1
|
Gu X, Hu X, Zhang S, Zhang X, Wang Y, Li L. The diagnostic and prognostic significance of HOXC13-AS and its molecular regulatory mechanism in human cancer. Front Mol Biosci 2025; 12:1540048. [PMID: 39981436 PMCID: PMC11839424 DOI: 10.3389/fmolb.2025.1540048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
HOXC13 antisense RNA (HOXC13-AS, also known as HOXC-AS5) is a long non-coding RNA that is expressed abnormally in various types of tumors and is closely related to clinical staging, clinical pathological features, and patient survival. HOXC13-AS is involved in the occurrence and development of tumors, affecting cell proliferation, migration, invasion, epithelial-mesenchymal transition, and tumor growth. This review summarizes the clinical significance of HOXC13-AS as a biomarker for human tumor diagnosis and prognosis and outlines the function and molecular regulation mechanism of HOXC13-AS in various types of cancer, including nasopharyngeal carcinoma, breast cancer, oral squamous cell carcinoma, glioma, and cervical cancer. Overall, this review emphasizes the potential of HOXC13-AS as a human tumor predictive biomarker and therapeutic target, paving the way for its clinical application.
Collapse
Affiliation(s)
- Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Lin M, Mo Y, Li CM, Liu YZ, Feng XP. GRP78 as a potential therapeutic target in cancer treatment: an updated review of its role in chemoradiotherapy resistance of cancer cells. Med Oncol 2025; 42:49. [PMID: 39827214 DOI: 10.1007/s12032-024-02586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
GRP78 (Glucose-related protein 78, BiP/HSPA5) is commonly overexpressed in cancer cells. Acting as an activator of endoplasmic reticulum stress, GRP78 is involved in the resistance of cancer cells to injury. Current evidence suggests that GRP78 plays a significant role in the radiotherapy resistance and chemotherapy resistance of cancers, which is accomplished through a variety of complex pathways. These include the promotion of tumor stemness, inhibition of apoptosis, regulation of autophagy, maintenance of tumor microenvironment homeostasis, protection of dormant cells, evasion of senescence, counteraction of autoantibodies against GRP78, facilitation of DNA damage repair, suppression of ferroptosis, and modulation of metabolic reprogramming in tumor cells. Importantly, chemoradiotherapy resistance in cancers are the main reasons for treatment failure in patients, severely affecting their survival. Investigating the mechanisms of GRP78 in tumor therapeutic resistance is essential. In this article, we review the mechanisms by which GRP78 mediates cell survival and chemoradiotherapy resistance in cancers and provide an overview of clinical trials targeting GRP78 therapy.
Collapse
Affiliation(s)
- Min Lin
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yan Mo
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Cheng-Min Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ying-Zhe Liu
- Xiangya International Medical Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Xue-Ping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Hsu CY, Hisham Ateya N, Felix Oghenemaro E, Nathiya D, Kaur P, Hjazi A, Eldesoqui M, Yumashev A, Kadhim Abosaoda M, Adnan Abdulrahman M. Correlation between lncRNAs with human molecular chaperons in cancer immunopathogenesis and drug resistance. Int Immunopharmacol 2024; 143:113309. [PMID: 39405942 DOI: 10.1016/j.intimp.2024.113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024]
Abstract
The development of cancer immunology heavily relies on the interaction between long non-coding RNAs (lncRNAs) and molecular chaperones. By participating in gene regulation, lncRNAs interact with molecular chaperones, which play a critical role in protein folding and stress responses, to influence oncogenic pathways. This interaction has an impact on both the immune cells within the tumor microenvironment and the tumor cells themselves. Understanding these mechanisms provides valuable insights into innovative approaches for diagnosis and treatment. Targeting the lncRNA-chaperone axis has the potential to strengthen anti-tumor immunity and enhance cancer treatment outcomes. Further research is necessary to uncover specific associations, identify biomarkers, and develop personalized therapies aimed at disrupting this axis, which could potentially revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA.
| | - Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Iraq.
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Abraka, Delta State, Nigeria.
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Doctor of Medicine, Professor. Sechenov First Moscow State Medical University, Russia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq; College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
4
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
6
|
Zhang H, Lv Q, Zheng Z, Shen L, Zhou J, Xu Q, Guo M. Current knowledge of antisense long non-coding RNA in the occurrence and prognosis of skull base tumors. Heliyon 2024; 10:e35960. [PMID: 39224262 PMCID: PMC11367136 DOI: 10.1016/j.heliyon.2024.e35960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Antisense long non-coding RNA (AS-lncRNA) represents a novel class of RNA molecules. In recent years, it has been discovered that AS-lncRNAs play crucial roles in various biological processes, particularly in the onset and progression of tumors. Skull base tumors, originating from the base of the brain, exhibit specific expression patterns of AS-lncRNA which correlate significantly with clinical characteristics. This makes AS-lncRNA a promising candidate as a tumor marker. Functional studies have revealed that AS-lncRNAs can regulate gene expression by acting as miRNA sponges and interacting with RBPs. Consequently, they play pivotal roles in tumor cell cycle, apoptosis, angiogenesis, invasion, and metastasis processes. Further exploration into the mechanisms of AS-lncRNA in tumors holds substantial theoretical significance for deeper insights into the etiology, pathogenesis, and RNA dynamics of skull base tumors. Moreover, AS-lncRNA could serve as molecular markers or potential targets for early diagnosis. Their potential extends to efficacy assessment, prognosis prediction, and gene therapy, suggesting broad clinical applications. In summary, AS-lncRNA emerges as a promising molecular marker implicated in the onset and progression of skull base tumors.
Collapse
Affiliation(s)
- Han Zhang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
- The Shengzhou Hospital of Shaoxing University, Shengzhou, Zhejiang, China
| | - Qingwei Lv
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
| | - Ziqiang Zheng
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
| | - Liangjun Shen
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
| | - Qishen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
| | - Mi Guo
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
- The Shengzhou Hospital of Shaoxing University, Shengzhou, Zhejiang, China
| |
Collapse
|
7
|
Jasim SA, Al-Hawary SIS, Kaur I, Ahmad I, Hjazi A, Petkov I, Ali SHJ, Redhee AH, Shuhata Alubiady MH, Al-Ani AM. Critical role of exosome, exosomal non-coding RNAs and non-coding RNAs in head and neck cancer angiogenesis. Pathol Res Pract 2024; 256:155238. [PMID: 38493725 DOI: 10.1016/j.prp.2024.155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Head and neck cancer (HNC) refers to the epithelial malignancies of the upper aerodigestive tract. HNCs have a constant yet slow-growing rate with an unsatisfactory overall survival rate globally. The development of new blood vessels from existing blood conduits is regarded as angiogenesis, which is implicated in the growth, progression, and metastasis of cancer. Aberrant angiogenesis is a known contributor to human cancer progression. Representing a promising therapeutic target, the blockade of angiogenesis aids in the reduction of the tumor cells oxygen and nutrient supplies. Despite the promise, the association of existing anti-angiogenic approaches with severe side effects, elevated cancer regrowth rates, and limited survival advantages is incontrovertible. Exosomes appear to have an essential contribution to the support of vascular proliferation, the regulation of tumor growth, tumor invasion, and metastasis, as they are a key mediator of information transfer between cells. In the exocrine region, various types of noncoding RNAs (ncRNAs) identified to be enriched and stable and contribute to the occurrence and progression of cancer. Mounting evidence suggest that exosome-derived ncRNAs are implicated in tumor angiogenesis. In this review, the characteristics of angiogenesis, particularly in HNC, and the impact of ncRNAs on HNC angiogenesis will be outlined. Besides, we aim to provide an insight on the regulatory role of exosomes and exosome-derived ncRNAs in angiogenesis in different types of HNC.
Collapse
Affiliation(s)
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Iliya Petkov
- Medical University - Sofia, Department of Neurology, Sofia, Bulgaria
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | | | |
Collapse
|
8
|
Dzau VJ, Hodgkinson CP. RNA Therapeutics for the Cardiovascular System. Circulation 2024; 149:707-716. [PMID: 38408142 DOI: 10.1161/circulationaha.123.067373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA therapeutics hold significant promise in the treatment of cardiovascular diseases. RNAs are biologically diverse and functionally specific and can be used for gain- or loss-of-function purposes. The effectiveness of mRNA-based vaccines in the recent COVID-19 pandemic has undoubtedly proven the benefits of an RNA-based approach. RNA-based therapies are becoming more common as a treatment modality for cardiovascular disease. This is most evident in hypertension where several small interfering RNA-based drugs have proven to be effective in managing high blood pressure in several clinical trials. As befits a rapidly burgeoning field, there is significant interest in other classes of RNA. Revascularization of the infarcted heart through an mRNA drug is under clinical investigation. mRNA technology may provide the platform for the expression of paracrine factors for myocardial protection and regeneration. Emergent technologies on the basis of microRNAs and gene editing are tackling complex diseases in a novel fashion. RNA-based gene editing offers hope of permanent cures for monogenic cardiovascular diseases, and long-term control of complex diseases such as essential hypertension, as well. Likewise, microRNAs are proving effective in regenerating cardiac muscle. The aim of this review is to provide an overview of the current landscape of RNA-based therapies for the treatment of cardiovascular disease. The review describes the large number of RNA molecules that exist with a discussion of the clinical development of each RNA type. In addition, the review also presents a number of avenues for future development.
Collapse
Affiliation(s)
- Victor J Dzau
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC (V.J.D., C.P.H.)
- National Academy of Medicine, Washington, DC (V.J.D.)
| | - Conrad P Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC (V.J.D., C.P.H.)
| |
Collapse
|
9
|
Liu F, Wang Y, Huang D, Sun Y. LncRNA HOTAIR regulates the PI3K/AKT pathway via the miR-126-3p/PIK3R2 axis to participate in synovial angiogenesis in rheumatoid arthritis. Immun Inflamm Dis 2023; 11:e1064. [PMID: 37904709 PMCID: PMC10604569 DOI: 10.1002/iid3.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The abnormal expression of long noncoding RNA (LncRNA) HOTAIR has been associated with synovial angiogenesis in rheumatoid arthritis (RA). The aim of this study is to investigate whether LncRNA HOTAIR plays a role in synovial angiogenesis in RA by regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway through the miR-126-3p/PIK3R2 axis. METHODS In this study, we conducted in vitro experiments by designing overexpression plasmids and small interfering RNAs targeting LncRNA HOTAIR and then transfected them into rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). We then co-cultured the RA-FLS with human umbilical vein endothelial cells (HUVEC) to establish a RA-FLS-induced HUVEC model. We investigated the effects of LncRNA HOTAIR on the proliferation, migration, lumen forming ability of HUVEC, as well as the expression of synovial endothelial cell markers, angiogenic factors, and the PI3K/AKT pathway. To validate the interactions between LncRNA HOTAIR, miR-126-3p, and PIK3R2, we used bioinformatics and luciferase reporter experiments. We also employed real-time fluorescence quantitative, Western blotanalysis, and immunofluorescence techniques to analyze the target genes and proteins. RESULTS The expression of LncRNA HOTAIR was upregulated in HUVEC induced by RA-FLS. The overexpression of LncRNA HOTAIR significantly increased the expression of vascular endothelial growth factor, basic fibroblast growth factor, CD34, and CD105 in HUVEC, promoting their proliferation, migration, and lumen formation. At the same time, the overexpression of LncRNA HOTAIR inhibited the expression of miR-126-3p, promoted the expression of PIK3R2, activated the PI3K/AKT pathway, and promoted the expression of PI3K, AKT and phosphorylated-AKT, while the silence of LncRNA HOTAIR reversed these expressions. Bioinformatics and double luciferase reporter gene experiments confirmed the targeting relationship among LncRNA HOTAIR, miR-126-3p, and PIK3R2. Finally, the rescue experiments showed that PI3K agonists could reverse the inhibitory effect of silent LncRNA HOTAIR on HUVEC. CONCLUSION LncRNA HOTAIR has the potential to activate the PI3K/AKT pathway, likely through the regulatory axis involving miR-126-3p/PIK3R2, consequently contributing to synovial angiogenesis in RA.
Collapse
Affiliation(s)
- Feifei Liu
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Yuan Wang
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Dan Huang
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Yanqiu Sun
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| |
Collapse
|
10
|
Duan SL, Fu WJ, Jiang YK, Peng LS, Ousmane D, Zhang ZJ, Wang JP. Emerging role of exosome-derived non-coding RNAs in tumor-associated angiogenesis of tumor microenvironment. Front Mol Biosci 2023; 10:1220193. [PMID: 37602326 PMCID: PMC10436220 DOI: 10.3389/fmolb.2023.1220193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate ecosystem that is actively involved in various stages of cancer occurrence and development. Some characteristics of tumor biological behavior, such as proliferation, migration, invasion, inhibition of apoptosis, immune escape, angiogenesis, and metabolic reprogramming, are affected by TME. Studies have shown that non-coding RNAs, especially long-chain non-coding RNAs and microRNAs in cancer-derived exosomes, facilitate intercellular communication as a mechanism for regulating angiogenesis. They stimulate tumor growth, as well as angiogenesis, metastasis, and reprogramming of the TME. Exploring the relationship between exogenous non-coding RNAs and tumor-associated endothelial cells, as well as their role in angiogenesis, clinicians will gain new insights into treatment as a result.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei-Jie Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying-Ke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lu-Shan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Diabate Ousmane
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jun-Pu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Villa GR, Chiocca EA. The Role of Long Noncoding Ribonucleic Acids in Glioblastoma: What the Neurosurgeon Should Know. Neurosurgery 2023; 92:1104-1111. [PMID: 36880757 DOI: 10.1227/neu.0000000000002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 03/08/2023] Open
Abstract
A significant proportion of the human transcriptome, long noncoding RNAs (lncRNAs) play pivotal roles in several aspects of glioblastoma (GBM) pathophysiology including proliferation, invasion, radiation and temozolomide resistance, and immune modulation. The majority of lncRNAs exhibit tissue- and tumor-specific expression, lending them to be attractive targets for therapeutic translation. In recent years, unprecedented progress has been made toward our understanding of lncRNA in GBM. In this review, we discuss the function of lncRNAs, including specific lncRNAs that have critical roles in key aspects of GBM pathophysiology, and potential clinical relevance of lncRNAs for patients with GBM.
Collapse
Affiliation(s)
- Genaro Rodriguez Villa
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | | |
Collapse
|
12
|
Raju GSR, Pavitra E, Bandaru SS, Varaprasad GL, Nagaraju GP, Malla RR, Huh YS, Han YK. HOTAIR: a potential metastatic, drug-resistant and prognostic regulator of breast cancer. Mol Cancer 2023; 22:65. [PMID: 36997931 PMCID: PMC10061914 DOI: 10.1186/s12943-023-01765-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is an oncogenic non-coding RNA whose expression is strongly correlated with the tumor grade and prognosis of a variety of carcinomas including breast cancer (BC). HOTAIR regulates various target genes via sponging and epigenetic mechanisms and controls various oncogenic cellular and signaling mechanisms including metastasis and drug resistance. In BC cells, HOTAIR expression is regulated by a variety of transcriptional and epigenetic mechanisms. In this review, we describe the regulatory mechanisms that govern HOTAIR expression during cancer development and explore how HOTAIR drives BC development, metastasis, and drug resistance. In the final section of this review, we focus on the role of HOTAIR in BC management, therapeutic treatment, and prognosis, highlighting its potential therapeutic applications.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Ganji Lakshmi Varaprasad
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
13
|
Li Y, Bi J, Pi G, He H, Li Y, Han G. Exploration of prognostic biomarkers in head and neck squamous cell carcinoma microenvironment from TCGA database. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:163. [PMID: 36923087 PMCID: PMC10009575 DOI: 10.21037/atm-22-6481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023]
Abstract
Background Immune checkpoint blockade (ICB) therapies have redefined human cancer treatment, including for head and neck squamous cell carcinoma (HNSCC). However, clinical responses to various immune checkpoint inhibitors are often accompanied by immune-related adverse events (irAEs). Therefore, it is crucial to obtain a comprehensive understanding of the association between different immune tumor microenvironments (TMEs) and the immunotherapeutic response. Methods The research data were obtained from The Cancer Genome Atlas (TCGA) database. We applied RNA-seq genomic data from tumor biopsies to assess the immune TME in HNSCC. As the TME is a heterogeneous system that is highly associated with HNSCC progression and clinical outcome, we relied on the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm to calculate immune and stromal scores that were evaluated based on the immune or stromal components in the TME. Then, the Tumor Immune Dysfunction and Exclusion algorithm (TIDE) was used to predict the benefits of ICB to each patient. Finally, we identified specific prognostic tumor-infiltrating immune cells (TIICs) by quantifying the cellular composition of the immune response in HNSCC and its association to survival outcome, using the CIBERSORT algorithm. Results Utilizing the HNSCC cohort of the TCGA database and TIDE and ESTIMATE algorithm-derived immune scores, we obtained a list of microenvironment-associated lncRNAs that predicted different clinical outcomes in HNSCC patients. We validated these correlations in a different HNSCC cohort available from the TCGA database and provided insight into the prediction of response to ICB therapies in HNSCC. Conclusions This study confirmed that CD8+ T cells were significantly associated with better survival in HNSCC and verified that the top five significantly mutated genes (SMGs) in the TCGA HNSCC cohort were TP53, TTN, FAT1, CDKN2A, and MUC16. A high level of CD8+ T cells and high immune and stroma scores corresponded to a better survival probability in HNSCC.
Collapse
Affiliation(s)
- Ying Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Bi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Pi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanping He
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanping Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Han
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Guo F, Chen D, Zong Z, Wu W, Mo C, Zheng Z, Li J, Zhang X, Xiong D. Comprehensive analysis of aberrantly expressed circRNAs, mRNAs and lncRNAs in patients with nasopharyngeal carcinoma. J Clin Lab Anal 2023; 37:e24836. [PMID: 36597889 PMCID: PMC9937882 DOI: 10.1002/jcla.24836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The location of nasopharyngeal cancer is hidden, so it is difficult to diagnose at an early stage. In this study, we aimed to investigate the expression profiles of circRNAs, mRNAs and IncRNAs and to provide some basis for further studies. METHODS Expression profiles of circRNAs, mRNAs, and lncRNAs were analyzed using microarray techniques. The differentially expressed ncRNA was calculated by bioinformatics. RESULTS A total of 3048 circRNAs, 2179 lncRNAs, and 2015 mRNAs were detected to be significantly differentially expressed in NPC. The most upregulated circRNAs, lncRNAs, and mRNAs were hsa-circ-0067562, NONHSAT232922.1, and HOXB13, respectively. And, the most downregulated circRNAs, lncRNAs, and mRNAs were hsa_circ_0078837, lnc-TTC8-4:3, and LTF, respectively. The number of upregulated DE lncRNAs was more than twice than those downregulated. Our data showed that 80.44% of pairs of lncRNAs and cis-mRNAs demonstrated positive correlations. For lncRNAs and trans-mRNAs pairs, 53.7% of pairs showed positive correlation. LncRNA-mediated cis regulation is a prevalent regulatory mode in the development of nasopharyngeal carcinoma. CR1, LRMP and SORBS2 are predicted to be mediated not only by cis-acting lncRNA modes of action, but also by trans-acting lncRNA mechanisms. Additionally, we constructed a diagnostic prediction model with a high sensitivity and specificity. CONCLUSION Our study characterized the landscape of circRNAs, mRNAs and lncRNAs in NPC tissue and provided novel insights into the molecular mechanisms of NPC.
Collapse
Affiliation(s)
- Feifan Guo
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dayang Chen
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zengyan Zong
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Wei Wu
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Chan Mo
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zhou Zheng
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Jian Li
- Department of Otolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina,Guangzhou Key Laboratory of OtorhinolaryngologyGuangzhouChina
| | - Xiuming Zhang
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dan Xiong
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
15
|
Xiang Y, Hua Q. The Role and Mechanism of Long Non-Coding RNA HOTAIR in the Oncogenesis, Diagnosis, and Treatment of Head and Neck Squamous Cell Carcinoma. Clin Med Insights Oncol 2023; 17:11795549231169099. [PMID: 37153904 PMCID: PMC10161338 DOI: 10.1177/11795549231169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023] Open
Abstract
The most frequent malignant tumor of the head and neck is head and neck squamous cell carcinoma (HNSCC), which has a high frequency, a poor prognosis in the late stages, and subpar therapeutic results. As a result, early HNSCC diagnosis and treatment are urgently needed; however, there are no good diagnostic biomarkers or efficient therapeutic targets at this time. The long-stranded non-coding RNA HOTAIR may be important in the pathogenesis of cancer, according to recent research. By interactions with DNA, RNA, and proteins, it has been demonstrated that HOTAIR, a >200 nucleotide RNA transcript, plays a role in the biological processes of many types of tumor cells, including proliferation, metastasis, and prognosis of HNSCC. Hence, this review discusses HOTAIR's function and molecular mechanisms in HNSCC.
Collapse
Affiliation(s)
| | - Qingquan Hua
- Qingquan Hua, Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China.
| |
Collapse
|
16
|
Feng B, Chen K, Zhang W, Zheng Q, He Y. Silencing of
lncRNA MIR31HG
promotes nasopharyngeal carcinoma cell proliferation and inhibits apoptosis through suppressing the
PI3K
/
AKT
signaling pathway. J Clin Lab Anal 2022; 36:e24720. [DOI: 10.1002/jcla.24720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bo Feng
- Department of Otorhinolaryngology The Affiliated Hospital of Medical School of Ningbo University Ningbo City China
| | - Ke Chen
- Department of Radiochemotherapy Yinzhou Hospital Affiliated to Medical School of Ningbo University Ningbo City China
| | - Weiwei Zhang
- Department of Otorhinolaryngology The Affiliated Hospital of Medical School of Ningbo University Ningbo City China
| | - Qi Zheng
- Department of Otorhinolaryngology The Affiliated Hospital of Medical School of Ningbo University Ningbo City China
| | - Yong He
- Department of Otorhinolaryngology The Affiliated Hospital of Medical School of Ningbo University Ningbo City China
| |
Collapse
|
17
|
Eisa NH, Said E, Khodir AE, Sabry D, Ebrahim HA, Elsherbini DMA, Altemani R, Alnasser DM, Elsherbiny NM, El-Sherbiny M. Effect of Diacerein on HOTAIR/IL-6/STAT3, Wnt/β-Catenin and TLR-4/NF-κB/TNF-α axes in colon carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103943. [PMID: 35934220 DOI: 10.1016/j.etap.2022.103943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality and poor prognosis. Diacerein (DIA) is an anti-inflammatory used for treatment of osteoarthritis. We delineated some underlying molecular mechanisms of DIA's anti-carcinogenic effect in CRC using in vivo and in vitro models. Human Caco-2 cells were treated with DIA followed by MTT and Annexin V assays and CRC was experimentally induced using 1,2-dimethylhydrazine. DIA (50 mg/kg/day, orally) was administrated for 8 weeks. The MTT assay confirmed cytotoxic effect of DIA in vitro and Annexin V confirmed its apoptotic effect. DIA resulted in regression of tumour lesions with reduced colonic TLR4, NF-κB and TNF-α protein levels and down-regulated VEGF expression, confirming anti-angiogenic impact. DIA triggered caspase-3 expression and regulated Wnt/β-Catenin pathway, by apparently interrupting the IL-6/STAT3/ lncRNA HOTAIR axis. In conclusion, DIA disrupted IL-6/STAT3/ lncRNA HOTAIR axis which could offer an effective therapeutic strategy for the management of CRC.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reem Altemani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nehal M Elsherbiny
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
18
|
Interactome battling of lncRNA CCDC144NL-AS1: Its role in the emergence and ferocity of cancer and beyond. Int J Biol Macromol 2022; 222:1676-1687. [PMID: 36179873 DOI: 10.1016/j.ijbiomac.2022.09.209] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) were, once, viewed as "noise" for transcription. Recently, many lncRNAs are functionally linked to several human disorders, including cancer. Coiled-Coil Domain Containing 144 N-Terminal-Like antisense1 (CCDC144NL-AS1) is a newly discovered cytosolic lncRNA. Aberrant CCDC144NL-AS1 expression was discovered in hepatocellular carcinoma (HCC), ovarian cancer (OC), gastric cancer (GC), non-small cell lung cancer (NSCLC), and osteosarcoma. CCDC144NL-AS1 could be a promising prognostic biological marker and therapeutic target for cancer. In this review, we will collect and highlight the available information about CCDC144NL-AS1 role in various cancers. Moreover, we will discuss the diagnostic and prognostic utility of CCDC144NL-AS1 as a new molecular biomarker for several human malignancies, besides its potential therapeutic importance.
Collapse
|
19
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
20
|
The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology. Mol Biol Rep 2022; 49:10825-10847. [DOI: 10.1007/s11033-022-07770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|
21
|
Long non-coding RNAs involved in different steps of cancer metastasis. Clin Transl Oncol 2022; 24:997-1013. [PMID: 35119654 DOI: 10.1007/s12094-021-02761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Non-proteincoding transcripts bearing 200 base pairs known as long non-coding RNAs (lncRNAs) play a role in a variety of molecular mechanisms, including cell differentiation, apoptosis and metastasis. Previous studies have suggested that frequently dysregulated lncRNAs play a crucial role in various aspects of cancer metastasis. Metastasis is the main leading cause of death in cancer. The role of lncRNAs in different stages of metastasis is the subject of this review. Based on in vitro and in vivo investigations on metastasis, we categorized lncRNAs into distinct stages of metastasis including angiogenesis, invasion, intravasation, survival in circulation, and extravasation. The involvement of lncRNAs in angiogenesis and invasion has been extensively studied. Here, we comprehensively discuss the role and functions of these lncRNAs with a particular focus on the molecular mechanisms.
Collapse
|
22
|
Effects of Cisplatin Combined with Metformin on Proliferation and Apoptosis of Nasopharyngeal Carcinoma Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2056247. [PMID: 35422875 PMCID: PMC9005312 DOI: 10.1155/2022/2056247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is an invasive squamous cell carcinoma located in the nasopharynx. NPC has a high recurrence risk after initial treatment due to its high metastatic and immune escape potential. One study has found that metformin can improve cancer outcomes and reduce cancer incidence. Objective With antitumor activity, metformin can have low toxicity when used in combination with some common chemotherapy drugs. This study was designed to explore the effects of cisplatin combined with metformin on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) cells. Methods An appropriate cisplatin concentration was selected for NPC cells, and the cells were treated with metformin at a gradient concentration, and then, some of them were treated with cisplatin. Subsequently, the biological effects (activity, migration, invasion, and apoptosis) of metformin alone and metformin combined with cisplatin on NPC cells were evaluated. Results Metformin alone inhibited cell activity, migration, and invasion and promoted cell apoptosis in a concentration-dependent and time-dependent manner, while compared with cisplatin alone, cisplatin combined with metformin had stronger inhibition on cell activity, migration, and invasion and stronger induction to cell apoptosis, and a higher concentration of them demonstrated stronger effects. Conclusion Cisplatin combined with metformin can strongly inhibit the activity of NPC cells and promote their apoptosis.
Collapse
|
23
|
Long Noncoding RNA Hotair Promotes the Progression and Immune Escape in Laryngeal Squamous Cell Carcinoma through MicroRNA-30a/GRP78/PD-L1 Axis. J Immunol Res 2022; 2022:5141426. [PMID: 35419461 PMCID: PMC9001128 DOI: 10.1155/2022/5141426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Homeobox (HOX) transcript antisense RNA (Hotair) is elevated in many cancers significantly. However, the oncogenic role of Hotair in human laryngeal squamous cell carcinoma (LSCC) is still unknown. Thus, we explored the expression profile of Hotair and its function in LSCC. We observed high expression levels of Hotair in six LSCC cell lines compared to the human nasopharyngeal epithelial cell line. Knockdown of Hotair inhibited proliferation and enhanced apoptosis of Tu212 and Hep-2 cell lines in vitro. Moreover, the overexpression of hsa-miR-30a-5p inhibited the expression of GRP78 and PD-L1, but Hotair overexpression in LSCC cells rescues both proteins. Furthermore, the impacts of hsa-miR-30a-5p upregulation on the apoptosis and proliferation of LSCC cells were rescued by overexpression of Hotair. Finally, we combined si-Hotair and a VEGF inhibitor to treat LSCC cells in vitro or in vivo and surprisingly observed a significant inhibition of LSCC growth. In summary, these results indicate that Hotair displays an oncogenic role in both malignancy and immune escape in LSCC related to hsa-miR-30a-5p/GRP78/PD-L1 signaling. Therefore, Hotair may be a potential target for treating LSCC.
Collapse
|
24
|
Born LJ, Kai-Hua Chang, Shoureshi P, Lay F, Bengali S, Hsu ATW, Abadchi SN, Harmon JW, Jay SM. HOTAIR-Loaded Mesenchymal Stem/Stromal Cell Extracellular Vesicles Enhance Angiogenesis and Wound Healing. Adv Healthc Mater 2022; 11:e2002070. [PMID: 33870645 PMCID: PMC8522167 DOI: 10.1002/adhm.202002070] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Chronic wounds remain a substantial source of morbidity worldwide. An emergent approach that may be well-suited to induce the complex, multicellular processes such as angiogenesis that are required for wound repair is the use of extracellular vesicles (EVs). EVs contain a wide variety of proteins and nucleic acids that enable multifactorial signaling. Here, the capability of EVs is leveraged to be engineered via producer cell modification to investigate the therapeutic potential of EVs from mesenchymal stem/stromal cells (MSCs) transfected to overexpress long non-coding RNA HOX transcript antisense RNA (HOTAIR). HOTAIR is previously shown by the authors' group to be critical in mediating angiogenic effects of endothelial cell EVs, and MSCs are chosen as EV producer cells for this study due to their widely reported intrinsic angiogenic properties. The results indicate that MSCs overexpressing HOTAIR (HOTAIR-MSCs) produce EVs with increased HOTAIR content that promote angiogenesis and wound healing in diabetic (db/db) mice. Further, endothelial cells exposed to HOTAIR-MSC EVs exhibit increased HOTAIR content correlated with upregulation of the angiogenic protein vascular endothelial growth factor. Thus, this study supports EV-mediated HOTAIR delivery as a strategy for further exploration toward healing of chronic wounds.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kai-Hua Chang
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pouria Shoureshi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank Lay
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sameer Bengali
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angela Ting Wei Hsu
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Nourmohammadi Abadchi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John W. Harmon
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA,Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
25
|
Mabeta P, Hull R, Dlamini Z. LncRNAs and the Angiogenic Switch in Cancer: Clinical Significance and Therapeutic Opportunities. Genes (Basel) 2022; 13:152. [PMID: 35052495 PMCID: PMC8774855 DOI: 10.3390/genes13010152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer, and the establishment of new blood vessels is vital to allow for a tumour to grow beyond 1-2 mm in size. The angiogenic switch is the term given to the point where the number or activity of the pro-angiogenic factors exceeds that of the anti-angiogenic factors, resulting in the angiogenic process proceeding, giving rise to new blood vessels accompanied by increased tumour growth, metastasis, and potential drug resistance. Long noncoding ribonucleic acids (lncRNAs) have been found to play a role in the angiogenic switch by regulating gene expression, transcription, translation, and post translation modification. In this regard they play both anti-angiogenic and pro-angiogenic roles. The expression levels of the pro-angiogenic lncRNAs have been found to correlate with patient survival. These lncRNAs are also potential drug targets for the development of therapies that will inhibit or modify tumour angiogenesis. Here we review the roles of lncRNAs in regulating the angiogenic switch. We cover specific examples of both pro and anti-angiogenic lncRNAs and discuss their potential use as both prognostic biomarkers and targets for the development of future therapies.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
26
|
Chien CY, Chen YC, Lee CH, Wu JR, Huang TW, Huang RY, Cheng WC, Hsieh ACT, Shieh YS. Dysregulation of the miR-30a/BiP axis by cigarette smoking accelerates oral cancer progression. Cancer Cell Int 2021; 21:578. [PMID: 34717640 PMCID: PMC8557586 DOI: 10.1186/s12935-021-02276-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Background Cigarette smoking is the most significant cause of oral cancer progression. Cigarette smoke condensate (CSC) has been shown to induce endoplasmic reticulum (ER) stress. Binding immunoglobulin protein (BiP) being as an ER stress regulator, has been reported to be implicated in malignant behaviors. Therefore, the aim of this study was to investigate the role of the ER stress-responsive protein, BiP, in CSC-induced oral squamous cell carcinoma (OSCC) malignancy. Methods The biological role of BiP in CSC-induced tumor progression was investigated in OSCC cells (YD38 and SCC25) and in a tumor xenograft mouse model. The expressions of related genes were investigated using quantitative RT-PCR and Western blot analysis. Cell migration and invasion were assessed using scratch wound healing and Transwell invasion assays. The effects of conditioned media from OSCC cells on the angiogenic activities of endothelial cells were analyzed using a tube formation assay. The interaction between miR-30a and BiP mRNA was detected using a luciferase reporter assay. Results Our results demonstrated that CSC increased the expression of BiP in time- and dose-dependent manners in YD38 and SCC25 cells, and that silencing BiP abrogated CSC-induced cell invasion and tumor-associated angiogenesis. Notably, the putative miR-30a binding site was observed in the 3′untranslated region (UTR) of BiP mRNA, and miR-30a suppressed BiP expression by targeting 3′UTR of BiP transcript. In addition, CSC increased the expression of BiP in OSCC cells by downregulating miR-30a. We also showed that BiP promoted invasion and tumor-associated angiogenesis by increasing the production and secretion of vascular endothelial growth factor in CSC-exposed OSCC cells. Moreover, BiP inhibition suppressed OSCC growth and reduced tumor vessel density in tumor-bearing mice administered with CSC. Conclusions These observations suggest that epigenetic regulation of BiP via miR-30a downregulation is involved in CSC-induced OSCC progression.
Collapse
Affiliation(s)
- Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Ying-Chen Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan.,Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Jia-Rong Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Ren-Yeong Huang
- School of Dentistry, National Defense Medical Center, Taipei City, 114, Taiwan.,Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Wan-Chien Cheng
- School of Dentistry, National Defense Medical Center, Taipei City, 114, Taiwan.,Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | | | - Yi-Shing Shieh
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei City, Taiwan. .,School of Dentistry, National Defense Medical Center, Taipei City, 114, Taiwan. .,Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan.
| |
Collapse
|
27
|
Song X, Guo Y, Song P, Duan D, Guo W. Non-coding RNAs in Regulating Tumor Angiogenesis. Front Cell Dev Biol 2021; 9:751578. [PMID: 34616746 PMCID: PMC8488154 DOI: 10.3389/fcell.2021.751578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins, but perform biological functions in various physiological and pathological processes, including cancer formation, inflammation, and neurological diseases. Tumor blood vessels are a key target for cancer management. A number of factors regulate the angiogenesis of malignant tumors. NcRNAs participate in the regulation of tumor angiogenesis. Abnormal expression of ncRNAs act as tumor suppressors or oncogenes to affect the development of tumors. In this review we summarized the biological functions of ncRNAs, and discussed its regulatory mechanisms in tumor angiogenesis. This article will provide new insights for the research of ncRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Xin Song
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yanan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Peng Song
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM, Lanzhou, China
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Wenjing Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
28
|
Long non-coding RNAs and circular RNAs in tumor angiogenesis: From mechanisms to clinical significance. Mol Ther Oncolytics 2021; 22:336-354. [PMID: 34553023 PMCID: PMC8426176 DOI: 10.1016/j.omto.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) execute a wide array of functions in physiological and pathological processes, including tumor progression. Angiogenesis, an elaborate multistep process driving new blood vessel formation, accelerates cancer progression by supplying nutrients and energy. Dysregulated lncRNAs and circRNAs can reportedly impact cancer progression by influencing angiogenesis. However, the expanding landscape of lncRNAs and circRNAs in tumor progression-dependent angiogenesis remains largely unknown. This review summarizes the major functions of angiogenic lncRNAs (Angio-LncRs) and angiogenic circRNAs (termed Angio-CircRs) and their cancer mechanisms. Moreover, we highlight the commonalities of lncRNAs and circRNAs in epigenetic, transcriptional, and post-transcriptional regulation as well as illustrate how Angio-LncRs and Angio-CircRs induce cancer onset and progression. We also discuss their potential clinical applications in diagnosis, prognosis, and anti-angiogenic therapies.
Collapse
|
29
|
Liguori G, Cerrone M, De Chiara A, Tafuto S, de Bellis MT, Botti G, Di Bonito M, Cantile M. The Role of lncRNAs in Rare Tumors with a Focus on HOX Transcript Antisense RNA ( HOTAIR). Int J Mol Sci 2021; 22:ijms221810160. [PMID: 34576322 PMCID: PMC8466298 DOI: 10.3390/ijms221810160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Rare cancers are identified as those with an annual incidence of fewer than 6 per 100,000 persons and includes both epithelial and stromal tumors from different anatomical areas. The advancement of analytical methods has produced an accurate molecular characterization of most human cancers, suggesting a “molecular classification” that has allowed the establishment of increasingly personalized therapeutic strategies. However, the limited availability of rare cancer samples has resulted in very few therapeutic options for these tumors, often leading to poor prognosis. Long non coding RNAs (lncRNAs) are a class of non-coding RNAs mostly involved in tumor progression and drug response. In particular, the lncRNA HOX transcript antisense RNA (HOTAIR) represents an emergent diagnostic, prognostic and predictive biomarker in many human cancers. The aim of this review is to highlight the role of HOTAIR in rare cancers, proposing it as a new biomarker usable in the management of these tumors.
Collapse
Affiliation(s)
- Giuseppina Liguori
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Margherita Cerrone
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Maura Tracey de Bellis
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
- Correspondence: ; Tel.: +39-08159031755; Fax: +39-0815903718
| |
Collapse
|
30
|
Tang Z, Zeng X, Li J, Qiu S, Zhao H, Wang Z, Zheng Y. LncRNA HOXC-AS1 promotes nasopharyngeal carcinoma (NPC) progression by sponging miR-4651 and subsequently upregulating FOXO6. J Pharmacol Sci 2021; 147:284-293. [PMID: 34507637 DOI: 10.1016/j.jphs.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence rate of nasopharyngeal carcinoma (NPC) is the highest among the malignant tumors of otorhinolaryngology, posing a huge burden to public health. Long noncoding RNAs (lncRNAs) exert an important role in tumorigenesis and the progression of various cancers. The present study found that HOXC-AS1 was highly expressed in NPC and in NPC cell lines, suggesting a critical role of HOXC-AS1 in NPC progression. In addition, the abundance of HOXC-AS1 was negatively correlated with the prognosis of NPC. To molecularly dissect the mechanism of HOXC-AS1 in NPC progression, we knocked down the expression of HOXC-AS1 in HNE1 and C666-1 cells. Then, we employed CCK8, colony-formation experiment and Transwell to investigate how the cell performed when HOXC-AS1 was knocked down. It could be observed that HOXC-AS1 knockdown decreases cell proliferation, migration and invasion, but induces cell apoptosis in NPC. We found that HOXC-AS1 could sponge miR-4651 subsequently binding FOXO6 and inhibiting its expression. Therefore, HOXC-AS1/miR-4651/FOXO6 may form a competing endogenous RNA (ceRNA) network that promotes NPC progression. In conclusion, our study demonstrates that HOXC-AS1 promotes NPC progression by sponging miR-4651 and regulating FOXO6 expression, thus providing potential pharmaceutical targets for developing new NPC treatments.
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 51000, Guangdong, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, 518172, China
| | - Juanjuan Li
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, 518172, China
| | - Shuqi Qiu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, 518172, China
| | - Hailiang Zhao
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, 518172, China
| | - Zaixing Wang
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, 518172, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 51000, Guangdong, China.
| |
Collapse
|
31
|
Price RL, Bhan A, Mandal SS. HOTAIR beyond repression: In protein degradation, inflammation, DNA damage response, and cell signaling. DNA Repair (Amst) 2021; 105:103141. [PMID: 34183273 PMCID: PMC10426209 DOI: 10.1016/j.dnarep.2021.103141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are pervasively transcribed from the mammalian genome as transcripts that are usually >200 nucleotides long. LncRNAs generally do not encode proteins but are involved in a variety of physiological processes, principally as epigenetic regulators. HOX transcript antisense intergenic RNA (HOTAIR) is a well-characterized lncRNA that has been implicated in several cancers and in various other diseases. HOTAIR is a repressor lncRNA and regulates various repressive chromatin modifications. However, recent studies have revealed additional functions of HOTAIR in regulation of protein degradation, microRNA (miRNA) sponging, NF-κB activation, inflammation, immune signaling, and DNA damage response. Herein, we have summarized the diverse functions and modes of action of HOTAIR in protein degradation, inflammation, DNA repair, and diseases, beyond its established functions in gene silencing.
Collapse
Affiliation(s)
- Rachel L Price
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Arunoday Bhan
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States.
| |
Collapse
|
32
|
Yang H, Pan Y, Zhang J, Jin L, Zhang X. LncRNA FOXD3-AS1 Promotes the Malignant Progression of Nasopharyngeal Carcinoma Through Enhancing the Transcription of YBX1 by H3K27Ac Modification. Front Oncol 2021; 11:715635. [PMID: 34395290 PMCID: PMC8359730 DOI: 10.3389/fonc.2021.715635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can affect the progression of various tumors, including nasopharyngeal carcinoma (NPC). Here, lncRNA FOXD3-AS1 is highly expressed in NPC tissues through bioinformatics analysis and related to the malignant progression of NPC. METHODS Bioinformatics analysis and real-time reverse transcription quantitative PCR(RT-qPCR) assay were applied to identify the expression of FOXD3-AS1 in NPC tissues and cells. Specific short hairpin RNAs (shRNAs) or overexpression plasmids were used to knockdown or upregulate FOXD3-AS1 in NPC cells. The effect of FOXD3-AS1 on proliferation and metastasis of NPC was confirmed by CCK8, colony formation, transwell assays in vitro and mouse tumor growth and metastasis models in vivo, of which the mechanism was explored by RNA pull down, mass spectrometry (MS), RNA Immunoprecipitation (RIP), chromatin immunoprecipitation (CHIP) and luciferase assays. RESULTS FOXD3-AS1 was highly expressed in NPC tissues and cells. Knockdown of FOXD3-AS1 significantly inhibited proliferation, migration, and invasion of NPC cells in vitro and vivo. FOXD3-AS1 could specifically bind to YBX1 and have a positive effect on the expression of YBX1. Bioinformatics analysis showed that the promoter of YBX1 had a high enrichment of H3K27ac, which promote mRNA transcription and protein translation of YBX1. Moreover, overexpression of YBX1 could reverse the proliferation, migration and invasion arrest caused by FOXD3-AS1 knockdown. CONCLUSION LncRNA FOXD3-AS1 is highly expressed and promotes malignant phenotype in NPC, which may provide a new molecular mechanism for NPC.
Collapse
Affiliation(s)
- Huiyun Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Chi K, Geng X, Liu C, Zhang Y, Cui J, Cai G, Chen X, Wang F, Hong Q. LncRNA-HOTAIR promotes endothelial cell pyroptosis by regulating the miR-22/NLRP3 axis in hyperuricaemia. J Cell Mol Med 2021; 25:8504-8521. [PMID: 34296520 PMCID: PMC8419175 DOI: 10.1111/jcmm.16812] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Long non‐coding RNA (lncRNA) plays an important role in the renal inflammatory response caused by hyperuricaemia. However, the underlying molecular mechanisms through which lncRNA is involved in endothelial injury induced by hyperuricaemia remain unclear. In this study, we investigated the regulatory role of lncRNA‐HOTAIR in high concentration of uric acid (HUA)–induced renal injury. We established hyperuricaemia mouse model and an in vitro uric acid (UA)–induced human umbilical vein endothelial cell (HUVEC) injury model. In HUA‐treated HUVECs and hyperuricaemia mice, we observed increased HOTAIR and decreased miR‐22 expression. The expression of pyroptosis‐associated protein (NLRP3, Caspase‐1, GSDMD‐N, GSDMD‐FL) was increased. The release of LDH, IL‐1β and IL‐18 in cell supernatants and the sera of model mice was also increased. The proliferation of HUVECs stimulated by HUA was significantly inhibited, and the number of TUNEL‐positive cells in hyperuricaemia mouse kidney was increased. Bioinformatics analysis and luciferase reporter and RIP assays confirmed that HOTAIR promoted NLRP3 inflammasome activation by competitively binding miR‐22. In gain‐ or loss‐of‐function experiments, we found that HOTAIR and NLRP3 overexpression or miR‐22 knock down activated the NLRP3 inflammasome and promoted pyroptosis in HUA‐treated HUVECs, while NLRP3 and HOTAIR knockdown or a miR‐22 mimic exerted the opposite effects. Furthermore, in vivo experiments validated that HOTAIR knockdown alleviated renal inflammation in hyperuricaemia mice. In conclusion, we demonstrated that in hyperuricaemia, lncRNA‐HOTAIR promotes endothelial cell pyroptosis by competitively binding miR‐22 to regulate NLRP3 expression.
Collapse
Affiliation(s)
- Kun Chi
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China.,Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force Qinhuangdao, Qinhuangdao, China
| | - Chao Liu
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yang Zhang
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Jie Cui
- Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force Qinhuangdao, Qinhuangdao, China
| | - GuangYan Cai
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Fangfang Wang
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research., Peking University Third Hospital, Beijing, 100191, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
34
|
Maleki M, Khelghati N, Alemi F, Younesi S, Asemi Z, Abolhasan R, Bazdar M, Samadi-Kafil H, Yousefi B. Multiple interactions between melatonin and non-coding RNAs in cancer biology. Chem Biol Drug Des 2021; 98:323-340. [PMID: 33905613 DOI: 10.1111/cbdd.13849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
The melatonin hormone secreted by the pineal gland is involved in physiological functions such as growth and maturation, circadian cycles, and biological activities including antioxidants, anti-tumor, and anti-ischemia. Melatonin not only interacts with proteins but also has functional effects on regulatory RNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). In this study, we overview various physiological and pathological conditions affecting melatonin through lncRNA and miRNA. The information compiled herein will serve as a solid foundation to formulate ideas for future mechanistic studies on melatonin. It will also provide a chance to more clarify the emerging functions of the non-coding transcriptome.
Collapse
Affiliation(s)
- Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Zatollah Asemi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rozita Abolhasan
- Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahtab Bazdar
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Zhu X, Pan H, Liu L. Long noncoding RNA network: Novel insight into hepatocellular carcinoma metastasis (Review). Int J Mol Med 2021; 48:134. [PMID: 34013360 PMCID: PMC8148093 DOI: 10.3892/ijmm.2021.4967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common, aggressive malignancies with poor prognosis and high mortality. Although great progress has been made in recent decades, overall survival of HCC patients remains unsatisfactory due to high recurrence and metastasis. Accordingly, understanding and clarifying the underlying molecular mechanisms of metastasis has become increasingly important. Recently, accumulated reports have supported that long noncoding RNAs (lncRNAs) are dysregulated in HCC and are involved in various pivotal biological processes, including metastasis. The aim of this review was to investigate the dysregulation of lncRNAs in HCC and their function as oncogenes or tumour suppressors. Furthermore, reciprocal regulatory networks between lncRNAs and various molecules that were identified in HCC metastasis, including regulating epithelial-mesenchymal transition (EMT), controlling metastasis-associated genes, and regulating tumour angiogenesis were examined. Numerous reports and information on lncRNAs may help identify lncRNAs that are potential novel diagnostic markers, prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xiuming Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lili Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
36
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
37
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
38
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
39
|
Genetic Drivers of Head and Neck Squamous Cell Carcinoma: Aberrant Splicing Events, Mutational Burden, HPV Infection and Future Targets. Genes (Basel) 2021; 12:genes12030422. [PMID: 33804181 PMCID: PMC7998272 DOI: 10.3390/genes12030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers include cancers that originate from a variety of locations. These include the mouth, nasal cavity, throat, sinuses, and salivary glands. These cancers are the sixth most diagnosed cancers worldwide. Due to the tissues they arise from, they are collectively named head and neck squamous cell carcinomas (HNSCC). The most important risk factors for head and neck cancers are infection with human papillomavirus (HPV), tobacco use and alcohol consumption. The genetic basis behind the development and progression of HNSCC includes aberrant non-coding RNA levels. However, one of the most important differences between healthy tissue and HNSCC tissue is changes in the alternative splicing of genes that play a vital role in processes that can be described as the hallmarks of cancer. These changes in the expression profile of alternately spliced mRNA give rise to various protein isoforms. These protein isoforms, alternate methylation of proteins, and changes in the transcription of non-coding RNAs (ncRNA) can be used as diagnostic or prognostic markers and as targets for the development of new therapeutic agents. This review aims to describe changes in alternative splicing and ncRNA patterns that contribute to the development and progression of HNSCC. It will also review the use of the changes in gene expression as biomarkers or as the basis for the development of new therapies.
Collapse
|
40
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
41
|
Biswas S, Feng B, Chen S, Liu J, Aref-Eshghi E, Gonder J, Ngo V, Sadikovic B, Chakrabarti S. The Long Non-Coding RNA HOTAIR Is a Critical Epigenetic Mediator of Angiogenesis in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 33724292 PMCID: PMC7980040 DOI: 10.1167/iovs.62.3.20] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose Diabetic retinopathy (DR) remains a pressing issue worldwide. Abnormal angiogenesis is a distinct vascular lesion in DR, and research has established that vascular endothelial growth factor A (VEGF-A) is a primary mediator of such changes. However, limitations in current anti-VEGF therapies suggest that our understanding of molecular networks underlying ocular angiogenesis remains far from complete. Based on our long non-coding RNA (lncRNA) array analyses, HOX antisense intergenic RNA (HOTAIR) was identified as one of the top upregulated lncRNAs in high glucose-cultured human retinal endothelial cells (HRECs). Given the well-documented roles of HOTAIR in cancer, no studies have examined the epigenetic implications of HOTAIR in DR, and we investigated such relationships herein. Methods We used HRECs exposed to various glucose concentrations and epigenetic modulators to examine HOTAIR, angiogenic, and DR-related molecular markers. Oxidative stress, angiogenesis, and mitochondrial dysfunction were assessed. Retinal tissues of diabetic rodents and the vitreous humor and serum of patients with proliferative DR were also investigated. Results Hyperglycemia significantly augmented HOTAIR expression in HRECs and promoted angiogenesis, oxidative damage, and mitochondrial aberrations. Similarly, vitreous humor and serum from proliferative DR patients and retinas from diabetic animals demonstrated increased HOTAIR expression compared to non-diabetic controls. HOTAIR knockdown protected against glucose-induced increases of angiogenic and diabetes-associated molecules in the retina. Mechanistically, we showed that HOTAIR exerts its capabilities by preventing oxidative stress and modulating epigenetic pathways involving histone methylation, histone acetylation, DNA methylation, and transcription factors. Conclusions Our findings suggest that HOTAIR is a critical lncRNA in the pathogenesis of DR and may potentially be important for diagnostic and therapeutic targeting.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jieting Liu
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - John Gonder
- Department of Ophthalmology, Western University, London, Ontario, Canada
| | - Vy Ngo
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
42
|
Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA 2021; 7:16. [PMID: 33672592 PMCID: PMC8005997 DOI: 10.3390/ncrna7010016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein coding RNAs with lengths of more than 200 nucleotides, exert their effects by binding to DNA, mRNA, microRNA, and proteins and regulate gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Depending on cellular location, lncRNAs are involved in a wide range of cellular functions, including chromatin modification, transcriptional activation, transcriptional interference, scaffolding and regulation of translational machinery. This review highlights recent studies on lncRNAs in the regulation of protein translation by modulating the translational factors (i.e, eIF4E, eIF4G, eIF4A, 4E-BP1, eEF5A) and signaling pathways involved in this process as wells as their potential roles as tumor suppressors or tumor promoters.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul 34010, Turkey;
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: A remarkable oncogenic promoter in human cancer metastasis. Oncol Lett 2021; 21:302. [PMID: 33732378 PMCID: PMC7905531 DOI: 10.3892/ol.2021.12563] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor β, Wnt/β-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.
Collapse
Affiliation(s)
- Lili Chen
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
44
|
Ducoli L, Agrawal S, Sibler E, Kouno T, Tacconi C, Hon CC, Berger SD, Müllhaupt D, He Y, Kim J, D'Addio M, Dieterich LC, Carninci P, de Hoon MJL, Shin JW, Detmar M. LETR1 is a lymphatic endothelial-specific lncRNA governing cell proliferation and migration through KLF4 and SEMA3C. Nat Commun 2021; 12:925. [PMID: 33568674 PMCID: PMC7876020 DOI: 10.1038/s41467-021-21217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determine a comprehensive map of lineage-specific lncRNAs in human dermal lymphatic and blood vascular endothelial cells (LECs and BECs), combining RNA-Seq and CAGE-Seq. Subsequent antisense oligonucleotide-knockdown transcriptomic profiling of two LEC- and two BEC-specific lncRNAs identifies LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA, RNA-protein interaction studies, and phenotype rescue analyses reveal that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes, including KLF4 and SEMA3C, governing the growth and migratory ability of LECs. Together, our study provides several lines of evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Eliane Sibler
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Chung-Chao Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Simone D Berger
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Daniela Müllhaupt
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular and Translational Biomedicine PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Jihye Kim
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Marco D'Addio
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Arcucci V, Stacker SA, Achen MG. Control of Gene Expression by Exosome-Derived Non-Coding RNAs in Cancer Angiogenesis and Lymphangiogenesis. Biomolecules 2021; 11:249. [PMID: 33572413 PMCID: PMC7916238 DOI: 10.3390/biom11020249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract: Tumour angiogenesis and lymphangiogenesis are hallmarks of cancer and have been associated with tumour progression, tumour metastasis and poor patient prognosis. Many factors regulate angiogenesis and lymphangiogenesis in cancer including non-coding RNAs which are a category of RNAs that do not encode proteins and have important regulatory functions at transcriptional and post-transcriptional levels. Non-coding RNAs can be encapsulated in extracellular vesicles called exosomes which are secreted by tumour cells or other cells in the tumour microenvironment and can then be taken up by the endothelial cells of blood vessels and lymphatic vessels. The "delivery" of these non-coding RNAs to endothelial cells in tumours can facilitate tumour angiogenesis and lymphangiogenesis. Here we review recent findings about exosomal non-coding RNAs, specifically microRNAs and long non-coding RNAs, which regulate tumour angiogenesis and lymphangiogenesis in cancer. We then focus on the potential use of these molecules as cancer biomarkers and opportunities for exploiting ncRNAs for the treatment of cancer.
Collapse
Affiliation(s)
- Valeria Arcucci
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne VIC 3000, Australia; (V.A.); (S.A.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3010, Australia
| | - Steven A. Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne VIC 3000, Australia; (V.A.); (S.A.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville VIC 3050, Australia
| | - Marc G. Achen
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy VIC 3065, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy VIC 3065, Australia
| |
Collapse
|
46
|
Liu W, Zhang Y, Luo B. Long Non-coding RNAs in Gammaherpesvirus Infections: Their Roles in Tumorigenic Mechanisms. Front Microbiol 2021; 11:604536. [PMID: 33519750 PMCID: PMC7843584 DOI: 10.3389/fmicb.2020.604536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression at the epigenetic, transcriptional, or posttranscriptional level by interacting with protein, DNA, and RNA. Emerging evidence suggests that various lncRNAs are abnormally expressed and play indispensable roles in virus-triggered cancers. Besides, a growing number of studies have shown that virus-encoded lncRNAs participate in tumorigenesis. However, the functions of most lncRNAs in tumors caused by oncogenic viruses and their underlying mechanisms remain largely unknown. In this review, we summarize current findings regarding lncRNAs involved in cancers caused by Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV). Additionally, we discuss the contribution of lncRNAs to tumor occurrence, development, invasion, and metastasis; the roles of lncRNAs in key signaling pathways and their potential as biomarkers and therapeutic targets for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
47
|
Omote N, Sauler M. Non-coding RNAs as Regulators of Cellular Senescence in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2020; 7:603047. [PMID: 33425948 PMCID: PMC7785852 DOI: 10.3389/fmed.2020.603047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a cell fate implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Cellular senescence occurs in response to cellular stressors such as oxidative stress, DNA damage, telomere shortening, and mitochondrial dysfunction. Whether these stresses induce cellular senescence or an alternative cell fate depends on the type and magnitude of cellular stress, but also on intrinsic factors regulating the cellular stress response. Non-coding RNAs, including both microRNAs and long non-coding RNAs, are key regulators of cellular stress responses and susceptibility to cellular senescence. In this review, we will discuss cellular mechanisms that contribute to senescence in IPF and COPD and highlight recent advances in our understanding of how these processes are influenced by non-coding RNAs. We will also discuss the potential therapeutic role for targeting non-coding RNAs to treat these chronic lung diseases.
Collapse
Affiliation(s)
- Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
48
|
Uddin MN, Wang X. The landscape of long non-coding RNAs in tumor stroma. Life Sci 2020; 264:118725. [PMID: 33166593 DOI: 10.1016/j.lfs.2020.118725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
AIMS Long non-coding RNAs (lncRNAs) are associated with cancer development, while their relationship with the cancer-associated stromal components remains poorly understood. In this review, we performed a broad description of the functional landscape of stroma-associated lncRNAs in various cancers and their roles in regulating the tumor-stroma crosstalk. MATERIALS AND METHODS We carried out a systematic literature review of PubMed, Scopus, Medline, Bentham, and EMBASE (Elsevier) databases by using the keywords "LncRNAs in cancer," "LncRNAs in tumor stroma," "stroma," "cancer-associated stroma," "stroma in the tumor microenvironment," "tumor-stroma crosstalk," "drug resistance of stroma," and "stroma in immunosuppression" till July 2020. We collected the latest articles addressing the biological functions of stroma-associated lncRNAs in cancer. KEY FINDINGS These articles reported that dysregulated stroma-associated lncRNAs play significant roles in modulating the tumor microenvironment (TME) by the regulation of tumor-stroma crosstalk, epithelial to mesenchymal transition (EMT), endothelial to mesenchymal transition (EndMT), extracellular matrix (ECM) turnover, and tumor immunity. SIGNIFICANCE The tumor stroma is a substantial portion of the TME, and the dysregulation of tumor stroma-associated lncRNAs significantly contributes to cancer initiation, progression, angiogenesis, immune evasion, metastasis, and drug resistance. Thus, stroma-associated lncRNAs could be potentially useful targets for cancer therapy.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China; Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
49
|
Zhang Z, Wan J, Liu X, Zhang W. Strategies and technologies for exploring long noncoding RNAs in heart failure. Biomed Pharmacother 2020; 131:110572. [PMID: 32836073 DOI: 10.1016/j.biopha.2020.110572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) was once considered to be the "noise" of genome transcription without biological function. However, increasing evidence shows that lncRNA is dynamically expressed in developmental stage or disease status, playing a regulatory role in the process of gene expression and translation. In recent years, lncRNA is considered to be a core node of functional regulatory networks that controls cardiac and also involves in multiple process of heart failure such as myocardial hypertrophy, fibrosis, angiogenesis, etc., which would be a therapeutic target for diseases. In fact, it is the development of technology that has improved our understanding of lncRNAs and broadened our perspective on heart failure. From transcriptional "noise" to star molecule, progress of lncRNAs can't be achieved without the combination of multidisciplinary technologies, especially the emergence of high-throughput approach. Thus, here, we review the strategies and technologies available for the exploration lncRNAs and try to yield insights into the prospect of lncRNAs in clinical diagnosis and treatment in heart failure.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jingjing Wan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
50
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|