1
|
Zhi X, Du L, Zhang P, Guo X, Li W, Wang Y, He Q, Wu P, Lei X, Qu B. BPA induces testicular damage in male rodents via apoptosis, autophagy, and ferroptosis. Food Chem Toxicol 2024; 193:114984. [PMID: 39245402 DOI: 10.1016/j.fct.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Bisphenol A (BPA), chemically known as 2,2-bis(4-hydroxyphenyl) propane, is one of the most common endocrine-disrupting chemicals in our environment. Long-term or high-dose exposure to BPA may lead to testicular damage and adversely affect male reproductive function. In vivo studies on rodents have demonstrated that BPA triggers apoptosis in testicular cells through both intrinsic and extrinsic pathways. Further in vitro studies on spermatogonia, Sertoli cells, and Leydig cells have all confirmed the pro-apoptotic effects of BPA. Given these findings, apoptosis is considered a primary mode of cell death induced by BPA in testicular tissue. In addition, BPA promotes autophagy by altering the activity of the Akt/mTOR pathway and upregulating the expression of autophagy-related genes and proteins. Recent studies have also identified ferroptosis as a significant contributing factor to BPA-induced testicular damage, further complicating the landscape of BPA's effects. This review summarizes natural substances that mitigate BPA-induced testicular damage by inhibiting these cell death pathways. These findings not only highlight potential therapeutic strategies but also underscore the need for further research into the underlying mechanisms of BPA-induced toxicity, particularly as it pertains to human health risk assessment and the development of more effective BPA management strategies.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Lehui Du
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingdong Guo
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weiwei Li
- The 81st Group Army Hospital of Chinese PLA, Zhangjiakou, China
| | - Yuan Wang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiduo He
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Peien Wu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Xiao Lei
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Baolin Qu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
3
|
Abdallah S, Jampy A, Moison D, Wieckowski M, Messiaen S, Martini E, Campalans A, Radicella JP, Rouiller-Fabre V, Livera G, Guerquin MJ. Foetal exposure to the bisphenols BADGE and BPAF impairs meiosis through DNA oxidation in mouse ovaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120791. [PMID: 36464114 DOI: 10.1016/j.envpol.2022.120791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Many endocrine disruptors have been proven to impair the meiotic process which is required for the production of healthy gametes. Bisphenol A is emblematic of such disruptors, as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing use of BPA alternatives raises concerns for public health. Here, we investigated the effects of foetal exposure to two BPA alternatives, bisphenol A Diglycidyl Ether (BADGE) and bisphenol AF (BPAF), on oogenesis in mice. These compounds delay meiosis initiation, increase the number of MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by changes in gene expression in foetal premeiotic germ cells and aberrant mRNA splicing of meiotic genes. We observed an increase in DNA oxidation after exposure to BPA alternatives. Specific induction of oxidative DNA damage during foetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-oxoguanine DNA Glycosylase (OGG1)-deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damage. The supplementation of BPA alternatives with N-acetylcysteine (NAC) counteracts the effects of bisphenols on meiosis. Together, our results propose oxidative DNA lesion as an event that negatively impacts female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for numerous environmental pro-oxidant pollutants, and its discovery, could lead to reconsider the adverse effect of bisphenol mixtures that are simultaneously present in our environment.
Collapse
Affiliation(s)
- Sonia Abdallah
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Amandine Jampy
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Delphine Moison
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Margaux Wieckowski
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Sébastien Messiaen
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Emmanuelle Martini
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Anna Campalans
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Juan Pablo Radicella
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Gabriel Livera
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Marie-Justine Guerquin
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France.
| |
Collapse
|
4
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
5
|
Cannarella R, Gül M, Rambhatla A, Agarwal A. Temporal decline of sperm concentration: role of endocrine disruptors. Endocrine 2023; 79:1-16. [PMID: 36194343 DOI: 10.1007/s12020-022-03136-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/03/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Male infertility is a widespread disease with an etiology that is not always clear. A number of studies have reported a decrease in sperm production in the last forty years. Although the reasons are still undefined, the change in environmental conditions and the higher exposure to endocrine-disrupting chemicals (EDCs), namely bisphenol A, phthalates, polychlorinated biphenyls, polybrominated diphenyl esters, dichlorodiphenyl-dichloroethylene, pesticides, and herbicides, organophosphates, and heavy metals, starting from prenatal life may represent a possible factor justifying the temporal decline in sperm count. AIM The aim of this study is to provide a comprehensive description of the effects of the exposure to EDCs on testicular development, spermatogenesis, the prevalence of malformations of the male genital tract (cryptorchidism, testicular dysgenesis, and hypospadias), testicular tumor, and the mechanisms of testicular EDC-mediated damage. NARRATIVE REVIEW Animal studies confirm the deleterious impact of EDCs on the male reproductive apparatus. EDCs can compromise male fertility by binding to hormone receptors, dysregulating the expression of receptors, disrupting steroidogenesis and hormonal metabolism, and altering the epigenetic mechanisms. In humans, exposure to EDCs has been associated with poor semen quality, increased sperm DNA fragmentation, increased gonadotropin levels, a slightly increased risk of structural abnormalities of the genital apparatus, such as cryptorchidism and hypospadias, and development of testicular tumor. Finally, maternal exposure to EDCs seems to predispose to the risk of developing testicular tumors. CONCLUSION EDCs negatively impact the testicular function, as suggested by evidence in both experimental animals and humans. A prenatal and postnatal increase to EDC exposure compared to the past may likely represent one of the factors leading to the temporal decline in sperm counts.
Collapse
Affiliation(s)
- Rossella Cannarella
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
| | | | - Ashok Agarwal
- American Center for Reproductive Medicine (Virtual Research), Global Andrology Forum, Cleveland, OH, USA.
| |
Collapse
|
6
|
Ling Y, Huang X, Li A, Zhang J, Chen J, Ren J, Liu Y, Xie M. Bisphenol A exposure induces testicular oxidative damage via FTO/m6A/Nrf2 axis during postnatal development in mice. J Appl Toxicol 2022; 43:694-705. [PMID: 36451259 DOI: 10.1002/jat.4417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA), a commonly used plasticizer in the production of polycarbonate plastics and epoxy resins, has been shown to induce male reproductive toxicity. However, the effects of BPA exposure on early testicular development have not been thoroughly studied, and the underlying mechanism is yet to be elucidated. In the current study, neonatal male mice were exposed to BPA at 0, 0.1, and 5 mg/kg, respectively, by daily subcutaneous injection during postnatal day (PND) 1-35 to explore its effects on testicular development at PND 36 (the end of the first round of spermatogenesis). Morphological analyses showed that BPA exposure significantly induced apoptosis of testicular cells (p < 0.01 and p < 0.001) and reduced the thickness of seminiferous epithelium (p < 0.01). In addition, BPA exposure significantly decreased the total antioxidant capacity of testes and levels of transcription factor Nrf2 as well as its downstream antioxidant molecules of NQO1 and GPx-1 (p < 0.05 and p < 0.01). Furthermore, global m6A modifications of mRNAs were upregulated accompanied by declined m6A demethylase (FTO) in the testes of BPA groups (p < 0.05 and p < 0.01). MeRIP-quantitative real-time polymerase chain reaction (qPCR) demonstrated that BPA exposure markedly increased the m6A modification of Nrf2 mRNA (p < 0.05 and p < 0.01). These findings suggest that upregulation of m6A induced by inhibited FTO may be involved in BPA-induced testicular oxidative stress and developmental injury during postnatal development, which provides a new idea to reveal the mechanism underlying BPA interfering with testicular development.
Collapse
Affiliation(s)
- Yuanchao Ling
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xiaodi Huang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Anlong Li
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jinzhi Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jianmei Chen
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jiale Ren
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yanan Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Meina Xie
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
7
|
Brouard V, Drouault M, Elie N, Guénon I, Hanoux V, Bouraïma-Lelong H, Delalande C. Effects of bisphenol A and estradiol in adult rat testis after prepubertal and pubertal exposure. Reprod Toxicol 2022; 111:211-224. [PMID: 35700937 DOI: 10.1016/j.reprotox.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Over the past few decades, male fertility has been decreasing worldwide. Many studies attribute this outcome to endocrine disruptors exposure such as bisphenol A (BPA), which is a chemical compound used in plastics synthesis and exhibiting estrogenic activity. In order to assess how the window of exposure modulates the effects of BPA on the testis, prepubertal (15 dpp to 30 dpp) and pubertal (60 dpp to 75 dpp) male Sprague-Dawley rats were exposed to BPA (50 µg/kg bw/day), 17-β-estradiol (E2) (20 µg/kg bw/day) as a positive control, or to a combination of these compounds. For both periods of exposure, the rats were sacrificed and their testes were collected at 75 dpp. The histological analysis and the quantification of the gene expression of testis cell markers by RT-qPCR confirmed the complete spermatogenesis in all groups for both periods of exposure. However, our results suggest a deleterious effect of BPA on the blood-testis barrier in adults after pubertal exposure as BPA and BPA+E2 treatments induced a decrease in caveolin-1 and connexin-43 gene expression; which are proteins of the junctional complexes. As none of these effects were found after a prepubertal exposure, these results suggested the reversibility of BPA's effects. Caution must be taken when transposing this finding to humans and further studies are needed in this regard. However, from a regulatory perspective, this study emphasizes the importance of taking into account different periods of exposure, as they present different sensitivities to BPA exposure.
Collapse
Affiliation(s)
| | | | - Nicolas Elie
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, 14000 Caen, France
| | | | | | | | | |
Collapse
|
8
|
Golshan M, Hatef A, Kazori N, Socha M, Sokołowska-Mikołajczyk M, Habibi HR, Linhart O, Alavi SMH. A chronic exposure to bisphenol A reduces sperm quality in goldfish associated with increases in kiss2, gpr54, and gnrh3 mRNA and circulatory LH levels at environmentally relevant concentrations. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109342. [PMID: 35417786 DOI: 10.1016/j.cbpc.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
The bisphenol A (BPA)-disrupted reproductive functions have been demonstrated in male animals. In fish, it has been shown that environmentally relevant concentrations of BPA decrease sperm quality associated with inhibition of androgen biosynthesis. However, BPA effects on neuroendocrine regulation of reproduction to affect testicular functions are largely unknown. In the present study, reproductive functions of hypothalamus and pituitary were studied in mature male goldfish exposed to nominal 0.2, 2.0 and 20.0 μg/L BPA. At 90 d of exposure, sperm volume, velocity, and density and motility were decreased in goldfish exposed to 0.2, 2.0, and 20.0 μg/L BPA, respectively (p < 0.05). At 30 d of exposure, there were no significant changes in circulatory LH levels and mRNA transcripts of kiss1, Kiss2, gpr54, and gnrh3. At 90 d of exposure, circulatory LH levels showed trends toward increases in BPA exposed goldfish, which was significant in those exposed to 2.0 μg/L (P < 0.05). At this time, Kiss2, gpr54, and gnrh3 mRNA levels were increased in goldfish exposed to any concentrations of BPA (p < 0.05). This study shows that BPA-diminished sperm quality was accompanied by an increase in circulatory LH levels associated with increases in mRNA transcripts of upstream neuroendocrine regulators of reproduction in goldfish. Further, this is the first study to report circulatory levels of LH in fish exposed to BPA.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, 133-15745 Tehran, Iran
| | - Azadeh Hatef
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Sciences, University of Agriculture in Kraków, Kraków 30-059, Poland
| | | | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| | | |
Collapse
|
9
|
Zhu L, Wang M, Fu S, Li K, Liu J, Wang Z. BPA disrupted the testis testosterone levels by interfering ER enrichments within StAR 5' flanking region in rare minnow Gobiocypris rarus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109338. [PMID: 35381366 DOI: 10.1016/j.cbpc.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA) is a widely used endocrine disruptor, which has attracted much attention due to its harmful effects on male reproduction. To investigate the interference of BPA on steroid synthesis in males, male rare minnows (Gobiocypris rarus) were exposed to 15 μg L-1 BPA for 7, 14 and 21 d. Meanwhile, a positive control group was performed with 25 ng L-1 17α-ethynyl estradiol (EE2). Results showed that BPA exposure induced lower testosterone (T) levels, while affecting the transcripts of steroidogenic gene StAR. Moreover, BPA induced abnormal germ cells proliferation in the testis in rare minnow. Transcriptome analysis showed that 354 transcripts significantly differentially expressed after BPA exposure for 14 d, several of them were enriched in the signaling pathways of cell cycle process, PPAR signaling pathway, the steroid synthesis pathway and estrogen signaling pathway. BPA significantly increased estrogen receptor (ER) levels and induced abnormal protein levels of PPARγ. BPA disrupted the StAR expression by interfering ER enrichments within StAR 5' flanking region. Additionally, our study also revealed that BPA and EE2 might have different mechanisms for interfering with steroid hormone levels and germ cells proliferation in the testis.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingrong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiqi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Liu R, Cai D, Li X, Liu B, Chen J, Jiang X, Li H, Li Z, Teerds K, Sun J, Bai W, Jin Y. Effects of Bisphenol A on reproductive toxicity and gut microbiota dysbiosis in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113623. [PMID: 35567931 DOI: 10.1016/j.ecoenv.2022.113623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor. Recent studies have shown an association between decreased spermatogenesis and gut microbiota alteration. However, the potential associations and mechanisms of BPA exposure on spermatogenesis, hormone production, and gut microbiota remain unknown. This study aims to investigate BPA-induced male reproductive toxicity and the potential link with gut microbiota dysbiosis. Male Sprague Dawley rats were exposed to BPA at different doses by oral gavage for thirty consecutive days. The extent of testicular damage was evaluated by basic parameters of body weight and hematoxylin-eosin (H&E) staining. Next, we determined the mRNA levels and protein levels of apoptosis, histone-related factors, and mammalian target of rapamycin (mTOR) pathway in testes. Finally, 16 S rDNA sequencing was used to analyze gut microbiota composition after BPA exposure. BPA exposure damaged testicular histology, significantly decreased sperm count, and increased sperm abnormalities. In addition, BPA exposure caused oxidative stress and cell apoptosis in testes. The levels of histone (H2A, H3) were significantly increased, while ubiquitin histone H2A (ub-H2A) and ubiquitin histone H2B (ub-H2B) were markedly reduced. Furthermore, BPA activated the PI3K and AKT expression, but the protein expressions of mTOR and 4EBP1 in testes were inhibited significantly. Additionally, the relative abundance of class Gammaproteobacteria, and order Betaproteobacteriales was significantly higher when treated with a high dose of BPA compared to the control group, which was negatively correlated with testosterone level. This study highlights the relationship between BPA-induced reproductive toxicity and gut microbiota disorder and provides new insights into the prevention and treatment of BPA-induced reproductive damage.
Collapse
Affiliation(s)
- Ruijing Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Boping Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, PR China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Zhenhua Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519070, PR China
| | - Katja Teerds
- Department of Animal Sciences, Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| | - Yulong Jin
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, PR China.
| |
Collapse
|
11
|
Sahu C, Singla S, Jena G. Studies on male gonadal toxicity of bisphenol A in diabetic rats: An example of exacerbation effect. J Biochem Mol Toxicol 2022; 36:e22996. [DOI: 10.1002/jbt.22996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Chittaranjan Sahu
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Shivani Singla
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
12
|
Belmonte-Tebar A, San Martin Perez E, Nam Cha S, Soler Valls AJ, Singh ND, de la Casa-Esperon E. Diet effects on mouse meiotic recombination: a warning for recombination studies. Genetics 2022; 220:iyab190. [PMID: 34791205 PMCID: PMC8733447 DOI: 10.1093/genetics/iyab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.
Collapse
Affiliation(s)
- Angela Belmonte-Tebar
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Estefania San Martin Perez
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Syonghyun Nam Cha
- Pathology Department and Biobank of Albacete, University Hospital Complex of Albacete, Albacete 02006, Spain
| | | | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Elena de la Casa-Esperon
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, University of Castilla-La Mancha, Albacete 02071, Spain
| |
Collapse
|
13
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Jean-François Simon
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Sarah Grassi
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger, CP 160/12, 1000 Brussels, Belgium;
| | - Vanessa Arcolia
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology, University of Cologne, Kerpener Strasse 34, 50931 Cologne, Germany
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| |
Collapse
|
14
|
Zhang Y, Zhang M, Zhu Z, Yang H, Wei W, Li B. Bisphenol A regulates apolipoprotein A1 expression through estrogen receptors and DNA methlylation and leads to cholesterol disorder in rare minnow testis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:105999. [PMID: 34678657 DOI: 10.1016/j.aquatox.2021.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a well-known plasticizer that widely distributed in the aquatic environment. BPA has many adverse effects on reproduction. However, few studies have investigated the mechanism of BPA affecting reproduction from the perspective of lipid metabolism. Apolipoprotein A1 (ApoA1) is the major component of high-density lipoprotein (HDL), and plays critical roles in reverse cholesterol transport (RCT). In this study, in order to investigate the effect and molecular mechanism of BPA on testicular ApoA1 and the role of ApoA1 in BPA induced abnormal spermatogenesis, adult male rare minnow Gobiocypris rarus were exposed to 15 μg/L of BPA for 1, 3 and 5 weeks. Results showed that BPA could significantly affect testicular ApoA1 mRNA and protein levels, testicular cholesterol levels, plasmatic sex hormone levels and the integrity of sperm head membrane. The main mechanism of BPA regulating ApoA1 expression is to alter Esr recruitment and CpG sites DNA methylation in ApoA1 promoter. The induced ApoA1 up-regulated high density lipoprotein cholesterol levels and enhanced RCT, and finally decreased the testicular free cholesterol levels. This is likely a key mechanism by which BPA induces sex hormone disorder and sperm head membrane damage. The present study reveals the mechanism by which BPA interferes with spermatogenesis from the perspective of cholesterol transport.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Meng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Ho SM, Rao R, Ouyang B, Tam NNC, Schoch E, Song D, Ying J, Leung YK, Govindarajah V, Tarapore P. Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients 2021; 13:nu13103636. [PMID: 34684636 PMCID: PMC8541510 DOI: 10.3390/nu13103636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17β (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| | - Rahul Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Neville N. C. Tam
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Emma Schoch
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Dan Song
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Jun Ying
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| |
Collapse
|
16
|
Harnett KG, Chin A, Schuh SM. BPA and BPA alternatives BPS, BPAF, and TMBPF, induce cytotoxicity and apoptosis in rat and human stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112210. [PMID: 33866271 DOI: 10.1016/j.ecoenv.2021.112210] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical found in everyday plastic products and materials. Due to scientific findings on the reproductive, developmental, and cellular defects caused by BPA and heightened public awareness, manufacturers have begun to use new chemicals in place of BPA in "BPA-free" products. These alternatives are chemical analogs of BPA and include dozens of new compounds that have undergone relatively little testing and oversight, including: bisphenol S (BPS), bisphenol AF (BPAF), and the recently developed tetramethyl bisphenol F (TMBPF; the monomer of valPure V70). Here, we used adult female rat adipose-derived stem cells (rASCs) and human mesenchymal stem cells (hMSCs) to compare the toxicities and potencies of these BPA alternatives in vitro. Rat and human stem cells were exposed to BPA (1-10 μM), 17β-estradiol (E2; 10 μM), BPS (1-100 μM), BPAF (3×10-4-30 μM), TMBPF (0.01-50 μM), or control media alone (with 0.01% ethanol) for varying time intervals from 10 min to 24 h. We found significantly decreased cell viability and massive apoptosis in rat and human stem cells treated with each BPA analog, as early as 10 min of exposure, and at low, physiologically relevant doses. BPAF showed extreme cytotoxicity in a dose-dependent manner (LC50 =0.014 μM (rASCs) and 0.009 μM (hMSCs)), whereas TMBPF showed a bimodal response, with low and high concentrations being the most toxic (LC50 =0.88 μM (rASCs) and 0.06 μM (hMSCs)). Activated caspase-6 levels increased in nearly all cells treated with the BPA analogs indicating the majority of cell death was due to caspase-6-mediated apoptosis. These results in both rat and human stem cells underscore the toxicity and potency of these BPA analogs, and establish a rank order of potency of: BPAF>TMBPF>BPA>BPS. Further, these and other recent findings indicate that these newer BPA analogs may be 'regrettable substitutions,' being worse than the original parent compound and lacking proper testing and regulation. This work brings to light the need for further toxicological characterization, better regulation, greater public awareness, and the development of safer, more sustainable chemicals and non-plastic products.
Collapse
Affiliation(s)
- Kristen G Harnett
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Ashley Chin
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Sonya M Schuh
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA.
| |
Collapse
|
17
|
Park HJ, Lee WY, Do JT, Park C, Song H. Evaluation of testicular toxicity upon fetal exposure to bisphenol A using an organ culture method. CHEMOSPHERE 2021; 270:129445. [PMID: 33421752 DOI: 10.1016/j.chemosphere.2020.129445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Humans are exposed to a multitude of endocrine disruptor chemicals (EDCs) that can interfere with the action of endogenous hormones and the normal development of reproductive organs. Bisphenol A (BPA) is one of the most common EDCs found in the environment. Here, we evaluated BPA toxicity on fetal testes using an in vitro organ culture system. Mouse fetal testes sampled at 15.5 days post coitus were cultured in a medium containing BPA for 5 days. The number of germ cells was reduced by BPA treatment, whereas the number of Sertoli cells was slightly increased by BPA at the highest dose (100 μM). Consistently, BPA treatment reduced the protein and gene expression levels of germ cell markers, but it increased the expression levels of Sertoli cell markers. The expression levels of fetal Leydig cell markers such as Cyp11a1, Thbs2, Cyp17a1, and Pdgf-α were significantly increased, whereas those of adult Leydig cell markers such as Hsd17b3, Ptgds, Sult1e1, Vcam1, and Hsd11b1 were decreased in the testes exposed to BPA. Generally, Notch signaling restricts Leydig cell differentiation from progenitor cells during fetal testis development. The expression levels of Notch1, Notch2, Notch3, Hes1, Ptch1, Jag1, Jag2, c-Myc, Hey1, and Hey2, which are involved in Notch signaling, were markedly higher in BPA-treated fetal testes than in the controls, indicating that BPA interrupts fetal Leydig cell development. BPA also disrupted steroidogenesis in the fetal testis organ culture system. In conclusion, our study showed that BPA inhibits fetal germ cell growth, Leydig cell development, and steroidogenesis.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Young Lee
- Department of Beef Science, Korea National College of Agricultures and Fisheries, Jeonju-si, Jeonbuk, 54874, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
18
|
Wang LH, Chen LR, Chen KH. In Vitro and Vivo Identification, Metabolism and Action of Xenoestrogens: An Overview. Int J Mol Sci 2021; 22:4013. [PMID: 33924608 PMCID: PMC8070283 DOI: 10.3390/ijms22084013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Xenoestrogens (XEs) are substances that imitate endogenous estrogens to affect the physiologic functions of humans or other animals. As endocrine disruptors, they can be either synthetic or natural chemical compounds derived from diet, pesticides, cosmetics, plastics, plants, industrial byproducts, metals, and medications. By mimicking the chemical structure that is naturally occurring estrogen compounds, synthetic XEs, such as polychlorinated biphenyls (PCBs), bisphenol A (BPA), and diethylstilbestrol (DES), are considered the focus of a group of exogenous chemical. On the other hand, nature phytoestrogens in soybeans can also serve as XEs to exert estrogenic activities. In contrast, some XEs are not similar to estrogens in structure and can affect the physiologic functions in ways other than ER-ERE ligand routes. Studies have confirmed that even the weakly active compounds could interfere with the hormonal balance with persistency or high concentrations of XEs, thus possibly being associated with the occurrence of the reproductive tract or neuroendocrine disorders and congenital malformations. However, XEs are most likely to exert tissue-specific and non-genomic actions when estrogen concentrations are relatively low. Current research has reported that there is not only one factor affected by XEs, but opposite directions are also found on several occasions, or even different components stem from the identical endocrine pathway; thus, it is more challenging and unpredictable of the physical health. This review provides a summary of the identification, detection, metabolism, and action of XEs. However, many details of the underlying mechanisms remain unknown and warrant further investigation.
Collapse
Affiliation(s)
- Li-Hsuan Wang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan;
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 10049, Taiwan;
- Department of Mechanical Engineering, National Yang-Ming Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan;
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
19
|
Pellerin E, Caneparo C, Chabaud S, Bolduc S, Pelletier M. Endocrine-disrupting effects of bisphenols on urological cancers. ENVIRONMENTAL RESEARCH 2021; 195:110485. [PMID: 33212129 DOI: 10.1016/j.envres.2020.110485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenols are endocrine-disrupting chemicals found in a broad range of products that can modulate hormonal signalling pathways and various other biological functions. These compounds can bind steroid receptors, e.g. estrogen and androgen receptors, expressed by numerous cells and tissues, including the prostate and the bladder, with the potential to alter their homeostasis and normal physiological functions. In the past years, exposure to bisphenols was linked to cancer progression and metastasis. As such, recent pieces of evidence suggest that endocrine-disrupting chemicals can lead to the development of prostate cancer. Moreover, bisphenols are found in the urine of the wide majority of the population. They could potentially affect the bladder's normal physiology and cancer development, even if the bladder is not recognized as a hormone-sensitive tissue. This review will focus on prostate and bladder malignancies, two urological cancers that share standard carcinogenic processes. The description of the underlying mechanisms involved in cell toxicity, and the possible roles of bisphenols in the development of prostate and bladder cancer, could help establish the putative roles of bisphenols on public health.
Collapse
Affiliation(s)
- Eve Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| | - Martin Pelletier
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Québec, Canada; Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada.
| |
Collapse
|
20
|
Liu X, Wang Z, Liu F. Chronic exposure of BPA impairs male germ cell proliferation and induces lower sperm quality in male mice. CHEMOSPHERE 2021; 262:127880. [PMID: 32777607 DOI: 10.1016/j.chemosphere.2020.127880] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-known endocrine disruptor that affects male fertility. However, the main biological events through which BPA affects spermatogenesis remain to be identified. METHODS Adult male mice were treated by feeding with drinking water containing BPA (0.2 μg/ml, 20 μg/ml, 200 μg/ml, respectively) for two months. Testes were collected for protein extraction or for immunohistochemical analysis. Epididymal spermatozoa were collected for sperm quality evaluation and male fertility assay by in vitro fertility (IVF). Serums were collected for detection of testosterone levels. Proteins associated with germ cell proliferation, meiosis, blood-testis barrier, and steroidogenesis production were examined in BPA-treated and control mice testes. CCK8 assay was used to detect the effect of BPA on the proliferation of GC-1 and GC-2 cells. RESULTS The BPA-treated mice were characterized by decreased sperm quality, serum testosterone levels and, sub-fertile phenotype characterizing with low pregnancy rates and reduced fertilization efficiency. In lower BPA (0.2 μg/ml) treatment, PCNA and PLZF were down-expressed that indicated impaired germ cell proliferation. SYCP3 was down-expressed in BPA-treated mice, but expressions of other proteins associated with meiosis and blood-testis barrier were not significantly altered. CYP11A1 and HSD3B1 were down-expressed in BPA-treated mice that demonstrated reduced steroidogenesis activity. BPA has a concentration-dependent inhibition effect on the proliferation of GC-1 and GC-2 cells. Conclusively, low doses BPA exposure reduced mice sperm quality mainly by impairing germ cell proliferation, leading to reduced male fertility. The study would provide relevant information for investigation on molecular mechanisms and protective strategy on male production.
Collapse
Affiliation(s)
- XueXia Liu
- Department of Central Laboratory, Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - ZhiXin Wang
- Department of Central Laboratory, Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - FuJun Liu
- Department of Central Laboratory, Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China.
| |
Collapse
|
21
|
Gestational Exposure to Bisphenol A Affects Testicular Morphology, Germ Cell Associations, and Functions of Spermatogonial Stem Cells in Male Offspring. Int J Mol Sci 2020; 21:ijms21228644. [PMID: 33212759 PMCID: PMC7696188 DOI: 10.3390/ijms21228644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to bisphenol A (BPA) in the gestational period damages the reproductive health of offspring; detailed evidence regarding BPA-induced damage in testicular germ cells of offspring is still limited. In this study, pregnant mice (F0) were gavaged with three BPA doses (50 μg, 5 mg, and 50 mg/kg body weight (bw)/day; tolerable daily intake (TDI), no-observed-adverse-effect-level (NOAEL), and lowest-observed-adverse-effect level (LOAEL), respectively) on embryonic days 7 to 14, followed by investigation of the transgenerational effects of such exposure in male offspring. We observed that the NOAEL- and LOAEL-exposed F1 offspring had abnormalities in anogenital distance, nipple retention, and pubertal onset (days), together with differences in seminiferous epithelial stages and testis morphology. These effects were eradicated in the next F2 and F3 generations. Moreover, there was an alteration in the ratio of germ cell population and the apoptosis rate in germ cells increased in F1 offspring at the LOAEL dose. However, the total number of spermatogonia remained unchanged. Finally, a reduction in the stemness properties of spermatogonial stem cells in F1 offspring was observed upon LOAEL exposure. Therefore, we provide evidence of BPA-induced disruption of physiology and functions in male germ cells during the gestational period. This may lead to several reproductive health issues and infertility in offspring.
Collapse
|
22
|
Karmakar PC, Ahn JS, Kim YH, Jung SE, Kim BJ, Lee HS, Kim SU, Rahman MS, Pang MG, Ryu BY. Paternal Exposure to Bisphenol-A Transgenerationally Impairs Testis Morphology, Germ Cell Associations, and Stemness Properties of Mouse Spermatogonial Stem Cells. Int J Mol Sci 2020; 21:ijms21155408. [PMID: 32751382 PMCID: PMC7432732 DOI: 10.3390/ijms21155408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Bisphenol-A (BPA) exposure in an adult male can affect the reproductive system, which may also adversely affect the next generation. However, there is a lack of comprehensive data on the BPA-induced disruption of the association and functional characteristics of the testicular germ cells, which the present study sought to investigate. Adult male mice were administered BPA doses by gavage for six consecutive weeks and allowed to breed, producing generations F1-F4. Testis samples from each generation were evaluated for several parameters, including abnormal structure, alterations in germ cell proportions, apoptosis, and loss of functional properties of spermatogonial stem cells (SSCs). We observed that at the lowest-observed-adverse-effect level (LOAEL) dose, the testicular abnormalities and alterations in seminiferous epithelium staging persisted in F0-F2 generations, although a reduced total spermatogonia count was found only in F0. However, abnormalities in the proportions of germ cells were observed until F2. Exposure of the male mice (F0) to BPA alters the morphology of the testis along with the association of germ cells and stemness properties of SSCs, with the effects persisting up to F2. Therefore, we conclude that BPA induces physiological and functional disruption in male germ cells, which may lead to reproductive health issues in the next generation.
Collapse
Affiliation(s)
- Polash Chandra Karmakar
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Jin Seop Ahn
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Yong-Hee Kim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Sang-Eun Jung
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hee-Seok Lee
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Sun-Uk Kim
- National Primate Research Center and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea;
| | - Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Buom-Yong Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
- Correspondence: ; Tel.: +82-31-670-4687; Fax: +82-31-670-0062
| |
Collapse
|
23
|
Global changes in epigenomes during mouse spermatogenesis: possible relation to germ cell apoptosis. Histochem Cell Biol 2020; 154:123-134. [PMID: 32653936 DOI: 10.1007/s00418-020-01900-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Mammalian spermatogenesis is characterized by disproportionate germ cell apoptosis. The high frequency of apoptosis is considered a safety mechanism that serves to avoid unfavorable transmission of paternal aberrant genetic information to the offspring as well as elimination mechanism for removal of overproduced immature or damaged spermatogenic cells. The molecular mechanisms involved in the induction of germ cell apoptosis include both intrinsic mitochondrial Bcl-2/Bax and extrinsic Fas/FasL pathways. However, little is known about the nuclear trigger of those systems. Recent studies indicate that epigenomes are essential in the regulation of gene expression through remodeling of the chromatin structure, and are genome-like transmission materials that reflect the effects of various environmental factors. In spermatogenesis, epigenetic errors can act as the trigger for elimination of germ cells with abnormal chromatin structure, abnormal gene expression and/or morphological defects (disordered differentiation). In this review, we focus on the relationship between global changes in epigenetic parameters and germ cell apoptosis in mice and other mammals.
Collapse
|
24
|
Sharma A, Mollier J, Brocklesby RWK, Caves C, Jayasena CN, Minhas S. Endocrine-disrupting chemicals and male reproductive health. Reprod Med Biol 2020; 19:243-253. [PMID: 32684823 PMCID: PMC7360961 DOI: 10.1002/rmb2.12326] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND A number of different types of endocrine-disrupting chemicals (EDCs) including bisphenol A, phthalates, pesticides, and other environmental chemicals have been shown to adversely impact upon male reproductive health. Understanding the potential effects of EDCs on male reproductive health may enable the development of novel treatments and early prevention of the effects of EDCs on male infertility and their potential long-term sequelae. This review critically evaluates the research performed in this area and explores potential harmful effects of EDCs in animals and humans, including the possibility of trans-generational transmission. METHODS A literature review was conducted using electronic databases using the following terms: 'endocrine disrupt*' OR 'endocrine disruptors' OR 'endocrine disruptor chemicals' OR 'EDC' AND 'sperm*' OR 'spermatozoa' OR 'spermatozoon' OR 'male reproductive health' OR' male fertility'. MAIN FINDINGS Several studies have shown that EDCs have a variety of pathophysiological effects. These include failure of spermatogenesis, embryonic development, the association with testicular cancer, and long-term metabolic effects. CONCLUSIONS Several studies observe correlations between chemical doses and at least one sperm parameter; however, such correlations are sometimes inconsistent between different studies. Mechanisms through which EDCs exert their pathophysiological effects have not yet been fully elucidated in human studies.
Collapse
Affiliation(s)
- Aditi Sharma
- Section of Investigative MedicineFaculty of MedicineImperial College LondonLondonUK
| | - Josephine Mollier
- Section of Investigative MedicineFaculty of MedicineImperial College LondonLondonUK
| | | | - Charlotte Caves
- Section of Investigative MedicineFaculty of MedicineImperial College LondonLondonUK
| | - Channa N. Jayasena
- Section of Investigative MedicineFaculty of MedicineImperial College LondonLondonUK
- Imperial Centre for AndrologyImperial College Healthcare NHS TrustLondonUK
| | - Suks Minhas
- Imperial Centre for AndrologyImperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
25
|
Balci A, Ozkemahli G, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. Histopathologic, apoptotic and autophagic, effects of prenatal bisphenol A and/or di(2-ethylhexyl) phthalate exposure on prepubertal rat testis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20104-20116. [PMID: 32239407 DOI: 10.1007/s11356-020-08274-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine-disrupting chemicals (EDCs) used in a wide variety of industrial products as plasticizers. Exposure to EDCs, particularly in mixtures, in prenatal and early postnatal periods may lead to unwanted effects and can cause both developmental and reproductive problems. In this study, we aimed to determine the individual and combined effects of prenatal and lactational exposure to BPA and/or DEHP on testicular histology, apoptosis, and autophagic proteins. Pregnant Sprague-Dawley rats (n = 3) were divided into four groups (control, BPA (50 mg/kg/day), DEHP (30 mg/kg/day), and BPA (50 mg/kg/day) + DEHP (30 mg/kg/day)) and dosed by oral gavage during pregnancy and lactation. The male offspring (n = 6) from each group were chosen randomly, and their testicular examinations were performed on the twelfth week. The results showed that fetal and neonatal exposure to BPA and DEHP could lead to significant testicular histopathological alterations and cause increases in apoptosis markers (as evidenced by increases in caspase 3 and caspase 8 levels; increased TUNEL-positive spermatogonia and TUNEL-positive testicular apoptotic cells) and autophagic proteins (as evidenced by increased LC3 and Beclin levels and decreased p62 levels) in testicular tissue. We can suggest that EDCs cause more dramatic changes in both testicular structure and cell death when there is combined exposure.
Collapse
Affiliation(s)
- Aylin Balci
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
26
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
27
|
Kutluyer F, Çakir Sahilli Y, Kocabaş M, Aksu Ö. Sperm quality and oxidative stress in chub Squalius orientalis and Padanian barbel Barbus plebejus (Teleostei: Cyprinidae) after in vitro exposure to low doses of bisphenol A. Drug Chem Toxicol 2020; 45:8-13. [PMID: 32050812 DOI: 10.1080/01480545.2020.1726379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In an aquatic environment, the presence of Bisphenol A (BPA) adversely affects reproduction, biology, behavior, gonads, and early larval development of fish due to being endocrine-disrupting compound. In addition, the detected concentration of BPA in water bodies is reported to be higher than 0.41 μg/L. As an alternative tool, sperm cells are used in toxicological assays for the reliable and practical assessment. For these reasons, we examined the effects of in vitro exposure of BPA on sperm quality of chub Squalius oriantalis and Padanian barbel Barbus plebejus. Spermatozoa were exposed to lower concentrations (0, 0.5, 1.25, 2.5, and 5 µg/L) of BPA for 2 h. The enzymatic activities [glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD)] and lipid peroxidation (MDA) were evaluated in spermatozoa. The results demonstrated that BPA exposure significantly decreased activities of SOD and GSH-Px but increased CAT activity and lipid peroxidation (MDA). Compared to control, the percentage and duration of sperm motility significantly decreased. Overall, spermatozoa clearly showed the sensitivity to lower concentrations of BPA.
Collapse
Affiliation(s)
| | - Yeliz Çakir Sahilli
- Department of Chemistry and Chemical Processing Technologies, Munzur University, Tunceli Vacation School, Tunceli, Turkey
| | - Mehmet Kocabaş
- Karadeniz Technical University, Faculty of Forestry, Department of Wildlife Ecology and Management, Trabzon, Turkey
| | - Önder Aksu
- Fisheries Faculty, Munzur University, Tunceli, Turkey
| |
Collapse
|
28
|
Ullah A, Pirzada M, Jahan S, Ullah H, Razak S, Rauf N, Khan MJ, Mahboob SZ. Prenatal BPA and its analogs BPB, BPF, and BPS exposure and reproductive axis function in the male offspring of Sprague Dawley rats. Hum Exp Toxicol 2020; 38:1344-1365. [PMID: 31514588 DOI: 10.1177/0960327119862335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the past has indicated associated long-term and low levels of exposure of bisphenol A (BPA) in early life and neuroendocrine disorders, such as obesity, precocious puberty, diabetes, and hypertension. BPA and its analogs bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) have been reported to have similar or even more toxic effect as compared to BPA. Exposure of rats to BPA and its analogs BPB, BPF, and BPS resulted in decreased sperm production, testosterone secretion, and histological changes in the reproductive tissues of male rats. In the present study, BPA, BPB, BPF, and BPS were administered in drinking water at concentrations of (5, 25, and 50 μg/L) from pregnancy day (PD) 1 to PD 21. Body weight (BW), hormonal concentrations, antioxidant enzymes, and histological changes were determined in the reproductive tissues. BPA and its analogs prenatal exposure to female rats induced significant statistical difference in the antioxidant enzymes, plasma testosterone, and estrogen concentrations in the male offspring when compared with the control. Histological parameters of both testis and epididymis revealed prominent changes in the reproductive tissues. The present study suggests that BPA and its analogs BPB, BPF, and BPS different concentrations led to marked alterations in the development of the male reproductive system.
Collapse
Affiliation(s)
- A Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M Pirzada
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - H Ullah
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Razak
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - N Rauf
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - M J Khan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - S Z Mahboob
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
29
|
Liu Y, Wang L, Zhu L, Ran B, Wang Z. Bisphenol A disturbs transcription of steroidogenic genes in ovary of rare minnow Gobiocypris rarus via the abnormal DNA and histone methylation. CHEMOSPHERE 2020; 240:124935. [PMID: 31563720 DOI: 10.1016/j.chemosphere.2019.124935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Increasing studies have established the toxic effects of BPA on development and reproduction in animals. In present study, we investigated epigenetic effects on the transcription of several ovarian steroidogenic genes in rare minnows Gobiocypris rarus after BPA exposure at 15 μgL-1 for 21, 42 and 63 d. Results showed that short term BPA exposure (21 d) caused significant increase of both estradiol and testerone levels whereas long term exposure (63 d) led to significant decrease of them. The oocytes development was hindered after BPA exposure. BPA treatments for 21 and 42 d resulted in significant increase of genome DNA methylation in ovary while 63-d exposure caused marked decrease. The histone trimethylation levels (H3K4me3, H3K9me3 and H3K27me3) in the ovary were also disturbed by BPA. H3K9me3 was significantly decreased after 21 d whereas it was markedly increased after 42 and 63 d. The 42-d exposure caused significant decrease for H3K4me3. Meanwhile, 42- and 63-d BPA exposure led to significant decrease of H3K27me3. DNA methylation could involve in gene expression regulation of cyp17a1 and cyp19a1a after BPA exposure. After short (21 d) and long term (63 d) BPA exposure, the respective mRNA expression down-regulation and up-regulation of star, cyp11a1, and cyp17a1 were mediated by H3K9me3. This study suggests that epigenetic modulation including DNA and histone methylation could be responsible for the detrimental effects on ovary development upon BPA exposure in G. rarus. It is speculated that BPA exposures for short or long term duration could disturb the steroidogenesis in entirely different mechanisms.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Benhui Ran
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
30
|
Potential Health Risks Linked to Emerging Contaminants in Major Rivers and Treated Waters. WATER 2019. [DOI: 10.3390/w11122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in our local waterways is becoming an increasing threat to the surrounding population. These compounds and their degradation products (found in pesticides, herbicides, and plastic waste) are known to interfere with a range of biological functions from reproduction to differentiation. To better understand these effects, we used an in silico ontological pathway analysis to identify the genes affected by the most commonly detected EDCs in large river water supplies, which we grouped together based on four common functions: Organismal injuries, cell death, cancer, and behavior. In addition to EDCs, we included the opioid buprenorphine in our study, as this similar ecological threat has become increasingly detected in river water supplies. Through the identification of the pleiotropic biological effects associated with both the acute and chronic exposure to EDCs and opioids in local water supplies, our results highlight a serious health threat worthy of additional investigations with a potential emphasis on the effects linked to increased DNA damage.
Collapse
|
31
|
Lombó M, Fernández-Díez C, González-Rojo S, Herráez MP. Genetic and epigenetic alterations induced by bisphenol A exposure during different periods of spermatogenesis: from spermatozoa to the progeny. Sci Rep 2019; 9:18029. [PMID: 31792261 PMCID: PMC6889327 DOI: 10.1038/s41598-019-54368-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to bisphenol A (BPA) has been related to male reproductive disorders. Since this endocrine disruptor also displays genotoxic and epigenotoxic effects, it likely alters the spermatogenesis, a process in which both hormones and chromatin remodeling play crucial roles. The hypothesis of this work is that BPA impairs early embryo development by modifying the spermatic genetic and epigenetic information. Zebrafish males were exposed to 100 and 2000 μg/L BPA during early spermatogenesis and during the whole process. Genotoxic and epigenotoxic effects on spermatozoa (comet assay and immunocytochemistry) as well as progeny development (mortality, DNA repairing activity, apoptosis and epigenetic profile) were evaluated. Exposure to 100 µg/L BPA during mitosis slightly increased sperm chromatin fragmentation, enhancing DNA repairing activity in embryos. The rest of treatments promoted high levels of sperm DNA damage, triggering apoptosis in early embryo and severely impairing survival. Regarding epigenetics, histone acetylation (H3K9Ac and H3K27Ac) was similarly enhanced in spermatozoa and embryos from males exposed to all the treatments. Therefore, BPA male exposure jeopardizes embryonic survival and development due to the transmission of a paternal damaged genome and of a hyper-acetylated histone profile, both alterations depending on the dose of the toxicant and the temporal window of exposure.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Cristina Fernández-Díez
- Instituto Ganadero de Motaña (IGM), Finca Marzanas-Grulleros Vega de Infanzones, León, 24346, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain.
| |
Collapse
|
32
|
Pan D, Feng D, Ding H, Zheng X, Ma Z, Yang B, Xie M. Effects of bisphenol A exposure on DNA integrity and protamination of mouse spermatozoa. Andrology 2019; 8:486-496. [PMID: 31489793 DOI: 10.1111/andr.12694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bisphenol A is widely used in the manufacture of polycarbonate plastics and has caused increasing concern over its potential adverse impacts on spermatogenesis. However, the effect of bisphenol A on spermiogenesis is yet to be explored. OBJECTIVES To evaluate whether bisphenol A has adverse effects on DNA integrity and protamination of spermatogenic cell. MATERIALS AND METHODS Newborn male mice were subcutaneously injected with bisphenol A (0.1, 5 mg/kg body weight, n = 15) or coin oil (control group, n = 20) daily from post-natal day 1 until 35. At post-natal day 70, epididymis caudal spermatozoa and testes were collected. Sperm count, sperm motility, and sperm morphology were analyzed. The sperm chromatin structure assay was performed to examine the sperm DNA fragmentation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method was used to assess apoptosis of spermatogenic cells. The ultrastructural features of testicular sections were examined under a transmission electron microscope. Western blot and RT-PCR were used to detect the expression levels of transition protein (Tnp) 1 and Tnp2, protamine (Prm) 1 and Prm2 protein, and mRNA in mice testes. RESULTS Bisphenol A significantly reduced sperm counts, impaired sperm motility, and increased the percentage of malformed spermatozoa. Poor sperm chromatin integrity and increased TUNEL-positive spermatogenic cells were also observed in mice exposed to bisphenol A. Ultrastructural analysis of testes showed that bisphenol A exposure caused incomplete chromatin condensation, retention of residual cytoplasm, and abnormal acrosome formation. In addition, the relative expression levels of Tnp2 and Prm2 in mice testes decreased significantly in bisphenol A groups. DISCUSSION AND CONCLUSION Our findings identified that neonatal bisphenol A exposure may negatively contribute to the sperm quality in adult mice. Mechanistically, we showed that bisphenol A reduced sperm chromatin integrity along with increased DNA damage, which may be due to poor protamination of spermatozoa.
Collapse
Affiliation(s)
- D Pan
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - D Feng
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - H Ding
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - X Zheng
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Z Ma
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - B Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - M Xie
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
33
|
González-Rojo S, Lombó M, Fernández-Díez C, Herráez MP. Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:368-379. [PMID: 30818116 DOI: 10.1016/j.envpol.2019.01.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/18/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor whose ubiquitous presence in the environment has been related with impairment of male reproduction. BPA can cause both transcriptomic and epigenetic changes during spermatogenesis. To evaluate the potential effects of male exposure to BPA, adult zebrafish males were exposed during spermatogenesis to doses of 100 and 2000 μg/L, which were reported in contaminated water bodies and higher than those allowed for human consumption. Fertilization capacity and survival at hatching were analysed after mating with untreated females. Spermatogenic progress was analysed through a morphometrical study of testes and apoptosis was evaluated by TUNEL assay. Testicular gene expression was evaluated by RT-qPCR and epigenetics by using ELISA and immunocytochemistry. In vitro studies were performed to investigate the role of Gper. Chromatin fragmentation and the presence of transcripts were also evaluated in ejaculated sperm. Results on testes from males treated with the highest dose showed a significant decrease in spermatocytes, an increase in apoptosis, a downregulation of ccnb1 and sycp3, all of which point to an alteration of spermatogenesis and to meiotic arrest and an upregulation of gper1 and esrrga receptors. Additionally, BPA at 2000 μg/L caused missregulation of epigenetic remodelling enzymes transcripts in testes and promoted DNA hypermethylation and H3K27me3 demethylation. BPA also triggered an increase in histone acetyltransferase activity, which led to hyperacetylation of histones (H3K9ac, H3K14ac, H4K12ac). In vitro reversion of histone acetylation changes using a specific GPER antagonist, G-36, suggested this receptor as mediator of histone hyperacetylation. Males treated with the lower dose only showed an increase in some histone acetylation marks (H3K14ac, H4K12ac) but their progeny displayed very limited survival at hatching, revealing the deleterious effects of unbalanced paternal epigenetic information. Furthermore, the highest dose of BPA led to chromatin fragmentation, promoting direct reproductive effects, which are incompatible with embryo development.
Collapse
Affiliation(s)
- S González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - C Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M P Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain.
| |
Collapse
|
34
|
Wang Q, Yang H, Yang M, Yu Y, Yan M, Zhou L, Liu X, Xiao S, Yang Y, Wang Y, Zheng L, Zhao H, Li Y. Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction. CHEMOSPHERE 2019; 221:235-245. [PMID: 30640006 DOI: 10.1016/j.chemosphere.2019.01.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/27/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is an abundant endocrine-disrupting compound that is found in the aquatic environment and has adverse effects on fish reproduction; however, the exact pathway of these impacts is unclear. In this study, the different effects of BPA on ovarian and testis development in goldfish (Carassius auratus) and the different mechanisms underlying these effects were investigated. The gonadosomatic index (GSI) and gonadal histology demonstrated that BPA diminished ovarian maturation in goldfish, which recovered after BPA treatment withdrawal. In males, BPA disrupted testis maturation, but this disruption could not be recovered after BPA treatment withdrawal. The hypothalamic-pituitary-gonad (HPG) axis-related genes sgnrh, fshβ and lhβ were significantly decreased in BPA-treated female fish, while no changes in sex steroid hormone levels and no TUNEL and PCNA staining were found in the ovary, suggesting that BPA may reduce ovarian maturation through the HPG axis. In male fish, TUNEL staining was found in 1 μg L-1 BPA-exposed germ cells and 50 and 500 μg L-1 BPA-exposed Leydig cells. Decreases in 11-KT levels were also found in 50 and 500 μg L-1 BPA-exposed fish, but BPA did not affect genes associated with the HPG axes. This result shows that BPA disrupts testis maturation through apoptosis of germ cells and Leydig cells, thus inducing decreases in 11-KT levels that disrupt spermatogenesis. Collectively, our findings provide insights into the molecular and cellular mechanisms underlying BPA disturbance of goldfish reproduction.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yepin Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yan Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yuxin Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Leyun Zheng
- Research Institute of Fujian, Xiamen 361000, People's Republic of China
| | - HuiHong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yuanyou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
35
|
Sidorkiewicz I, Czerniecki J, Jarząbek K, Zbucka-Krętowska M, Wołczyński S. Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol Appl Pharmacol 2018; 359:1-11. [DOI: 10.1016/j.taap.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
36
|
Meng Y, Lin R, Wu F, Sun Q, Jia L. Decreased Capacity for Sperm Production Induced by Perinatal Bisphenol A Exposure Is Associated with an Increased Inflammatory Response in the Offspring of C57BL/6 Male Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102158. [PMID: 30275377 PMCID: PMC6210657 DOI: 10.3390/ijerph15102158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
Many previous studies have indicated the adverse effects of bisphenol A (BPA) on sperm production and quality; however, the mechanisms underlying BPA male reproductive toxicity have yet to be elucidated. The main purpose of this study was to investigate the effect of perinatal exposure to BPA on the spermatogenic capacity of male offspring, and to explore the possible influence of inflammatory responses in BPA reproductive toxicity. Twenty-one pregnant C57BL/6mice were randomly divided into three groups: a control group, a group receiving 0.2 μg/mL (LBPA), and a group receiving 2 μg/mL of BPA (HBPA), all via drinking water from gestational day 6 to the end of lactation. After weaning, one male mouse was randomly selected from each group (n = 7/group); these three mice were fed a normal diet and drinking water for 1 month. Levels of serum testosterone (T) and tumor necrosis factor (TNF)-α were then measured in all mice. Sperm count and the proportion of sperm malformation were also determined. The levels of Toll-like receptor 4 (TLR4), nuclear factor (NF)-κB, and aryl hydrocarbon receptor (AhR) protein expression in the testis tissue were determined. Analysis showed that the proportion of sperm malformation increased in the LBPA and HBPA groups (p < 0.05). Sperm count significantly decreased only in the HBPA group (p < 0.05), while the levels of serum TNF-α increased in the LBPA and HBPA groups (p < 0.05). Levels of serum T decreased significantly in the HBPA group, compared with controls (p < 0.05). Levels of TLR4 and NF-κB protein expression in the testis were significantly higher in the LBPA and HBPA groups (p < 0.05 or p < 0.01), while AhR protein expression was higher and seminiferous tubules in the testis showed more damage in the HBPA group compared to controls (p < 0.05 and p < 0.01, respectively). Our results showed that perinatal exposure to low or high doses of BPA decreased the capacity for spermatogenesis in male offspring, which may be associated with an inflammatory response activated by the TLR4/ NF-κB and AhR signaling pathways in the testis.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Ren Lin
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Fengjuan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
37
|
Sèdes L, Desdoits-Lethimonier C, Rouaisnel B, Holota H, Thirouard L, Lesne L, Damon-Soubeyrand C, Martinot E, Saru JP, Mazaud-Guittot S, Caira F, Beaudoin C, Jégou B, Volle DH. Crosstalk between BPA and FXRα Signaling Pathways Lead to Alterations of Undifferentiated Germ Cell Homeostasis and Male Fertility Disorders. Stem Cell Reports 2018; 11:944-958. [PMID: 30245210 PMCID: PMC6178796 DOI: 10.1016/j.stemcr.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have reported an association between the farnesoid X receptor alpha (FXRα) and estrogenic signaling pathways. Fxrα could thus be involved in the reprotoxic effects of endocrine disruptors such as bisphenol-A (BPA). To test this hypothesis, mice were exposed to BPA and/or stigmasterol (S), an FXRα antagonist. Following the exposure to both molecules, wild-type animals showed impaired fertility and lower sperm cell production associated with the alteration of the establishment and maintenance of the undifferentiated germ cell pool. The crosstalk between BPA and FXRα is further supported by the lower impact of BPA in mice genetically ablated for Fxrα and the fact that BPA counteracted the effects of FXRα agonists. These effects might result from the downregulation of Fxrα expression following BPA exposure. BPA and S act additively in human testis. Our data demonstrate that FXRα activity modulates the impact of BPA on male gonads and on undifferentiated germ cell population. BPA and S exposures synergistically induce male fertility disorders BPA regulates Fxr expression BPA and S act additively in human testis
Collapse
Affiliation(s)
- Lauriane Sèdes
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Christèle Desdoits-Lethimonier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Betty Rouaisnel
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Laura Thirouard
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Laurianne Lesne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Christelle Damon-Soubeyrand
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Jean-Paul Saru
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Françoise Caira
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - David H Volle
- INSERM U 1103, Université Clermont Auvergne, CNRS, UMR 6293, GReD, Laboratoire Génétique, Reproduction & Développement, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
38
|
Kumar A, Dumasia K, Deshpande S, Raut S, Balasinor NH. Delineating the regulation of estrogen and androgen receptor expression by sex steroids during rat spermatogenesis. J Steroid Biochem Mol Biol 2018; 182:127-136. [PMID: 29709634 DOI: 10.1016/j.jsbmb.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
Abstract
Estrogen receptors (ERα and β) and androgen receptor (AR) regulate various critical processes during spermatogenesis. Since spermatogenesis is very sensitive to hormonal stimuli and perturbations, it is important to understand the regulation of expression of these receptors by sex steroid hormones. Although many studies have reported deregulation of steroid receptors on endocrine disruption, there is no consensus on the regulation of their expression by steroid hormones during spermatogenesis, and a lack of clear understanding of the mechanism of regulation. Here, we evaluated the receptor expressions in a well-established exogenous estradiol administration model. We then investigated the mechanisms by which the individual receptors regulate their expression by binding to the respective hormone response elements upstream of these receptor genes. By further employing in vitro and in vivo models of ER and AR stimulation or antagonism, we delineated their regulation in a receptor subtype-specific manner. Our results indicate that ERα positively regulates expression of both the ERs; whereas, ERβ and AR negatively regulate expression of both ERβ and AR by direct binding to upstream regulatory regions. The perturbations in the levels of steroid receptors could be an important factor contributing to spermatogenic defects and male sub-fertility after estradiol and ER agonist treatment. Our study delineates the direct contribution of the individual steroid receptors in the regulation of their own expression.
Collapse
Affiliation(s)
- Anita Kumar
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Kushaan Dumasia
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Sharvari Deshpande
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Sanketa Raut
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - N H Balasinor
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
39
|
Spörndly-Nees E, Boberg J, Ekstedt E, Holm L, Fakhrzadeh A, Dunder L, Kushnir MM, Lejonklou MH, Lind PM. Low-dose exposure to Bisphenol A during development has limited effects on male reproduction in midpubertal and aging Fischer 344 rats. Reprod Toxicol 2018; 81:196-206. [PMID: 30121228 DOI: 10.1016/j.reprotox.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/26/2018] [Accepted: 08/02/2018] [Indexed: 11/27/2022]
Abstract
Low doses of Bisphenol A (BPA) during development may affect reproduction. In this study, Fischer 344 rats were exposed to 0.5 or 50 μg BPA/kg bw/day via drinking water from gestational day 3.5 to postnatal day 22. Anogenital distance, organ weight, histopathology of reproductive organs, hormone analysis and sperm morphology were evaluated in male offspring. In this study no major effects of BPA on male reproduction in midpubertal (postnatal day 35) or adult (12-month-old) rats were revealed, apart from a higher prevalence of mild inflammatory cell infiltrate in cauda epididymis in adult rats exposed to 50 μg BPA/kg bw/day. No BPA-related effects on sexual development were seen but care should be taken when evaluating histopathology in midpuberty testis due to large morphological variation. Results from the present study show no major signs of altered male reproduction in rats exposed to low doses of BPA during gestation and lactation.
Collapse
Affiliation(s)
- Ellinor Spörndly-Nees
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden.
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, Technical University of Denmark, Building 202, 2800 Kgs Lyngby, Denmark
| | - Elisabeth Ekstedt
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden
| | - Lena Holm
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 75007, Sweden
| | - Azadeh Fakhrzadeh
- Iranian Research Institute for Information Science and Technology (IranDoc) Tehran Province, No. 1090, Enghelab, Tehran, Iran
| | - Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Akademiska sjukhuset, 751 85 Uppsala, Uppsala University, Sweden
| | - Mark M Kushnir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Margareta H Lejonklou
- Department of Medical Sciences, Occupational and Environmental Medicine, Akademiska sjukhuset, 751 85 Uppsala, Uppsala University, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Akademiska sjukhuset, 751 85 Uppsala, Uppsala University, Sweden
| |
Collapse
|
40
|
Zhu X, Tian GG, Yu B, Yang Y, Wu J. Effects of bisphenol A on ovarian follicular development and female germline stem cells. Arch Toxicol 2018; 92:1581-1591. [PMID: 29380011 DOI: 10.1007/s00204-018-2167-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/25/2018] [Indexed: 01/07/2023]
Abstract
Bisphenol A (BPA), one of the most frequently detected emerging pollutants in the environment, has been implicated in adverse effects in male and female reproduction at extremely low concentrations. This study aimed to investigate the effects and potential mechanism of BPA on mouse ovarian follicular development and female germline stem cells (FGSCs). Female CD-1 adult mice were administered gradient concentrations of BPA (12.5, 25, and 50 mg/kg/day) by intraperitoneal injection. We found that the number of atretic ovarian follicles was significantly increased at high BPA concentrations. Additionally, the numbers of primordial follicles, primary follicles, and corpus luteum (CL) were significantly reduced at high BPA concentrations. Interestingly, the number of FGSCs was remarkably reduced in BPA-treated ovaries. Furthermore, the increased apoptotic rate of FGSCs in vitro was triggered by BPA accompanied by increased BPA concentrations. To investigate the mechanism of BPA in ovarian follicular development, 193 differentially expressed proteins were identified in BPA-treated ovaries by the isobaric tags for relative and absolute quantification-coupled 2D liquid chromatography-mass spectrometry technique. A total of 106 proteins were downregulated and 85 proteins were upregulated. Among these proteins, the apoptosis-related protein SAFB-like transcriptional modulator (SLTM) was remarkably upregulated, and this result was consistent with western blotting. Taken together, our results suggest that an ovarian follicular development, especially, the development of primordial follicles, primary follicles, and the CL, is inhibited by high BPA concentrations, and the ovarian follicle atresia is initiated by BPA through upregulated expression of SLTM. Furthermore, BPA induces apoptosis of cultured FGSCs. The effect of BPA on ovarian follicular development and FGSCs, especially the effect on FGSCs, suggests a novel mechanism of how BPA causes female infertility.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Geng G Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Baoli Yu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China. .,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
41
|
Bilancio A, Bontempo P, Di Donato M, Conte M, Giovannelli P, Altucci L, Migliaccio A, Castoria G. Bisphenol A induces cell cycle arrest in primary and prostate cancer cells through EGFR/ERK/p53 signaling pathway activation. Oncotarget 2017; 8:115620-115631. [PMID: 29383186 PMCID: PMC5777798 DOI: 10.18632/oncotarget.23360] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) belongs to the class of chemicals known as endocrine disruptors and has been also involved in the pathogenesis and progression of endocrine related cancer such as breast and prostate cancers. Here, we have investigated the effect of BPA in human prostate cancer LNCaP cells and in human non-transformed epithelial prostate EPN cells. Our data showed that BPA induces the down regulation of cyclin D1 expression and the upregulation of the cell cycle inhibitors p21 and p27, leading to cell cycle arrest. Interestingly, we found that the BPA anti-proliferative response depends on a strong and rapid activation of epidermal growth factor receptor (EGFR), which stimulates ERK-dependent pathway. This, in turn, induces expression of p53 and its phosphorylation on residue Ser15, which is responsible for cell cycle arrest. EGFR activation occurs upon a cross talk with androgen (AR) and estradiol receptor-β (ERβ) which are known to bind BPA. Altogether, these findings show a novel signaling pathway in which EGFR activation plays a key role on BPA-induced cell cycle inhibition through a pathway involving AR and ERβ/EGFR complexes, ERK and p53. Our results provide new insights for understanding the molecular mechanisms in human prostate cancer. On the other, they could allow the development of new compounds that may be used to overcome human prostate cancer resistance to endocrine therapy in promising target therapeutic approaches.
Collapse
Affiliation(s)
- Antonio Bilancio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Paola Bontempo
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Pia Giovannelli
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
42
|
Cuomo D, Porreca I, Cobellis G, Tarallo R, Nassa G, Falco G, Nardone A, Rizzo F, Mallardo M, Ambrosino C. Carcinogenic risk and Bisphenol A exposure: A focus on molecular aspects in endoderm derived glands. Mol Cell Endocrinol 2017; 457:20-34. [PMID: 28111205 DOI: 10.1016/j.mce.2017.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Epidemiological and experimental evidence associates the exposure to Bisphenol A with the increase of cancer risk in several organs, including prostate. BPA targets different pathways involved in carcinogenicity including the Nuclear Receptors (i.e. estrogen and androgen receptors), stress regulated proteins and, finally, epigenetic changes. Here, we analyse BPA-dependent carcinogenesis in endoderm-derived glands, thyroid, liver, pancreas and prostate focusing on cell signalling, DNA damage repair pathways and epigenetic modifications. Mainly, we gather molecular data evidencing harmful effects at doses relevant for human risk (low-doses). Since few molecular data are available, above all for the pancreas, we analysed transcriptomic data generated in our laboratory to suggest possible mechanisms of BPA carcinogenicity in endoderm-derived glands, discussing the role of nuclear receptors and stress/NF-kB pathways. We evidence that an in vitro toxicogenomic approach might suggest mechanisms of toxicity applicable to cells having the same developmental origin. Although we cannot draw firm conclusions, published data summarized in this review suggest that exposure to BPA, primarily during the developmental stages, represents a risk for carcinogenesis of endoderm-derived glands.
Collapse
Affiliation(s)
- Danila Cuomo
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy; Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy
| | | | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bozzatti, II University of Naples, 80138 Napoli, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy; Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Geppino Falco
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Antonio Nardone
- Department of Public Health, University of Naples "Federico II", Napoli, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
43
|
Gong X, Xie H, Li X, Wu J, Lin Y. Bisphenol A induced apoptosis and transcriptome differences of spermatogonial stem cells in vitro. Acta Biochim Biophys Sin (Shanghai) 2017; 49:780-791. [PMID: 28910977 DOI: 10.1093/abbs/gmx075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Bisphenol A (BPA) is widely used as an industrial plasticizer, which is also an endocrine disruptor and considered to have adverse effects on reproduction. In male mammals, the long-term production of billions of spermatozoa relies on the regulated proliferation and differentiation of spermatogonial stem cells (SSCs). However, little is known about the effects of BPA on the viability of SSCs. To investigate the influence of BPA exposure on SSCs in vitro, we isolated SSCs from mouse and successfully established in vitro propagation of SSCs. After BPA treatment, we found that BPA reduced the viability of SSCs and induced SSC apoptosis. For revealing the transcriptome differences of the BPA-treated SSCs, we performed high-throughput RNA sequencing and found that 860 genes were differentially expressed among 18,272 observed genes. The gene ontology (GO) terms, regulation of programmed cell death and apoptotic process, were enriched in the differentially expressed genes (DEGs). Among the cluster of DEGs associated with the kyoto encyclopedia of genes and genomes (KEGG) apoptosis pathway, activating transcription factor 4 (Atf4) and DNA damage inducible transcript 3 (Ddit3) genes were significantly up-regulated in BPA-treated SSCs, which were proved by qPCR. Taken together, these findings suggest that BPA can increase the mRNA expression of pro-apoptosis genes and reduce the viability of SSCs by inducing apoptosis.
Collapse
Affiliation(s)
- Xiaowen Gong
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Xie
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yi Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
44
|
Zhang J, Zhang X, Li Y, Zhou Z, Wu C, Liu Z, Hao L, Fan S, Jiang F, Xie Y, Jiang L. Low dose of Bisphenol A enhance the susceptibility of thyroid carcinoma stimulated by DHPN and iodine excess in F344 rats. Oncotarget 2017; 8:69874-69887. [PMID: 29050248 PMCID: PMC5642523 DOI: 10.18632/oncotarget.19434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/02/2017] [Indexed: 01/20/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common endocrine neoplasm. The risk of TC as a second primary malignancy (SPM) of breast cancer is significantly increased. Bisphenol A (BPA) is a widely contacted xenoestrogen and increases susceptibility to breast cancer through binding to estrogen receptor alpha (ERα). However, the effect of BPA on thyroid carcinogenesis has not been fully demonstrated. This present study aimed to characterize the effects of BPA on the development of TC using a Fischer 344 (F344) rat model. In this study, we established a TC model using female F344 rats pretreated with N-Bis (2-hydroxypropyl) nitrosamine (DHPN) at a single dose of 2800 mg/kg (the DA group) or without DHPN (the DN group), followed by stimulation with BPA at the level of 250 μg/kg (BPA250) or 1000 μg/kg (BPA1000) and a basic diet containing potassium iodine (KI, 1000 μg/L) for 64 weeks. We demonstrated that the incidence of TC in the BPA250 + KI of DA groups reached the highest at 50%, the incidence of thyroid hyperplasia lesions (including both tumors and focal hyperplasia lesions) in the BPA1000 + KI of DA groups reached 100% (P < 0.05). ERα protein and immunochemistry expression was upregulated in the BPA-exposed groups and the immunochemistry scores were positively correlated with PCNA. Thus, the present results indicate that BPA could enhance the susceptibility to TC stimulated by DHPN and iodine excess. ERα is probably involved in the proliferation effect of BPA. BPA or KI alone could not increase TC incidence.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Hemodialysis, Heze Municipical Hospital, Heze 274000, China
| | - Xiaochen Zhang
- Department of Nursing, Heze Medical College, Heze 274000, China
| | - Yanan Li
- Department of Endocrinology, Laiwu City People's Hospital, Laiwu 271100, China
| | - Zhenzhen Zhou
- Department of Radiotherapy, Jinhua Municipal Central Hospital, Jinhua 321000, China0
| | - Chuanlong Wu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhiyan Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lanxiang Hao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Endocrinology, Yancheng First People's Hospital, Yancheng 224001, China
| | - Shanshan Fan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fang Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yan Xie
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ling Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
45
|
Zhao H, Han T, Hong X, Sun D. Adipose differentiation‑related protein knockdown inhibits vascular smooth muscle cell proliferation and migration and attenuates neointima formation. Mol Med Rep 2017; 16:3079-3086. [PMID: 28713961 PMCID: PMC5548019 DOI: 10.3892/mmr.2017.6997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 04/06/2017] [Indexed: 12/31/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have an important role in atherosclerosis development. Evidence has demonstrated that adipose differentiation-related protein (ADRP) is associated with foam cell formation and atherosclerosis progression. However, to the best of our knowledge, no previous studies have investigated the role of ADRP knockdown in platelet-derived growth factor (PDGF)-stimulated proliferation and migration of VSMCs in vitro. Furthermore, the effect of ADRP knockdown on neointima formation in vivo remains unclear. In the present study, primary human aortic VSMCs were incubated with PDGF following ADRP small interfering (si)RNA transfection. Cell viability, migration and cell cycle distribution were analyzed by MTT, wound healing and Transwell assays and flow cytometry, respectively. Extracellular signal-regulated kinase (ERK), phosphorylated (p)-ERK, Akt, p-Akt, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP)-2 and MMP-9 protein levels were determined by western blotting. Apolipoprotein E−/− mice fed an atherogenic diet were injected with siADRP or control siRNA twice a week. After 3 weeks of therapy, aortas were excised and ADRP mRNA and protein expression was determined. Neointima formation was assessed by hematoxylin and eosin staining. The results of the current study demonstrated that ADRP knockdown significantly inhibited PDGF-induced increases in VSMC viability, caused G1 phase cell cycle arrest and decreased PCNA expression. Knockdown of ADRP inhibited PDGF-induced migration of VSMCs by reducing MMP protein expression and activity. In addition, the present study also demonstrated that ADRP knockdown inhibited ERK and Akt signaling pathways in response to PDGF. Furthermore, siADRP administration suppressed neointima formation in the mouse model. The results of the present study indicate that ADRP may be a potential target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Haomin Zhao
- Department of Vascular Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tao Han
- Department of Vascular Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xin Hong
- Department of Vascular Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dajun Sun
- Department of Vascular Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
46
|
Khezri A, Lindeman B, Krogenæs AK, Berntsen HF, Zimmer KE, Ropstad E. Maternal exposure to a mixture of persistent organic pollutants (POPs) affects testis histology, epididymal sperm count and induces sperm DNA fragmentation in mice. Toxicol Appl Pharmacol 2017. [PMID: 28645691 DOI: 10.1016/j.taap.2017.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent organic pollutants (POPs) are widespread throughout the environment and some are suspected to induce reproductive toxicity. As animals and humans are exposed to complex mixtures of POPs, it is reasonable to assess how such mixtures could interact with the reproductive system. Our aim is to investigate how maternal exposure to a mixture of 29 different persistent organic pollutants, formulated to mimic the relative POP levels in the food basket of the Scandinavian population, could alter reproductive endpoints. Female mice were exposed via feed from weaning, during pregnancy and lactation in 3 exposure groups (control (C), low (L) and high (H)). Testicular morphometric endpoints, epididymal sperm concentration and sperm DNA integrity were assessed in adult male offspring. We found that the number of tubules, proportion of tubule compartments and epididymal sperm concentration significantly decreased in both POP exposed groups. Epididymal sperm from both POP exposed groups showed increased DNA fragmentation. It is concluded that maternal exposure to a defined POP mixture relevant to human exposure can affect testicular development, sperm production and sperm chromatin integrity.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Birgitte Lindeman
- Department of Toxicology and Risk, Norwegian Institute of Public Health, Pb 4404, 0403 Oslo, Norway.
| | - Anette K Krogenæs
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Hanne F Berntsen
- Norwegian National Institute of Occupational Health, Pb. 8149 Dep, 0033 Oslo, Norway.
| | - Karin E Zimmer
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| |
Collapse
|
47
|
Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS One 2017; 12:e0178535. [PMID: 28582417 PMCID: PMC5459435 DOI: 10.1371/journal.pone.0178535] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Environmental BPA exposure has been shown to impact human sperm concentration and motility, as well as rodent spermatogenesis. However, it is unclear whether BPA exposure is associated with alteration in DNA hydroxymethylation, a marker for epigenetic modification, in human sperm. A genome-wide DNA hydroxymethylation study was performed using sperm samples of men who were occupationally exposed to BPA. Compared with controls who had no occupational BPA exposure, the total levels of 5-hydroxymethylcytosine (5hmc) increased significantly (19.37% increase) in BPA-exposed men, with 72.69% of genome regions harboring 5hmc. A total of 9,610 differential 5hmc regions (DhMRs) were revealed in BPA-exposed men relative to controls, which were mainly located in intergenic and intron regions. These DhMRs were composed of 8,670 hyper-hMRs and 940 hypo-hMRs, affecting 2,008 genes and the repetitive elements. The hyper-hMRs affected genes were enriched in pathways associated with nervous system, development, cardiovascular diseases and signal transduction. Additionally, enrichment of 5hmc was observed in the promoters of eight maternally expressed imprinted genes in BPA-exposed sperm. Some of the BPA-affected genes, for example, MLH1, CHD2, SPATA12 and SPATA20 might participate in the response to DNA damage in germ cells caused by BPA. Our analysis showed that enrichment of 5hmc both in promoters and gene bodies is higher in the genes whose expression has been detected in human sperm than those whose expression is absent. Importantly, we observed that BPA exposure affected the 5hmc level in 11.4% of these genes expressed in sperm, and in 6.85% of the sperm genome. Finally, we also observed that BPA exposure tends to change the 5hmc enrichment in the genes which was previously reported to be distributed with the trimethylated Histone 3 (H3K27me3, H3K4me2 or H3K4me3) in sperm. Thus, these results suggest that BPA exposure likely interferes with gene expression via affecting DNA hydroxymethylation in a way partially dependent on trimethylation of H3 in human spermatogenesis. Our current study reveals a new mechanism by which BPA exposure reduces human sperm quality.
Collapse
|
48
|
Sidorkiewicz I, Zaręba K, Wołczyński S, Czerniecki J. Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system. Toxicol Ind Health 2017; 33:601-609. [PMID: 28464759 DOI: 10.1177/0748233717695160] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- 1 Department of Reproduction and Gynecological Endocrinology, Medical University of Białystok, Białystok, Poland
| | - Kamil Zaręba
- 1 Department of Reproduction and Gynecological Endocrinology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Wołczyński
- 1 Department of Reproduction and Gynecological Endocrinology, Medical University of Białystok, Białystok, Poland.,2 Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jan Czerniecki
- 2 Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
49
|
Chen J, Saili KS, Liu Y, Li L, Zhao Y, Jia Y, Bai C, Tanguay RL, Dong Q, Huang C. Developmental bisphenol A exposure impairs sperm function and reproduction in zebrafish. CHEMOSPHERE 2017; 169:262-270. [PMID: 27880925 DOI: 10.1016/j.chemosphere.2016.11.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 05/07/2023]
Abstract
The developmental and reproductive toxicity of bisphenol A (BPA) has been demonstrated in a variety of model systems. Zebrafish (Danio rerio) were waterborne-exposed to BPA during three different developmental stages: embryonic period:6 h post fertilization (hpf) to 5 months post fertilization (mpf); larval period: 6 days post fertilization (dpf) to 5 mpf; and sexually mature period: 3 mpf to 5 mpf. Evaluations included F0 adult growth, reproduction parameters, and F1 offspring development. BPA exposure did not affect zebrafish growth in any of exposure groups. Testis weight was decreased only following the 6 hpf to 5 mpf 0.001 μM BPA exposure. The lowest effect level indicated by a reduction in sperm volume, density, motility, and velocity across a range of exposure durations was 0.001 μM, with all but sperm density significant for the longest exposure duration, which was also the only significant endpoint for the lowest exposure concentration in the 3-5 mpf exposure group. Nonmonotonic concentration-response curves were noted for all F0 reproductive endpoints for at least one of the two longest exposure durations. For the F1 offspring of fish exposed from 6 hpf to 5 mpf, malformations and mortality were increased following 0.001 μM BPA exposure, while egg production and fertilization were reduced in higher concentration treatment groups. Overall, BPA exposure during three different developmental periods impaired zebrafish reproductive development, with most significance changes found in the lowest concentration treatment groups. Genetic impacts on gamete development may underlie the secondary effects of reduced fertilization rate, embryonic mortality, and malformations.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Katerine S Saili
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Yueqin Liu
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Lelin Li
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuxin Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinhang Jia
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenglian Bai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
50
|
Zhang Y, Cheng M, Wu L, Zhang G, Wang Z. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:18-26. [PMID: 27561114 DOI: 10.1016/j.aquatox.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not' been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225μgL(-1) (0.99μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Mengqian Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Guo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China.
| |
Collapse
|