammatory disease, is assumed to be associated with an increased production of growth-related cytokines. Based on the emerging immunomodulatory role of vitamin D3 in different inflammatory conditions, this study aimed to examine its modulatory effect on the expression levels of the genes for platelet-derived growth factor-B (PDGFB), monocyte/macrophage-derived growth factor (MDGF, also known as PPBP) and epidermal growth factor (EGF) in peritoneal fluid mononuclear cells (PFMC) in women with and without endometriosis. DESIGN PFMC from 10 women with endometriosis and 10 control participants were treated with vitamin D3.The gene expression levels of PDGFB, MDGF and EGF were measured 6, 24 and 48 h following vitamin D3 administration using real-time PCR. RESULTS Gene expression levels of EGF and PDGFB were higher in the PFMC of women with endometriosis than the control group (P = 0.006, P < 0.001, respectively). Although MDGF expression showed an increase in the endometriosis group compared with non-endometriotic controls, no significant difference was found. Vitamin D3 significantly decreased EGF expression at 6, 24 and 48 h (P < 0.001, P < 0.001 and P = 0.007, respectively), MDGF at 24 and 48 h (P < 0.001 and P = 0.009, respectively) and PDGFB at 6 h (P = 0.047) in the endometriosis group. Vitamin D3 treatment had no significant effect on expression of the genes in the PFMC of non-endometriotic women. CONCLUSIONS The study concluded that PDGFB and EGF gene expression increases in endometriosis, and vitamin D3 could markedly decrease this expression, suggesting its therapeutic potential in endometriosis.
Collapse
|
25
|
Baust JG, Snyder KK, Santucci KL, Robilotto AT, Van Buskirk RG, Baust JM. Cryoablation: physical and molecular basis with putative immunological consequences. Int J Hyperthermia 2020; 36:10-16. [PMID: 31795837 DOI: 10.1080/02656736.2019.1647355] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼-185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.
Collapse
Affiliation(s)
- John G Baust
- State University of New York, Binghamton, NY, USA
| | | | | | | | | | | |
Collapse
|
26
|
Nishikawa M, Yasuda K, Takamatsu M, Abe K, Okamoto K, Horibe K, Mano H, Nakagawa K, Tsugawa N, Hirota Y, Horie T, Hinoi E, Okano T, Ikushiro S, Sakaki T. Generation of novel genetically modified rats to reveal the molecular mechanisms of vitamin D actions. Sci Rep 2020; 10:5677. [PMID: 32231239 PMCID: PMC7105495 DOI: 10.1038/s41598-020-62048-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Recent studies have suggested that vitamin D activities involve vitamin D receptor (VDR)-dependent and VDR-independent effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 25-hydroxyvitamin D3 (25(OH)D3) and ligand-independent effects of the VDR. Here, we describe a novel in vivo system using genetically modified rats deficient in the Cyp27b1 or Vdr genes. Type II rickets model rats with a mutant Vdr (R270L), which recognizes 1,25(OH)2D3 with an affinity equivalent to that for 25(OH)D3, were also generated. Although Cyp27b1-knockout (KO), Vdr-KO, and Vdr (R270L) rats each showed rickets symptoms, including abnormal bone formation, they were significantly different from each other. Administration of 25(OH)D3 reversed rickets symptoms in Cyp27b1-KO and Vdr (R270L) rats. Interestingly, 1,25(OH)2D3 was synthesized in Cyp27b1-KO rats, probably by Cyp27a1. In contrast, the effects of 25(OH)D3 on Vdr (R270L) rats strongly suggested a direct action of 25(OH)D3 via VDR-genomic pathways. These results convincingly suggest the usefulness of our in vivo system.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masashi Takamatsu
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Keisuke Abe
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kairi Okamoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kyohei Horibe
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi-Osaka, 577-8550, Japan
| | - Yoshihisa Hirota
- Laboratory of Biochemistry, Faculty of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, 337-8570, Japan
| | - Tetsuhiro Horie
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
27
|
Shaurova T, Dy GK, Battaglia S, Hutson A, Zhang L, Zhang Y, Lovly CM, Seshadri M, Goodrich DW, Johnson CS, Hershberger PA. Vitamin D3 Metabolites Demonstrate Prognostic Value in EGFR-Mutant Lung Adenocarcinoma and Can be Deployed to Oppose Acquired Therapeutic Resistance. Cancers (Basel) 2020; 12:cancers12030675. [PMID: 32183160 PMCID: PMC7140110 DOI: 10.3390/cancers12030675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
EGFR tyrosine kinase inhibitors (EGFR TKIs) are the standard of care treatment for patients with EGFR-mutant lung adenocarcinoma (LUAD). Although initially effective, EGFR TKIs are not curative. Disease inevitably relapses due to acquired drug resistance. We hypothesized that vitamin D metabolites could be used with EGFR TKIs to prevent therapeutic failure. To test this idea, we investigated the link between serum 25-hydroxyvitamin D3 (25(OH)D3) and progression-free survival (PFS) in patients with EGFR-mutant LUAD that received EGFR TKIs (erlotinib n = 20 and afatinib n = 1). Patients who were 25(OH)D3-sufficient experienced significantly longer benefit from EGFR TKI therapy (mean 14.5 months) than those with 25(OH)D3 insufficiency (mean 10.6 months, p = 0.026). In contrast, 25(OH)D3 had no prognostic value in patients with KRAS-mutant LUAD that received cytotoxic chemotherapy. To gain mechanistic insights, we tested 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) activity in vitro. 1,25(OH)2D3 promoted epithelial differentiation and restored EGFR TKI sensitivity in models of EGFR TKI resistance that were associated with epithelial–mesenchymal transition (EMT). 1,25(OH)2D3 was ineffective in a non-EMT model of resistance. We conclude that vitamin D sufficiency portends increased PFS among EGFR-mutant LUAD patients that receive EGFR TKIs, and that vitamin D signaling maintains drug efficacy in this specific patient subset by opposing EMT.
Collapse
Affiliation(s)
- Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Letian Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Yunkai Zhang
- Department of Medicine and Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Z.); (C.M.L.)
| | - Christine M Lovly
- Department of Medicine and Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Z.); (C.M.L.)
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.S.); (L.Z.); (D.W.G.); (C.S.J.)
- Correspondence: ; Tel.: +1-716-845-1697
| |
Collapse
|
28
|
Reynolds CJ, Koszewski NJ, Horst RL, Beitz DC, Goff JP. Oral 25-Hydroxycholecalciferol Acts as an Agonist in the Duodenum of Mice and as Modeled in Cultured Human HT-29 and Caco2 Cells. J Nutr 2020; 150:427-433. [PMID: 31665381 PMCID: PMC7443726 DOI: 10.1093/jn/nxz261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND 25-Hydroxycholecalciferol [25(OH)D] is the predominant circulating metabolite of vitamin D and serves as the precursor for 1α,25-dihydroxycholecalciferol [1,25(OH)2D], the hormonally active form. The presence of 1α-hydroxylase (1α-OHase) in the intestine suggests that 1,25(OH)2D can be produced from 25(OH)D, but the effects of oral 25(OH)D on the intestine have not been determined. OBJECTIVES We investigated the acute intestinal response to orally consumed 25(OH)D in mice by assessing mRNA induction of cytochrome p450 family 24 subfamily A member 1 (Cyp24), a vitamin D-dependent gene. The mechanism of action then was determined through in vitro analyses with Caco2 and HT-29 cells. METHODS Adult male C57BL6 mice were given a single oral dose of 40, 80, 200, or 400 ng 25(OH)D (n = 4 per dose) or vehicle (n = 3), and then killed 4 h later to evaluate the duodenal expression of Cyp24 mRNA by qPCR and RNA in situ hybridization. The 25(OH)D-mediated response was also evaluated with Caco2 and HT-29 cells by inhibition assay and dose-response analysis. A cytochrome p450 family 27 subfamily B member 1 (CYP27B1) knockdown of HT-29 was created to compare the dose-response parameters with wild-type HT-29 cells. RESULTS Oral 25(OH)D induced expression of Cyp24 mRNA in the duodenum of mice with 80 ng 25(OH)D by 3.3 ± 0.8 ΔΔCt compared with controls (P < 0.05). In vitro, both Caco2 and HT-29 cells responded to 25(OH)D treatment with 200-fold and 175-fold greater effective concentration at 50% maximal response than 1,25(OH)2D, yet inhibition of 1α-OHase and knockdown of CYP27B1 had no effect on the responses. CONCLUSIONS In mice, orally consumed 25(OH)D elicits a vitamin D-mediated response in the duodenum. In vitro assessments suggest that the response from 25(OH)D does not require activation by 1α-OHase and that 25(OH)D within the intestinal lumen acts as a vitamin D receptor agonist.
Collapse
Affiliation(s)
- Carmen J Reynolds
- Department of Animal Science, Iowa State University, Ames, IA, XSUSA
| | - Nicholas J Koszewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- GlycoMyr, Inc., Ames, IA, USA
| | - Ronald L Horst
- GlycoMyr, Inc., Ames, IA, USA
- Heartland Assays, Ames, IA, USA
| | - Donald C Beitz
- Department of Animal Science, Iowa State University, Ames, IA, XSUSA
| | - Jesse P Goff
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- GlycoMyr, Inc., Ames, IA, USA
| |
Collapse
|
29
|
Robsahm TE, Tretli S, Torjesen PA, Babigumira R, Schwartz GG. Serum 25-hydroxyvitamin D levels predict cancer survival: a prospective cohort with measurements prior to and at the time of cancer diagnosis. Clin Epidemiol 2019; 11:695-705. [PMID: 31496824 PMCID: PMC6690592 DOI: 10.2147/clep.s207230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Circulating 25-hydroxyvitamin D (25-OHD) levels have been inversely associated with cancer death, but the nature of this relationship is unclear. We investigated this association using repeated measurements of serum 25-OHD. Patients and methods Pre-diagnostic serum samples were collected in population health surveys in Norway (1973–2004). Participants who subsequently developed cancer (1984–2004) provided a second serum sample at the time of cancer diagnosis. Samples were stored in the Janus Serum Bank. Repeated samples existed from 202 breast cancers, 193 lung cancers, 124 lymphomas, and 37 colon cancers. Serum 25-OHD was measured via competitive radioimmunoassay. Cox regression models assessed associations between 25-OHD and cancer-specific death (case fatality) through 2012, given as hazard ratios (HRs) with 95% confidence intervals (CIs). Results The median time between pre-diagnostic and diagnostic samples was 14.4 years. The median 25-OHD levels were 63.3 and 62.5 nmol/L, respectively. During follow-up, 313 cancer deaths occurred. Compared to low pre-diagnostic 25-OHD levels (<46 nmol/L), higher levels (≥46 nmol/L) had significantly lower HRs (39–54%) of case fatality. This result was also seen for the diagnostic samples. Donors who had both samples at high (≥62 nmol/L) levels had 59% lower HR of case fatality, compared to those for whom both samples were at low levels (<46 nmol/L). Furthermore, versus a decline in serum 25-OHD (median −22.4 nmol/L) from pre-diagnostic to diagnostic samples, a rise (median 22.3 nmol/L) was associated with lower case fatality (HR 0.57, 95% CI 0.43−0.75). Conclusion Our findings suggest a causal relationship between vitamin D and cancer case fatality.
Collapse
Affiliation(s)
- Trude Eid Robsahm
- The Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Steinar Tretli
- The Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Peter Abusdal Torjesen
- The Hormone Laboratory, Department of Endocrinology, Oslo University Hospital Health Authority, Oslo, Norway
| | - Ronnie Babigumira
- The Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Gary G Schwartz
- Department of Population Health, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
30
|
Thayer MT, Nelssen JL, Langemeier AJ, Morton JM, Gonzalez JM, Kruger SR, Ou Z, Makowski AJ, Bergstrom JR. The effects of maternal dietary supplementation of cholecalciferol (vitamin D 3) and 25(OH)D 3 on sow and progeny performance. Transl Anim Sci 2019; 3:692-708. [PMID: 32704837 PMCID: PMC7200878 DOI: 10.1093/tas/txz029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022] Open
Abstract
A total of 69 sows (DNA Line 200 × 400) and their progeny were used to determine if feeding a combination of vitamin D3 and 25(OH)D3 influences neonatal and sow vitamin D status, muscle fiber morphometrics at birth and weaning, and subsequent growth performance. Within 3 d of breeding, sows were allotted to one of three dietary treatments fortified with 1,500 IU/kg vitamin D3 (CON), 500 IU/kg vitamin D3 + 25 μg/kg 25(OH)D3 (DL), or 1,500 IU/kg vitamin D3 + 50 μg/kg 25(OH)D3 (DH). When pigs were sacrificed at birth, there were no treatment effects for all fiber morphometric measures (P > 0.170), except primary fiber number and the ratio of secondary to primary muscle fibers (P < 0.016). Pigs from CON fed sows had fewer primary fibers than pigs from sows fed the DH treatment (P = 0.014), with pigs from sows fed DL treatment not differing from either (P > 0.104). Pigs from CON and DL fed sows had a greater secondary to primary muscle fiber ratio compared to pigs from DH sows (P < 0.022) but did not differ from each other (P = 0.994). There were treatment × time interactions for all sow and pig serum metabolites (P < 0.001). Therefore, treatment means were compared within the time period. At all time periods, sow serum 25(OH)D3 concentrations differed for all treatments with the magnitude of difference largest at weaning (P < 0.011), where serum 25(OH)D3 concentration was always the greatest when sows were fed the DH diet. At birth, piglets from DH fed sows had greater serum 25(OH)D3 concentrations than piglets from sows fed the DL treatment (P = 0.003), with piglets from sows fed CON treatment not differing from either (P > 0.061). At weaning, serum concentrations of 25(OH)D3 in piglets from all sow treatments were different (P < 0.001), with the greatest concentration in piglets from DH sows, followed by CON, and followed by DL. There were no treatment × time interactions for any of the metabolites measured in milk and no treatment or time main effects for 24,25(OH)2D3 concentration (P > 0.068). Colostrum collected within 12 h of parturition contained less (P = 0.001) 25(OH)D3 than milk collected on day 21 of lactation. Regardless of time, concentrations of 25(OH)D3 in milk were different (P < 0.030), with the largest 25(OH)D3 concentration from DH fed sows, followed by DL, and then CON. In conclusion, combining vitamin D3 and 25(OH)D3 in the maternal diet improves the vitamin D status of the dam and progeny and it increases primary muscle fiber number at birth.
Collapse
Affiliation(s)
- Morgan T Thayer
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jim L Nelssen
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Austin J Langemeier
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jodi M Morton
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - John M Gonzalez
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Stephanie R Kruger
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Zhining Ou
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| | | | - Jon R Bergstrom
- DSM Nutritional Products, North America, Animal Nutrition and Health, Parsippany, NJ
| |
Collapse
|
31
|
Nishikawa M, Yasuda K, Takamatsu M, Abe K, Nakagawa K, Tsugawa N, Hirota Y, Tanaka K, Yamashita S, Ikushiro S, Suda T, Okano T, Sakaki T. Generation of 1,25-dihydroxyvitamin D 3 in Cyp27b1 knockout mice by treatment with 25-hydroxyvitamin D 3 rescued their rachitic phenotypes. J Steroid Biochem Mol Biol 2019; 185:71-79. [PMID: 30031146 DOI: 10.1016/j.jsbmb.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022]
Abstract
We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 μg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Takamatsu
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Abe
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi, Osaka 577-8550, Japan
| | - Yoshihisa Hirota
- Laboratory of Biochemistry, Faculty of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kazuma Tanaka
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shigeaki Yamashita
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
32
|
Li T, Zhu J, Zuo S, Chen S, Ma J, Ma Y, Guo S, Wang P, Liu Y. 1,25(OH)2D3 Attenuates IL-1β-Induced Epithelial-to-Mesenchymal Transition Through Inhibiting the Expression of lncTCF7. Oncol Res 2018; 27:739-750. [PMID: 30180922 PMCID: PMC7848270 DOI: 10.3727/096504018x15360541345000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The activated form of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], regulates numerous cellular processes, including inhibition of cancer progression. IL-1β has been reported to facilitate cancer development, especially by inducing an epithelial-to-mesenchymal transition (EMT) in several malignant tumors. However, the underlying mechanism of 1,25(OH)2D3 and IL-1β in colorectal cancer (CRC) still remains largely unknown. To fill in this knowledge gap, we measured cell proliferation and invasion by CCK-8 and Transwell assays after stimulation with 1,25(OH)2D3 and IL-1β. E-cadherin and vimentin were chosen as markers of EMT measured by immunofluorescence, quantitative real-time PCR (qRT-PCR), and Western blot. The expression and function of the vitamin D receptor (VDR) was evaluated by Western blot and luciferase reporter assay. qRT-PCR and RNA-FISH were performed to detect the expression and location of lncTCF7 in vitro. The binding sites of VDR in the lncTCF7 promoter were confirmed by a chromatin immunoprecipitation assay. Based on the above experiments, we found that 1,25(OH)2D3 attenuates IL-1β-induced increased proliferation and invasion in colorectal cancer through enhancing VDR, which inhibits the expression of lncTCF7 by directly binding to its promoter region.
Collapse
Affiliation(s)
- Tengyu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Jing Zhu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Shuai Zuo
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Shanwen Chen
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Ju Ma
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Yongchen Ma
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Shihao Guo
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Pengyuan Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, P.R. China
| |
Collapse
|
33
|
Zhao CN, Li Y, Meng X, Li S, Liu Q, Tang GY, Gan RY, Li HB. Insight into the roles of vitamins C and D against cancer: Myth or truth? Cancer Lett 2018; 431:161-170. [DOI: 10.1016/j.canlet.2018.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
|
34
|
Liu C, Shaurova T, Shoemaker S, Petkovich M, Hershberger PA, Wu Y. Tumor-Targeted Nanoparticles Deliver a Vitamin D-Based Drug Payload for the Treatment of EGFR Tyrosine Kinase Inhibitor-Resistant Lung Cancer. Mol Pharm 2018; 15:3216-3226. [DOI: 10.1021/acs.molpharmaceut.8b00307] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Suzanne Shoemaker
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Martin Petkovich
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Pamela A. Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
35
|
Zenata O, Vrzal R. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget 2018; 8:35390-35402. [PMID: 28427151 PMCID: PMC5471063 DOI: 10.18632/oncotarget.15697] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
Vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcription factors. Activated VDR is responsible for maintaining calcium and phosphate homeostasis, and is required for proper cellular growth, cell differentiation and apoptosis. The expression of both phases I and II drug-metabolizing enzymes is also regulated by VDR, therefore it is clinically important. Post-translational modifications of NRs have been known as an important mechanism modulating the activity of NRs and their ability to drive the expression of target genes. The aim of this mini review is to summarize the current knowledge about post-transcriptional and post-translational modifications of VDR.
Collapse
Affiliation(s)
- Ondrej Zenata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
36
|
Del Puerto C, Navarrete-Dechent C, Molgó M, Camargo CA, Borzutzky A, González S. Immunohistochemical expression of vitamin D receptor in melanocytic naevi and cutaneous melanoma: a case-control study. Br J Dermatol 2018; 179:95-100. [PMID: 29106699 DOI: 10.1111/bjd.16103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Vitamin D deficiency is associated with higher risk of cancer, possibly due to its antiproliferative, antiangiogenic, proapoptotic, cell-differentiating and anti-invasive effects. The anticarcinogenic role of vitamin D in melanoma is still a matter of debate. Loss of nuclear and cytoplasmic vitamin D receptor (VDR) expression in melanoma cells has been reported. OBJECTIVES To analyse VDR immunohistochemical expression in benign dermal naevi (DN) and malignant melanoma (MM). METHODS A case-control study evaluated nuclear and cytoplasmic VDR immunohistochemical staining in 54 DN and 55 MM tissue samples. RESULTS There was significantly higher cytoplasmic VDR positivity in DN compared with MM (59% vs. 16%, P < 0·001). The mean VDR cytoplasmic expression was also higher in DN vs. MM (P < 0·001). No differences in nuclear VDR positivity were observed between groups, but mean nuclear VDR expression was significantly lower in DN vs. MM (P = 0·02). The loss of cytoplasmic VDR in MM was associated with Clark level, tumour staging and American Joint Committee on Cancer pTNM staging (P=0·004, 0·009 and 0·02, respectively). CONCLUSIONS Alterations in VDR expression and localization are found in MM compared with DN. Loss of cytoplasmic VDR was associated with melanoma tumour size, suggesting that loss of cytoplasmic VDR may be a prognostic factor.
Collapse
Affiliation(s)
- C Del Puerto
- Department of Dermatology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Navarrete-Dechent
- Department of Dermatology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Melanoma and Skin Cancer Unit, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Molgó
- Department of Dermatology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Melanoma and Skin Cancer Unit, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Camargo
- Department of Emergency Medicine and Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, U.S.A
| | - A Borzutzky
- Department of Pediatric Infectious Diseases and Immunology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S González
- Melanoma and Skin Cancer Unit, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
37
|
Abstract
The vitamin D receptor (VDR) binds the secosteroid hormone 1,25(OH)2D3 with high affinity and regulates gene programs that control a serum calcium levels, as well as cell proliferation and differentiation. A significant focus has been to exploit the VDR in cancer settings. Although preclinical studies have been strongly encouraging, to date clinical trials have delivered equivocal findings that have paused the clinical translation of these compounds. However, it is entirely possible that mining of genomic data will help to refine precisely what are the key anticancer actions of vitamin D compounds and where these can be used most effectively.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH 43210, USA.
| | - Donald L Trump
- Department of Medicine, Inova Schar Cancer Institute, Virginia Commonwealth University, 3221 Gallows Road, Fairfax, VA 22031, USA
| |
Collapse
|
38
|
Vitamin D-Related Gene Polymorphisms, Plasma 25-Hydroxy-Vitamin D, Cigarette Smoke and Non-Small Cell Lung Cancer (NSCLC) Risk. Int J Mol Sci 2016; 17:ijms17101597. [PMID: 27669215 PMCID: PMC5085630 DOI: 10.3390/ijms17101597] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/22/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023] Open
Abstract
Epidemiological studies regarding the relationship between vitamin D, genetic polymorphisms in the vitamin D metabolism, cigarette smoke and non-small cell lung cancer (NSCLC) risk have not been investigated comprehensively. To search for additional evidence, the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and radioimmunoassay method were utilized to evaluate 5 single-nucleotide polymorphisms (SNPs) in vitamin D receptor (VDR), 6 SNPs in 24-hydroxylase (CYP24A1), 2 SNPs in 1α-hydroxylase (CYP27B1) and 2 SNPs in vitamin D-binding protein (group-specific component, GC) and plasma vitamin D levels in 426 NSCLC cases and 445 controls from China. Exposure to cigarette smoke was ascertained through questionnaire information. Multivariable linear regressions and mixed effects models were used in statistical analysis. The results showed that Reference SNP rs6068816 in CYP24A1, rs1544410 and rs731236 in VDR and rs7041 in GC were statistically significant in relation to reduction in NSCLC risk (p < 0.001-0.05). No significant connection was seen between NSCLC risk and overall plasma 25-hydroxyvitamin D [25(OH)D] concentrations, regardless of smoking status. However, the mutation genotype of CYP24A1 rs6068816 and VDR rs1544410 were also significantly associated with increased 25(OH)D levels only in both the smoker and non-smoker cases (p < 0.01-0.05). Meanwhile, smokers and non-smokers with mutated homozygous rs2181874 in CYP24A1 had significantly increased NSCLC risk (odds ratio (OR) = 2.14, 95% confidence interval (CI) 1.47-3.43; p = 0.031; OR = 3.57, 95% CI 2.66-4.74; p = 0.019, respectively). Smokers with mutated homozygous rs10735810 in VDR had significantly increased NSCLC risk (OR = 1.93, 95% CI 1.41-2.76; p = 0.015). However, smokers with mutated homozygous rs6068816 in CYP24A1 had significantly decreased NSCLC risk (OR = 0.43, 95% CI 0.27-1.02; p = 0.006); and smokers and non-smokers with mutated homozygous rs1544410 in VDR had significantly decreased NSCLC risk (OR = 0.51, 95% CI 0.34-1.17; p = 0.002; OR = 0.26, 95% CI 0.20-0.69; p = 0.001, respectively). There are significant joint effects between smoking and CYP24A1 rs2181874, CYP24A1 rs6068816, VDR rs10735810, and VDR rs1544410 (p < 0.01-0.05). Smokers with mutated homozygous rs10735810 in VDR had significantly increased NSCLC risk (OR = 1.93, 95% CI 1.41-2.76; p = 0.015). In summary, the results suggested that the lower the distribution of vitamin D concentration, the more the genetic variations in CYP24A1, VDR and GC genes may be associated with NSCLC risk. In addition, there are significant joint associations of cigarette smoking and vitamin D deficiency on NSCLC risk.
Collapse
|
39
|
Weng TY, Wang CY, Hung YH, Chen WC, Chen YL, Lai MD. Differential Expression Pattern of THBS1 and THBS2 in Lung Cancer: Clinical Outcome and a Systematic-Analysis of Microarray Databases. PLoS One 2016; 11:e0161007. [PMID: 27513329 PMCID: PMC4981437 DOI: 10.1371/journal.pone.0161007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
Thrombospondin 1 and thrombospondin 2 (THBS1 and THBS2) share similar multifunctional domains, and are known to be antiangiogenic. However, the expression pattern of THBS1 and THBS2 is different, and the specific role of THBS2 in different subtypes of lung cancer remains largely unclear. To evaluate the significance of THBS1 and THBS2 in the development of lung cancer, the present study performed a microarray-based systematic-analysis to determine the transcript levels of thrombospondins and their relation to the prognosis in lung cancer. THBS1 was in general underexpressed in lung cancer; in contrast, mRNA levels of THBS2 were markedly overexpressed in a number of datasets of non-small cell lung carcinoma (NSCLC), including lung adenocarcinoma (AC) and squamous cell carcinoma. Similar expression pattern of THBS1 and THBS2 was verified in pulmonary AC cell lines with real-time PCR analysis. The survival of lung AC patients with high THBS2 mRNA expression levels was poorer than patients with low levels of expression of THBS2. In a microarray-based analysis, genes coexpressed with THBS1 or THBS2 were determined. Pulmonary AC patients with a high expression level of sevenTSHB1-coexpressed genes (CCL5, CDH11, FYB, GZMK, LA-DQA1, PDE4DIP, and SELL) had better survival rates than those with a low expression level. Patients with a high expression of seven TSHB2-coexpressed genes (CHI3L1, COL5A2, COL11A1, FAP, MXRA5, THY1, and VCAN) had poor survival rates. Downregulation of VCAN and THBS2 with shRNA inhibited the cell proliferation in the A549 cell line. In summary, THBS1 functions as a tumor suppressor in lung adenocarcinoma. However, THBS2 may play a double-edged role in the progression of lung AC, i.e. anti-angiogenic and oncogenic function. Further study on the mechanism underlying the activity of THBS2 is warranted to have further implications for cancer diagnosis and treatment of pulmonary AC.
Collapse
Affiliation(s)
- Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center for Infectious Diseases and Signal Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Services Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Coleman LA, Mishina M, Thompson M, Spencer SM, Reber AJ, Davis WG, Cheng PY, Belongia EA, Talbot HK, Sundaram ME, Griffin MR, Shay DK, Sambhara S. Age, serum 25-hydroxyvitamin D and vitamin D receptor (VDR) expression and function in peripheral blood mononuclear cells. Oncotarget 2016; 7:35512-35521. [PMID: 27203211 PMCID: PMC5094941 DOI: 10.18632/oncotarget.9398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022] Open
Abstract
The relationship between age, vitamin D status, expression and functionality of the vitamin D receptor (VDR), and key genes in the vitamin D pathway in immune cells is unclear. We enrolled adults 50 to 69 years old (20 subjects) and 70+ (20 subjects) and measured: 1) 25(OH)D levels by liquid chromatography/mass spectrometry; and 2) mRNA expression of VDR, 1α-OHase, 1,25D3-MARRS, TREM-1, cathelicidin, RIG-I, and interferon-β by qRT-PCR. Mean serum 25(OH)D was 30 ± 4 ng/mL and was not associated with age. Baseline expression of VDR, 1α-OHase, 1,25D3-MARRS, TREM-1, and RIG-I also did not differ by age; IFN-β expression, however, was higher in the 70+ year old group. 25(OH)D3- and 1,25(OH)2D3-induced VDR, TREM-1 and cathelicidin expression were similar between age groups, as was LPS-induced expression of VDR and of 1α-OHase. Ligand-induced 1,25D3-MARRS expression was higher in subjects ≥ 70 years. Serum 25(OH)D was inversely associated with LPS-stimulated VDR expression and with baseline or vitamin D-induced TREM-1 expression, adjusting for age, self-rated health, and functional status. In healthy adults ≥ 50 years, the expression and functionality of the VDR, 1α-OHase and key vitamin D pathway genes were not consistently associated with age.
Collapse
Affiliation(s)
- Laura A. Coleman
- Abbott Nutrition, Columbus, OH, USA
- Marshfield Clinic, Marshfield, WI, USA
| | | | - Mark Thompson
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Adrian J. Reber
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William G. Davis
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Po-Yung Cheng
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Maria E. Sundaram
- Marshfield Clinic, Marshfield, WI, USA
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | | | - David K. Shay
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|