1
|
Luo J, Li Y, Zhang Y, Wu D, Ren Y, Liu J, Wang C, Zhang J. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024; 278:116804. [PMID: 39241482 DOI: 10.1016/j.ejmech.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengdi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Schneider HE, Schmitt LM, Job A, Lankat-Buttgereit B, Gress T, Buchholz M, Gallmeier E. Synthetic lethality between ATR and POLA1 reveals a potential new target for individualized cancer therapy. Neoplasia 2024; 57:101038. [PMID: 39128273 PMCID: PMC11369380 DOI: 10.1016/j.neo.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The ATR-CHK1 pathway plays a fundamental role in the DNA damage response and is therefore an attractive target in cancer therapy. The antitumorous effect of ATR inhibitors is at least partly caused by synthetic lethality between ATR and various DNA repair genes. In previous studies, we have identified members of the B-family DNA polymerases as potential lethal partner for ATR, i.e. POLD1 and PRIM1. In this study, we validated and characterized the synthetic lethality between ATR and POLA1. First, we applied a model of ATR-deficient DLD-1 human colorectal cancer cells to confirm synthetic lethality by using chemical POLA1 inhibition. Analyzing cell cycle and apoptotic markers via FACS and Western blotting, we were able to show that apoptosis and S phase arrest contributed to the increased sensitivity of ATR-deficient cancer cells towards POLA1 inhibitors. Importantly, siRNA-mediated POLA1 depletion in ATR-deficient cells caused similar effects in regard to impaired cell viability and cumulation of apoptotic markers, thus excluding toxic effects of chemical POLA1 inhibition. Conversely, we demonstrated that siRNA-mediated POLA1 depletion sensitized several cancer cell lines towards chemical inhibition of ATR and its main effector kinase CHK1. In conclusion, the synthetic lethality between ATR/CHK1 and POLA1 might represent a novel and promising approach for individualized cancer therapy: First, alterations of POLA1 could serve as a screening parameter for increased sensitivity towards ATR and CHK1 inhibitors. Second, alterations in the ATR-CHK1 pathway might predict in increased sensitivity towards POLA1 inhibitors.
Collapse
Affiliation(s)
- Hanna Elisabeth Schneider
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany; Department of Medicine A - Hematology, Oncology and Pneumology, University Hospital Münster, Muenster, Germany
| | - Lisa-Maria Schmitt
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Albert Job
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Brigitte Lankat-Buttgereit
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Thomas Gress
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Malte Buchholz
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Eike Gallmeier
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany; Department of Internal Medicine II - Gastroenterology, Oncology and Metabolism, Hospital Memmingen, Memmingen, Germany.
| |
Collapse
|
3
|
Kim H, Villareal LB, Liu Z, Haneef M, Falcon DM, Martin DR, Lee H, Dame MK, Attili D, Chen Y, Varani J, Spence JR, Kovbasnjuk O, Colacino JA, Lyssiotis CA, Lin HC, Shah YM, Xue X. Transferrin Receptor-Mediated Iron Uptake Promotes Colon Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207693. [PMID: 36703617 PMCID: PMC10074045 DOI: 10.1002/advs.202207693] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 05/17/2023]
Abstract
Transferrin receptor (TFRC) is the major mediator for iron entry into a cell. Under excessive iron conditions, TFRC is expected to be reduced to lower iron uptake and toxicity. However, the mechanism whereby TFRC expression is maintained at high levels in iron-enriched cancer cells and the contribution of TFRC to cancer development are enigmatic. Here the work shows TFRC is induced by adenomatous polyposis coli (APC) gene loss-driven β-catenin activation in colorectal cancer, whereas TFRC-mediated intratumoral iron accumulation potentiates β-catenin signaling by directly enhancing the activity of tankyrase. Disruption of TFRC leads to a reduction of colonic iron levels and iron-dependent tankyrase activity, which caused stabilization of axis inhibition protein 2 (AXIN2) and subsequent repression of the β-catenin/c-Myc/E2F Transcription Factor 1/DNA polymerase delta1 (POLD1) axis. POLD1 knockdown, iron chelation, and TFRC disruption increase DNA replication stress, DNA damage response, apoptosis, and reduce colon tumor growth. Importantly, a combination of iron chelators and DNA damaging agents increases DNA damage response and reduces colon tumor cell growth. TFRC-mediated iron import is at the center of a novel feed-forward loop that facilitates colonic epithelial cell survival. This discovery may provide novel strategies for colorectal cancer therapy.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Luke B Villareal
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Zhaoli Liu
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Mohammad Haneef
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Daniel M Falcon
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - David R Martin
- Department of PathologyUniversity of New MexicoAlbuquerqueNM87131USA
| | - Ho‐Joon Lee
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Michael K Dame
- Department of Internal MedicineDivision of GastroenterologyUniversity of MichiganAnn ArborMI48109USA
| | - Durga Attili
- Department of PathologyThe University of Michigan Medical SchoolAnn ArborMI48109USA
| | - Ying Chen
- Center for clinical research and translational medicineYangpu hospitalTongji University School of MedicineShanghai200090China
| | - James Varani
- Department of PathologyThe University of Michigan Medical SchoolAnn ArborMI48109USA
| | - Jason R. Spence
- Department of Internal MedicineDivision of GastroenterologyUniversity of MichiganAnn ArborMI48109USA
| | - Olga Kovbasnjuk
- Division of Gastroenterology and HepatologyDepartment of Medicinethe University of New MexicoAlbuquerqueNM87131USA
| | - Justin A Colacino
- Department of Environmental Health SciencesUniversity of MichiganAnn ArborMI48109USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Henry C Lin
- Section of GastroenterologyMedicine ServiceNew Mexico VA Health Care SystemAlbuquerqueNM87108USA
| | - Yatrik M Shah
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI48109USA
| | - Xiang Xue
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNM87131USA
| |
Collapse
|
4
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
5
|
Tang H, You T, Sun Z, Bai C. A Comprehensive Prognostic Analysis of POLD1 in Hepatocellular Carcinoma. BMC Cancer 2022; 22:197. [PMID: 35189839 PMCID: PMC8862270 DOI: 10.1186/s12885-022-09284-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Background DNA polymerase delta 1 catalytic subunit (POLD1) plays a key role in DNA replication and damage repair. A defective DNA proofreading function caused by POLD1 mutation contributes to carcinogenesis, while POLD1 overexpression predicts poor prognosis in cancers. However, the effect of POLD1 in hepatocellular carcinoma (HCC) is not well-understood. Methods Expression patterns of POLD1 were evaluated in TCGA and the HPA databases. Kaplan-Meier curves and Cox regression were used to examine the prognostic value of POLD1. The prognostic and predictive value of POLD1 was further validated by another independent cohort from ICGC database. The influences of DNA copy number variation, methylation and miRNA on POLD1 mRNA expression were examined. The correlation between infiltrating immune cells and POLD1 expression was analyzed. GO and KEGG enrichment analyses were performed to detect biological pathways associated with POLD1 expression in HCC. Results POLD1 was overexpressed in HCC (n = 369) compared with adjacent normal liver (n = 50). POLD1 upregulation was significantly correlated with positive serum AFP and advanced TNM stage. Kaplan–Meier and multivariate analyses suggested that POLD1 overexpression predicts poor prognosis in HCC. DNA copy gain, low POLD1 methylation, and miR‑139-3p downregulation were associated with POLD1 overexpression. Besides, POLD1 expression was associated with the infiltration levels of dendritic cell, macrophage, B cell, and CD4 + T cell in HCC. Functional enrichment analysis suggested “DNA replication”, “mismatch repair” and “cell cycle” pathways might be involved in the effect of POLD1 on HCC pathogenesis. Additionally, POLD1 mRNA expression was significantly associated with tumor mutation burden, microsatellite instability, and prognosis in various tumors. Conclusions POLD1 may be a potential prognostic marker and promising therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09284-y.
Collapse
Affiliation(s)
- Hui Tang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100730, Beijing, China
| | - Tingting You
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100730, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100730, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
6
|
Aguilar-Morante D, Gómez-Cabello D, Quek H, Liu T, Hamerlik P, Lim YC. Therapeutic Opportunities of Disrupting Genome Integrity in Adult Diffuse Glioma. Biomedicines 2022; 10:biomedicines10020332. [PMID: 35203541 PMCID: PMC8869545 DOI: 10.3390/biomedicines10020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Adult diffuse glioma, particularly glioblastoma (GBM), is a devastating tumor of the central nervous system. The existential threat of this disease requires on-going treatment to counteract tumor progression. The present outcome is discouraging as most patients will succumb to this disease. The low cure rate is consistent with the failure of first-line therapy, radiation and temozolomide (TMZ). Even with their therapeutic mechanism of action to incur lethal DNA lesions, tumor growth remains undeterred. Delivering additional treatments only delays the inescapable development of therapeutic tolerance and disease recurrence. The urgency of establishing lifelong tumor control needs to be re-examined with a greater focus on eliminating resistance. Early genomic and transcriptome studies suggest each tumor subtype possesses a unique molecular network to safeguard genome integrity. Subsequent seminal work on post-therapy tumor progression sheds light on the involvement of DNA repair as the causative contributor for hypermutation and therapeutic failure. In this review, we will provide an overview of known molecular factors that influence the engagement of different DNA repair pathways, including targetable vulnerabilities, which can be exploited for clinical benefit with the use of specific inhibitors.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Daniel Gómez-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Tianqing Liu
- NICM Health Research Institute, Westmead, NSW 2145, Australia;
| | | | - Yi Chieh Lim
- Danish Cancer Society, 2100 København, Denmark;
- Correspondence: ; Tel.: +45-35-257-413
| |
Collapse
|
7
|
POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene 2021; 40:5893-5901. [PMID: 34363023 DOI: 10.1038/s41388-021-01984-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
POLE, POLD1, and NTHL1 are involved in DNA replication and have recently been recognized as hereditary cancer-predisposing genes, because their alterations are associated with colorectal cancer and other tumors. POLE/POLD1-associated syndrome shows an autosomal dominant inheritance, whereas NTHL1-associated syndrome follows an autosomal recessive pattern. Although the prevalence of germline monoallelic POLE/POLD1 and biallelic NTHL1 pathogenic variants is low, they determine different phenotypes with a broad tumor spectrum overlapping that of other hereditary conditions like Lynch Syndrome or Familial Adenomatous Polyposis. Endometrial and breast cancers, and probably ovarian and brain tumors are also associated with POLE/POLD1 alterations, while breast cancer and other unusual tumors are correlated with NTHL1 pathogenic variants. POLE-mutated colorectal and endometrial cancers are associated with better prognosis and may show favorable responses to immunotherapy. Since POLE/POLD1-mutated tumors show a high tumor mutational burden producing an increase in neoantigens, the identification of POLE/POLD1 alterations could help select patients suitable for immunotherapy treatment. In this review, we will investigate the role of POLE, POLD1, and NTHL1 genetic variants in cancer predisposition, discussing the potential future therapeutic applications and assessing the utility of performing a routine genetic testing for these genes, in order to implement prevention and surveillance strategies in mutation carriers.
Collapse
|
8
|
Sensitivity of cells to ATR and CHK1 inhibitors requires hyperactivation of CDK2 rather than endogenous replication stress or ATM dysfunction. Sci Rep 2021; 11:7077. [PMID: 33782497 PMCID: PMC8007816 DOI: 10.1038/s41598-021-86490-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
DNA damage activates cell cycle checkpoint proteins ATR and CHK1 to arrest cell cycle progression, providing time for repair and recovery. Consequently, inhibitors of ATR (ATRi) and CHK1 (CHK1i) enhance damage-induced cell death. Intriguingly, both CHK1i and ATRi alone elicit cytotoxicity in some cell lines. Sensitivity has been attributed to endogenous replications stress, but many more cell lines are sensitive to ATRi than CHK1i. Endogenous activation of the DNA damage response also did not correlate with drug sensitivity. Sensitivity correlated with the appearance of γH2AX, a marker of DNA damage, but without phosphorylation of mitotic markers, contradicting suggestions that the damage is due to premature mitosis. Sensitivity to ATRi has been associated with ATM mutations, but dysfunction in ATM signaling did not correlate with sensitivity. CHK1i and ATRi circumvent replication stress by reactivating stalled replicons, a process requiring a low threshold activity of CDK2. In contrast, γH2AX induced by single agent ATRi and CHK1i requires a high threshold activity CDK2. Hence, phosphorylation of different CDK2 substrates is required for cytotoxicity induced by replication stress plus ATRi/CHK1i as compared to their single agent activity. In summary, sensitivity to ATRi and CHK1i as single agents is elicited by premature hyper-activation of CDK2.
Collapse
|
9
|
Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends Genet 2021; 37:476-487. [PMID: 33608117 DOI: 10.1016/j.tig.2020.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
Collapse
Affiliation(s)
- Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
| |
Collapse
|
10
|
Wu RA, Pellman DS, Walter JC. The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends Cell Biol 2021; 31:75-85. [PMID: 33317933 PMCID: PMC7856240 DOI: 10.1016/j.tcb.2020.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - David S Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Job A, Tatura M, Schäfer C, Lutz V, Schneider H, Lankat-Buttgereit B, Zielinski A, Borgmann K, Bauer C, Gress TM, Buchholz M, Gallmeier E. The POLD1 R689W variant increases the sensitivity of colorectal cancer cells to ATR and CHK1 inhibitors. Sci Rep 2020; 10:18924. [PMID: 33144657 PMCID: PMC7641191 DOI: 10.1038/s41598-020-76033-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the kinase ATR, a central regulator of the DNA damage response, eliminates subsets of cancer cells in certain tumors. As previously shown, this is at least partly attributable to synthetic lethal interactions between ATR and POLD1, the catalytic subunit of the polymerase δ. Various POLD1 variants have been found in colorectal cancer, but their significance as therapeutic targets for ATR pathway inhibition remains unknown. Using CRISPR/Cas9 in the colorectal cancer cell line DLD-1, which harbors four POLD1 variants, we established heterozygous POLD1-knockout clones with exclusive expression of distinct variants to determine the functional relevance of these variants individually by assessing their impact on ATR pathway activation, DNA replication, and cellular sensitivity to inhibition of ATR or its effector kinase CHK1. Of the four variants analyzed, only POLD1R689W affected POLD1 function, as demonstrated by compensatory ATR pathway activation and impaired DNA replication. Upon treatment with ATR or CHK1 inhibitors, POLD1R689W strongly decreased cell survival in vitro, which was attributable at least partly to S phase impairment and apoptosis. Similarly, treatment with the ATR inhibitor AZD6738 inhibited growth of murine xenograft tumors, harboring the POLD1R689W variant, in vivo. Our POLD1-knockout model thus complements algorithm-based models to predict the pathogenicity of tumor-specific variants of unknown significance and illustrates a novel and potentially clinically relevant therapeutic approach using ATR/CHK1 inhibitors in POLD1-deficient tumors.
Collapse
Affiliation(s)
- Albert Job
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Marina Tatura
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Cora Schäfer
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Veronika Lutz
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Hanna Schneider
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Brigitte Lankat-Buttgereit
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Alexandra Zielinski
- Lab of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Lab of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Eike Gallmeier
- Department of Gastroenterology, Endocrinology, Metabolism, and Infectiology, University Hospital of Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany.
| |
Collapse
|
12
|
Yap TA, O’Carrigan B, Penney MS, Lim JS, Brown JS, de Miguel Luken MJ, Tunariu N, Perez-Lopez R, Rodrigues DN, Riisnaes R, Figueiredo I, Carreira S, Hare B, McDermott K, Khalique S, Williamson CT, Natrajan R, Pettitt SJ, Lord CJ, Banerji U, Pollard J, Lopez J, de Bono JS. Phase I Trial of First-in-Class ATR Inhibitor M6620 (VX-970) as Monotherapy or in Combination With Carboplatin in Patients With Advanced Solid Tumors. J Clin Oncol 2020; 38:3195-3204. [PMID: 32568634 PMCID: PMC7499606 DOI: 10.1200/jco.19.02404] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Preclinical studies demonstrated that ATR inhibition can exploit synthetic lethality (eg, in cancer cells with impaired compensatory DNA damage responses through ATM loss) as monotherapy and combined with DNA-damaging drugs such as carboplatin. PATIENTS AND METHODS This phase I trial assessed the ATR inhibitor M6620 (VX-970) as monotherapy (once or twice weekly) and combined with carboplatin (carboplatin on day 1 and M6620 on days 2 and 9 in 21-day cycles). Primary objectives were safety, tolerability, and maximum tolerated dose; secondary objectives included pharmacokinetics and antitumor activity; exploratory objectives included pharmacodynamics in timed paired tumor biopsies. RESULTS Forty patients were enrolled; 17 received M6620 monotherapy, which was safe and well tolerated. The recommended phase II dose (RP2D) for once- or twice-weekly administration was 240 mg/m2. A patient with metastatic colorectal cancer harboring molecular aberrations, including ATM loss and an ARID1A mutation, achieved RECISTv1.1 complete response and maintained this response, with a progression-free survival of 29 months at last assessment. Twenty-three patients received M6620 with carboplatin, with mechanism-based hematologic toxicities at higher doses, requiring dose delays and reductions. The RP2D for combination therapy was M6620 90 mg/m2 with carboplatin AUC5. A patient with advanced germline BRCA1 ovarian cancer achieved RECISTv1.1 partial response and Gynecologic Cancer Intergroup CA125 response despite being platinum refractory and PARP inhibitor resistant. An additional 15 patients had RECISTv1.1 stable disease as best response. Pharmacokinetics were dose proportional and exceeded preclinical efficacious levels. Pharmacodynamic studies demonstrated substantial inhibition of phosphorylation of CHK1, the downstream ATR substrate. CONCLUSION To our knowledge, this report is the first of an ATR inhibitor as monotherapy and combined with carboplatin. M6620 was well tolerated, with target engagement and preliminary antitumor responses observed.
Collapse
Affiliation(s)
- Timothy A. Yap
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Brent O’Carrigan
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
| | | | - Joline S. Lim
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
| | - Jessica S. Brown
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
| | | | - Nina Tunariu
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
| | | | | | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | - Saira Khalique
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Chris T. Williamson
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Rachael Natrajan
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Stephen J. Pettitt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J. Lord
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Udai Banerji
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - John Pollard
- Vertex Pharmaceuticals, Oxfordshire, United Kingdom
| | - Juanita Lopez
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
| | - Johann S. de Bono
- Drug Development Unit, Royal Marsden Hospital, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
13
|
Harnessing DNA Replication Stress for Novel Cancer Therapy. Genes (Basel) 2020; 11:genes11090990. [PMID: 32854236 PMCID: PMC7564951 DOI: 10.3390/genes11090990] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
DNA replication is the fundamental process for accurate duplication and transfer of genetic information. Its fidelity is under constant stress from endogenous and exogenous factors which can cause perturbations that lead to DNA damage and defective replication. This can compromise genomic stability and integrity. Genomic instability is considered as one of the hallmarks of cancer. In normal cells, various checkpoints could either activate DNA repair or induce cell death/senescence. Cancer cells on the other hand potentiate DNA replicative stress, due to defective DNA damage repair mechanism and unchecked growth signaling. Though replicative stress can lead to mutagenesis and tumorigenesis, it can be harnessed paradoxically for cancer treatment. Herein, we review the mechanism and rationale to exploit replication stress for cancer therapy. We discuss both established and new approaches targeting DNA replication stress including chemotherapy, radiation, and small molecule inhibitors targeting pathways including ATR, Chk1, PARP, WEE1, MELK, NAE, TLK etc. Finally, we review combination treatments, biomarkers, and we suggest potential novel methods to target DNA replication stress to treat cancer.
Collapse
|
14
|
Bradbury A, O’Donnell R, Drew Y, Curtin NJ, Sharma Saha S. Characterisation of Ovarian Cancer Cell Line NIH-OVCAR3 and Implications of Genomic, Transcriptomic, Proteomic and Functional DNA Damage Response Biomarkers for Therapeutic Targeting. Cancers (Basel) 2020; 12:cancers12071939. [PMID: 32709004 PMCID: PMC7409137 DOI: 10.3390/cancers12071939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
In order to be effective models to identify biomarkers of chemotherapy response, cancer cell lines require thorough characterization. In this study, we characterised the widely used high grade serous ovarian cancer (HGSOC) cell line NIH-OVCAR3 using bioinformatics, cytotoxicity assays and molecular/functional analyses of DNA damage response (DDR) pathways in comparison to an ovarian cancer cell line panel. Bioinformatic analysis confirmed the HGSOC-like features of NIH-OVCAR3, including low mutation frequency, TP53 loss and high copy number alteration frequency similar to 201 HGSOCs analysed (TCGA). Cytotoxicity assays were performed for the standard of care chemotherapy, carboplatin, and DDR targeting drugs: rucaparib (a PARP inhibitor) and VE-821 (an ATR inhibitor). Interestingly, NIH-OVCAR3 cells showed sensitivity to carboplatin and rucaparib which was explained by functional loss of homologous recombination repair (HRR) identified by plasmid re-joining assay, despite the ability to form RAD51 foci and absence of mutations in HRR genes. NIH-OVCAR3 cells also showed high non-homologous end joining activity, which may contribute to HRR loss and along with genomic amplification in ATR and TOPBP1, could explain the resistance to VE-821. In summary, NIH-OVCAR3 cells highlight the complexity of HGSOCs and that genomic or functional characterization alone might not be enough to predict/explain chemotherapy response.
Collapse
Affiliation(s)
- Alice Bradbury
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
| | - Rachel O’Donnell
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
- Northern Cancer Alliance, Northern Centre for Gynaecological Surgery, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Yvette Drew
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
- Northern Centre for Cancer Care (NCCC), Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Nicola J. Curtin
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
| | - Sweta Sharma Saha
- Newcastle Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (A.B.); (Y.D.); (N.J.C.)
- Correspondence:
| |
Collapse
|
15
|
Silvestri R, Landi S. DNA polymerases in the risk and prognosis of colorectal and pancreatic cancers. Mutagenesis 2020; 34:363-374. [PMID: 31647559 DOI: 10.1093/mutage/gez031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Human cancers arise from the alteration of genes involved in important pathways that mainly affect cell growth and proliferation. DNA replication and DNA damages recognition and repair are among these pathways and DNA polymerases that take part in these processes are frequently involved in cancer onset and progression. For example, damaging alterations within the proofreading domain of replicative polymerases, often reported in patients affected by colorectal cancer (CRC), are considered risk factors and drivers of carcinogenesis as they can lead to the accumulation of several mutations throughout the genome. Thus, replicative polymerases can be involved in cancer when losses of their physiological functions occur. On the contrary, reparative polymerases are often involved in cancer precisely because of their physiological role. In fact, their ability to repair and bypass DNA damages, which confers genome stability, can also counteract the effect of most anticancer drugs. In addition, the altered expression can characterise some type of cancers, which exacerbates this aspect. For example, all of the DNA polymerases involved a damage bypass mechanism, known as translesion synthesis, with the only exception of polymerase theta, are downregulated in CRC. Conversely, in pancreatic ductal adenocarcinoma (PDAC), most of these polymerase result upregulated. This suggests that different types of cancer can rely on different reparative polymerases to acquire drug resistance. Here we will examine all of the aspects that link DNA polymerases with CRC and PDAC.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Rogers RF, Walton MI, Cherry DL, Collins I, Clarke PA, Garrett MD, Workman P. CHK1 Inhibition Is Synthetically Lethal with Loss of B-Family DNA Polymerase Function in Human Lung and Colorectal Cancer Cells. Cancer Res 2020; 80:1735-1747. [PMID: 32161100 PMCID: PMC7611445 DOI: 10.1158/0008-5472.can-19-1372] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Checkpoint kinase 1 (CHK1) is a key mediator of the DNA damage response that regulates cell-cycle progression, DNA damage repair, and DNA replication. Small-molecule CHK1 inhibitors sensitize cancer cells to genotoxic agents and have shown single-agent preclinical activity in cancers with high levels of replication stress. However, the underlying genetic determinants of CHK1 inhibitor sensitivity remain unclear. We used the developmental clinical drug SRA737 in an unbiased large-scale siRNA screen to identify novel mediators of CHK1 inhibitor sensitivity and uncover potential combination therapies and biomarkers for patient selection. We identified subunits of the B-family of DNA polymerases (POLA1, POLE, and POLE2) whose silencing sensitized the human A549 non-small cell lung cancer (NSCLC) and SW620 colorectal cancer cell lines to SRA737. B-family polymerases were validated using multiple siRNAs in a panel of NSCLC and colorectal cancer cell lines. Replication stress, DNA damage, and apoptosis were increased in human cancer cells following depletion of the B-family DNA polymerases combined with SRA737 treatment. Moreover, pharmacologic blockade of B-family DNA polymerases using aphidicolin or CD437 combined with CHK1 inhibitors led to synergistic inhibition of cancer cell proliferation. Furthermore, low levels of POLA1, POLE, and POLE2 protein expression in NSCLC and colorectal cancer cells correlated with single-agent CHK1 inhibitor sensitivity and may constitute biomarkers of this phenotype. These findings provide a potential basis for combining CHK1 and B-family polymerase inhibitors in cancer therapy. SIGNIFICANCE: These findings demonstrate how the therapeutic benefit of CHK1 inhibitors may potentially be enhanced and could have implications for patient selection and future development of new combination therapies.
Collapse
Affiliation(s)
- Rebecca F Rogers
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Michael I Walton
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Daniel L Cherry
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, United Kingdom
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, United Kingdom.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
17
|
Tang L, Chen R, Xu X. Synthetic lethality: A promising therapeutic strategy for hepatocellular carcinoma. Cancer Lett 2020; 476:120-128. [PMID: 32070778 DOI: 10.1016/j.canlet.2020.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC), the main cause of liver cancer-related death, is one of the main cancers in terms of incidence and mortality. However, HCC is difficult to target and develops strong drug resistance. Therefore, a new treatment strategy is urgently needed. The clinical application of the concept of synthetic lethality in recent years provides a new therapeutic direction for the accurate treatment of HCC. Here, we introduce the concept of synthetic lethality, the screening used to study synthetic lethality, and the identified and potential genetic interactions that induce synthetic lethality in HCC. In addition, we propose opportunities and challenges for translating synthetic lethal interactions to the clinical treatment of HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| |
Collapse
|
18
|
Holzer S, Rzechorzek NJ, Short IR, Jenkyn-Bedford M, Pellegrini L, Kilkenny ML. Structural Basis for Inhibition of Human Primase by Arabinofuranosyl Nucleoside Analogues Fludarabine and Vidarabine. ACS Chem Biol 2019; 14:1904-1912. [PMID: 31479243 PMCID: PMC6757278 DOI: 10.1021/acschembio.9b00367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Nucleoside analogues are widely used in clinical practice as chemotherapy drugs. Arabinose nucleoside derivatives such as fludarabine are effective in the treatment of patients with acute and chronic leukemias and non-Hodgkin's lymphomas. Although nucleoside analogues are generally known to function by inhibiting DNA synthesis in rapidly proliferating cells, the identity of their in vivo targets and mechanism of action are often not known in molecular detail. Here we provide a structural basis for arabinose nucleotide-mediated inhibition of human primase, the DNA-dependent RNA polymerase responsible for initiation of DNA synthesis in DNA replication. Our data suggest ways in which the chemical structure of fludarabine could be modified to improve its specificity and affinity toward primase, possibly leading to less toxic and more effective therapeutic agents.
Collapse
Affiliation(s)
- Sandro Holzer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Neil J. Rzechorzek
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Isobel R. Short
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Michael Jenkyn-Bedford
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Luca Pellegrini
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Mairi L. Kilkenny
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| |
Collapse
|
19
|
Restelli V, Lupi M, Chilà R, Vagni M, Tarantelli C, Spriano F, Gaudio E, Bertoni F, Damia G, Carrassa L. DNA Damage Response Inhibitor Combinations Exert Synergistic Antitumor Activity in Aggressive B-Cell Lymphomas. Mol Cancer Ther 2019; 18:1255-1264. [PMID: 31064869 DOI: 10.1158/1535-7163.mct-18-0919] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/20/2018] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
The DNA damage response (DDR) kinases ATR, Chk1, and Wee1 play vital roles in the response to replication stress and in maintaining cancer genomic stability. Inhibitors of these kinases are currently under clinical investigation. Mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL) are aggressive lymphomas whose clinical outcome is still largely unsatisfactory. These cell lymphoma subtypes are highly dependent on both Chk1 and Wee1 for survival. We investigated the activity of the ATR inhibitor AZD6738 as single agent and in combination with either Chk1 (AZD6738) or Wee1 (AZD1775) inhibitors in several preclinical models of MCL and DLBCL. This study included preclinical in vitro activity screening on a large panel of cell lines, both as single agent and in combination, and validation experiments on in vivo models. Cellular and molecular mechanisms of the observed synergistic effect as well as pharmacodynamic analysis of in vivo samples were studied. AZD6738 exerted a strong synergistic cytotoxic effect in combination with both AZD7762 and AZD1775 in the 2 lymphoma subtypes regardless of their TP53, MYC, and ATM mutational status. These DDR inhibitor combinations, similarly to the Chk1/Wee1 inhibitor combination, caused a marked S-phase delay, with an increase in cyclin-dependent kinases (CDK) activity, increased DNA damage, and decreases in Wee1, MYC, and RRM2 protein levels. The synergistic in vitro activity translated to striking in vivo antitumor activity. DDR-DDR inhibitor combinations could potentially offer promising novel therapeutic strategies for patients with B-cell lymphoma.
Collapse
Affiliation(s)
- Valentina Restelli
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Monica Lupi
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Chilà
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Micaela Vagni
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Tarantelli
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Laura Carrassa
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
20
|
Gourley C, Balmaña J, Ledermann JA, Serra V, Dent R, Loibl S, Pujade-Lauraine E, Boulton SJ. Moving From Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy. J Clin Oncol 2019; 37:2257-2269. [PMID: 31050911 DOI: 10.1200/jco.18.02050] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) pathway coordinates the identification, signaling, and repair of DNA damage caused by endogenous or exogenous factors and regulates cell-cycle progression with DNA repair to minimize DNA damage being permanently passed through cell division. Severe DNA damage that cannot be repaired may trigger apoptosis; as such, the DDR pathway is of crucial importance as a cancer target. Poly (ADP-ribose) polymerase (PARP) is the best-known element of the DDR, and several PARP inhibitors have been licensed. However, there are approximately 450 proteins involved in DDR, and a number of these other targets are being investigated in the laboratory and clinic. We review the most recent evidence for the clinical effect of PARP inhibition in breast and ovarian cancer and explore expansion into the first-line setting and into other tumor types. We critique the evidence for patient selection techniques and summarize what is known about mechanisms of PARP inhibitor resistance. We then discuss what is known about the preclinical rationale for targeting other members of the DDR pathway and the associated tumor cell genetics that may confer sensitivity to these agents. Examples include DNA damage sensors (MLH1), damage signaling molecules (ataxia-telangiectasia mutated; ataxia-telangiectasia mutated-related and Rad3-related; CHK1/2; DNA-dependent protein kinase, catalytic subunit; WEE1; CDC7), or effector proteins for repair (POLQ [also referred to as POLθ], RAD51, poly [ADP-ribose] glycohydrolase). Early-phase clinical trials targeting some of these molecules, either as a single agent or in combination, are discussed. Finally, we outline the challenges that must be addressed to maximize the therapeutic opportunity that targeting DDR provides.
Collapse
Affiliation(s)
- Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith Balmaña
- Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rebecca Dent
- National Cancer Center and Duke - NUS Medical School, Singapore, Singapore
| | | | | | - Simon J Boulton
- The Francis Crick Institute, London, United Kingdom.,Artios Pharma, Cambridge, United Kingdom
| |
Collapse
|
21
|
Kantidze OL, Velichko AK, Luzhin AV, Petrova NV, Razin SV. Synthetically Lethal Interactions of ATM, ATR, and DNA-PKcs. Trends Cancer 2018; 4:755-768. [PMID: 30352678 DOI: 10.1016/j.trecan.2018.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Synthetic lethality occurs when simultaneous perturbations of two genes or molecular processes result in a loss of cell viability. The number of known synthetically lethal interactions is growing steadily. We review here synthetically lethal interactions of ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These kinases are appropriate for synthetic lethal therapies because their genes are frequently mutated in cancer, and specific inhibitors are currently in clinical trials. Understanding synthetically lethal interactions of a particular gene or gene family can facilitate predicting new synthetically lethal interactions, therapy toxicity, and mechanisms of resistance, as well as defining the spectrum of tumors amenable to these therapeutic approaches.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France.
| | - Artem K Velichko
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Luzhin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France; Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Job A, Schmitt LM, von Wenserski L, Lankat-Buttgereit B, Gress TM, Buchholz M, Gallmeier E. Inactivation of PRIM1 Function Sensitizes Cancer Cells to ATR and CHK1 Inhibitors. Neoplasia 2018; 20:1135-1143. [PMID: 30257222 PMCID: PMC6154763 DOI: 10.1016/j.neo.2018.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
The phosphoinositide 3-kinase-related kinase ATR is a central regulator of the DNA damage response. Its chemical inhibition eliminates subsets of cancer cells in various tumor types. This effect is caused at least partly by the synthetically lethal relationship between ATR and certain DNA repair genes. In a previous screen using an siRNA library against DNA repair genes, we identified PRIM1, a part of the polymerase α-primase complex, as acting synthetically lethal with ATR. Applying a genetic ATR knock-in model of colorectal cancer cells, we confirmed that PRIM1 depletion inhibited proliferation of ATR-deficient cells and excluded artifacts due to clonal variation using an ATR reexpressing cell clone. We expanded these data by demonstrating in different cell lines that also chemical inhibition of ATR or its main effector kinase CHK1 reduces proliferation upon depletion of PRIM1. Mechanistically, PRIM1 depletion in ATR-deficient cells caused S-phase stasis in the absence of increased DNA damage followed by Wee1-mediated activation of caspase 8 and apoptosis. As PRIM1 inactivation sensitizes cancer cells to ATR and CHK1 inhibitors, mutations in PRIM1 or other components of the polymerase α-primase complex could represent novel targets for individualized tumor therapeutic approaches using ATR/CHK1 inhibitors, as has been previously demonstrated for POLD1, the catalytic subunit of polymerase δ.
Collapse
Affiliation(s)
- Albert Job
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Lisa-Maria Schmitt
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Lisa von Wenserski
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Brigitte Lankat-Buttgereit
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Thomas M Gress
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Malte Buchholz
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Eike Gallmeier
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
23
|
Chen ES. Targeting epigenetics using synthetic lethality in precision medicine. Cell Mol Life Sci 2018; 75:3381-3392. [PMID: 30003270 PMCID: PMC11105276 DOI: 10.1007/s00018-018-2866-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Technological breakthroughs in genomics have had a significant impact on clinical therapy for human diseases, allowing us to use patient genetic differences to guide medical care. The "synthetic lethal approach" leverages on cancer-specific genetic rewiring to deliver a therapeutic regimen that preferentially targets malignant cells while sparing normal cells. The utility of this system is evident in several recent studies, particularly in poor prognosis cancers with loss-of-function mutations that become "treatable" when two otherwise discrete and unrelated genes are targeted simultaneously. This review focuses on the chemotherapeutic targeting of epigenetic alterations in cancer cells and consolidates a network that outlines the interplay between epigenetic and genetic regulators in DNA damage repair. This network consists of numerous synergistically acting relationships that are druggable, even in recalcitrant triple-negative breast cancer. This collective knowledge points to the dawn of a new era of personalized medicine.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National University Health System (NUHS), Singapore, 119228, Singapore.
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
24
|
Reduced expression of DNA repair genes and chemosensitivity in 1p19q codeleted lower-grade gliomas. J Neurooncol 2018; 139:563-571. [PMID: 29923053 DOI: 10.1007/s11060-018-2915-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Lower-grade gliomas (LGGs, defined as WHO grades II and III) with 1p19q codeletion have increased chemosensitivity when compared to LGGs without 1p19q codeletion, but the mechanism is currently unknown. METHODS RNAseq data from 515 LGG patients in the Cancer Genome Atlas (TCGA) were analyzed to compare the effect of expression of the 9 DNA repair genes located on chromosome arms 1p and 19q on progression free survival (PFS) and overall survival (OS) between patients who received chemotherapy and those who did not. Chemosensitivity of cells with DNA repair genes knocked down was tested using MTS cell proliferation assay in HS683 cell line and U251 cell line. RESULTS The expression of 9 DNA repair genes on 1p and 19q was significantly lower in 1p19q-codeleted tumors (n = 175) than in tumors without the codeletion (n = 337) (p < 0.001). In LGG patients who received chemotherapy, lower expression of LIG1, POLD1, PNKP, RAD54L and MUTYH was associated with longer PFS and OS. This difference between chemotherapy and non-chemotherapy groups in the association of gene expression with survival was not observed in non-DNA repair genes located on chromosome arms 1p and 19q. MTS assays showed that knockdown of DNA repair genes LIG1, POLD1, PNKP, RAD54L and MUTYH significantly inhibited recovery in response to temozolomide when compared with control group (p < 0.001). CONCLUSIONS Our results suggest that reduced expression of DNA repair genes on chromosome arms 1p and 19q may account for the increased chemosensitivity of LGGs with 1p19q codeletion.
Collapse
|
25
|
Cytosolic Iron-Sulfur Assembly Is Evolutionarily Tuned by a Cancer-Amplified Ubiquitin Ligase. Mol Cell 2018; 69:113-125.e6. [DOI: 10.1016/j.molcel.2017.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
|
26
|
Brandsma I, Fleuren ED, Williamson CT, Lord CJ. Directing the use of DDR kinase inhibitors in cancer treatment. Expert Opin Investig Drugs 2017; 26:1341-1355. [PMID: 28984489 PMCID: PMC6157710 DOI: 10.1080/13543784.2017.1389895] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Defects in the DNA damage response (DDR) drive the development of cancer by fostering DNA mutation but also provide cancer-specific vulnerabilities that can be exploited therapeutically. The recent approval of three different PARP inhibitors for the treatment of ovarian cancer provides the impetus for further developing targeted inhibitors of many of the kinases involved in the DDR, including inhibitors of ATR, ATM, CHEK1, CHEK2, DNAPK and WEE1. Areas covered: We summarise the current stage of development of these novel DDR kinase inhibitors, and describe which predictive biomarkers might be exploited to direct their clinical use. Expert opinion: Novel DDR inhibitors present promising candidates in cancer treatment and have the potential to elicit synthetic lethal effects. In order to fully exploit their potential and maximize their utility, identifying highly penetrant predictive biomarkers of single agent and combinatorial DDR inhibitor sensitivity are critical. Identifying the optimal drug combination regimens that could used with DDR inhibitors is also a key objective.
Collapse
Affiliation(s)
- Inger Brandsma
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Emmy D.G. Fleuren
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Chris T. Williamson
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
27
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
28
|
Carrassa L, Damia G. DNA damage response inhibitors: Mechanisms and potential applications in cancer therapy. Cancer Treat Rev 2017; 60:139-151. [PMID: 28961555 DOI: 10.1016/j.ctrv.2017.08.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Over the last decade the unravelling of the molecular mechanisms of the DNA damage response pathways and of the genomic landscape of human tumors have paved the road to new therapeutic approaches in oncology. It is now clear that tumors harbour defects in different DNA damage response steps, mainly signalling and repair, rendering them more dependent on the remaining pathways. We here focus on the proteins ATM, ATR, CHK1 and WEE1, reviewing their roles in the DNA damage response and as targets in cancer therapy. In the last decade specific inhibitors of these proteins have been designed, and their potential antineoplastic activity has been explored both in monotherapy strategies against tumors with specific defects (synthetic lethality approach) and in combination with radiotherapy or chemotherapeutic or molecular targeted agents. The preclinical and clinical evidence of antitumor activity of these inhibitors emanating from these research efforts will be critically reviewed. Lastly, the potential therapeutic feasibility of combining together such inhibitors with the aim to target particular subsets of tumors will be also discussed.
Collapse
Affiliation(s)
- Laura Carrassa
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| |
Collapse
|
29
|
Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel) 2017; 9:cancers9050041. [PMID: 28448462 PMCID: PMC5447951 DOI: 10.3390/cancers9050041] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Targeting the DNA damage response (DDR) is a new therapeutic approach in cancer that shows great promise for tumour selectivity. Key components of the DDR are the ataxia telangiectasia mutated and Rad3 related (ATR) and checkpoint kinase 1 (CHK1) kinases. This review article describes the role of ATR and its major downstream target, CHK1, in the DDR and why cancer cells are particularly reliant on the ATR-CHK1 pathway, providing the rationale for targeting these kinases, and validation of this hypothesis by genetic manipulation. The recent development of specific inhibitors and preclinical data using these inhibitors not only as chemosensitisers and radiosensitisers but also as single agents to exploit specific pathologies of tumour cells is described. These potent and specific inhibitors have now entered clinical trial and early results are presented.
Collapse
|
30
|
Williams DT, Staples CJ. Approaches for Identifying Novel Targets in Precision Medicine: Lessons from DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:1-16. [PMID: 28840549 DOI: 10.1007/978-3-319-60733-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome stability is maintained by a number of elegant mechanisms, which sense and repair damaged DNA. Germline defects that compromise genomic integrity result in cancer predisposition, exemplified by rare syndromes caused by mutations in certain DNA repair genes. These individuals often exhibit other symptoms including progeria and neurodegeneration. Paradoxically, some of these deleterious genetic alterations provide novel therapeutic opportunities to target cancer cells; an excellent example of such an approach being the recent development of poly (ADP-ribose) polymerase inhibitors as the first 'synthetic lethal' medicine for patients with BRCA-mutant cancers. The therapeutic exploitation of synthetic lethal interactions has enabled a novel approach to personalised medicine based on continued molecular profiling of patient and tumour material. This profiling may also aid clinicians in the identification of specific drug resistance mechanisms following relapse, and enable appropriate modification of the therapeutic regimen. This chapter focuses on therapeutic strategies designed to target aspects of the DNA damage response, and examines emerging themes demonstrating mechanistic overlap between DNA repair and neurodegeneration.
Collapse
Affiliation(s)
- Dean T Williams
- School of Medical Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG, UK.,Department of Vascular Surgery, Ysbyty Gwynedd, Bangor, LL57 2PW, UK
| | | |
Collapse
|
31
|
Nicolas E, Golemis EA, Arora S. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 2016; 590:128-41. [PMID: 27320729 PMCID: PMC4969162 DOI: 10.1016/j.gene.2016.06.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5′–3′ DNA polymerase and 3′–5′ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests that POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sanjeevani Arora
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
32
|
Jackson RA, Chen ES. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacol Ther 2016; 162:69-85. [DOI: 10.1016/j.pharmthera.2016.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|