1
|
Zhou W, Zhu W, Tong X, Ming S, Ding Y, Li Y, Li Y. CHRNA5 rs16969968 polymorphism is associated with lung cancer risk: A meta-analysis. CLINICAL RESPIRATORY JOURNAL 2020; 14:505-513. [PMID: 32049419 DOI: 10.1111/crj.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 02/08/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To evaluate the genetic association between rs16969968 and lung cancer risk by meta-analysis. DATA SOURCE We searched eligible studies from MEDLINE, Web of Science and EMBASE up to Dec, 2017. STUDY SELECTION Association studies concerning rs16969968 and lung cancer risk were included. We assessed the association strength between this polymorphism and risk of lung cancer by calculating odds ratios (OR) and 95% confidence interval (95%CI). RESULTS A total of 26 data sets comprising 30 772 lung cancers and 90 954 controls were included. rs16969968 was found to be associated with lung cancer risk in population of European ancestry in all models (A vs. G: OR = 1.30, 95%CI 1.27-1.33, P < 0.001; AA + GA vs. GG: OR = 1.38, 95%CI 1.33-1.43, P < 0.001; AA vs. GG + GA: OR = 1.45, 95%CI 1.38-1.53, P < 0.001), consistent with previous genome-wide association study (GWAS). However, no association was observed in Asians (A vs. G: OR = 1.19. 95%CI 0.95-1.49, P = 0.131). The minor allele A may increase the risk of lung cancer in both smokers (OR = 1.33, 95%CI 1.29-1.39, P < 0.001) and nonsmokers (OR = 1.25, 95%CI 1.12-1.39, P < 0.001). There was no obvious publication bias in all analyses. CONCLUSIONS Our analysis provided more evidence that rs16969968 is a susceptibility locus of lung cancer in the Caucasians and that it may be not associated with the risk in the Asians.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wenjie Zhu
- Department of Integrative Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xunliang Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Shuhong Ming
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yong Ding
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
2
|
Jones CC, Bradford Y, Amos CI, Blot WJ, Chanock SJ, Harris CC, Schwartz AG, Spitz MR, Wiencke JK, Wrensch MR, Wu X, Aldrich MC. Cross-Cancer Pleiotropic Associations with Lung Cancer Risk in African Americans. Cancer Epidemiol Biomarkers Prev 2019; 28:715-723. [PMID: 30894353 PMCID: PMC6449205 DOI: 10.1158/1055-9965.epi-18-0935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Identifying genetic variants with pleiotropic associations across multiple cancers can reveal shared biologic pathways. Prior pleiotropic studies have primarily focused on European-descent individuals. Yet population-specific genetic variation can occur, and potential pleiotropic associations among diverse racial/ethnic populations could be missed. We examined cross-cancer pleiotropic associations with lung cancer risk in African Americans. METHODS We conducted a pleiotropic analysis among 1,410 African American lung cancer cases and 2,843 controls. We examined 36,958 variants previously associated (or in linkage disequilibrium) with cancer in prior genome-wide association studies. Logistic regression analyses were conducted, adjusting for age, sex, global ancestry, study site, and smoking status. RESULTS We identified three novel genomic regions significantly associated (FDR-corrected P <0.10) with lung cancer risk (rs336958 on 5q14.3, rs7186207 on 16q22.2, and rs11658063 on 17q12). On chromosome16q22.2, rs7186207 was significantly associated with reduced risk [OR = 0.43; 95% confidence interval (CI), 0.73-0.89], and functional annotation using GTEx showed rs7186207 modifies DHODH gene expression. The minor allele at rs336958 on 5q14.3 was associated with increased lung cancer risk (OR = 1.47; 95% CI, 1.22-1.78), whereas the minor allele at rs11658063 on 17q12 was associated with reduced risk (OR = 0.80; 95% CI, 0.72-0.90). CONCLUSIONS We identified novel associations on chromosomes 5q14.3, 16q22.2, and 17q12, which contain HNF1B, DHODH, and HAPLN1 genes, respectively. SNPs within these regions have been previously associated with multiple cancers. This is the first study to examine cross-cancer pleiotropic associations for lung cancer in African Americans. IMPACT Our findings demonstrate novel cross-cancer pleiotropic associations with lung cancer risk in African Americans.
Collapse
Affiliation(s)
- Carissa C Jones
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuki Bradford
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | | | - Ann G Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Margaret R Spitz
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Margaret R Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Institute of Human Genetics, University of California San Francisco, San Francisco, California
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019; 10:114. [PMID: 30837880 PMCID: PMC6390811 DOI: 10.3389/fphar.2019.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.
Collapse
Affiliation(s)
- Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
4
|
Zanetti KA, Wang Z, Aldrich M, Amos CI, Blot WJ, Bowman ED, Burdette L, Cai Q, Caporaso N, Chung CC, Gillanders EM, Haiman CA, Hansen HM, Henderson BE, Kolonel LN, Marchand LL, Li S, McNeill LH, Ryan BM, Schwartz AG, Sison JD, Spitz MR, Tucker M, Wenzlaff AS, Wiencke JK, Wilkens L, Wrensch MR, Wu X, Zheng W, Zhou W, Christiani D, Palmer JR, Penning TM, Rieber AG, Rosenberg L, Ruiz-Narvaez EA, Su L, Vachani A, Wei Y, Whitehead AS, Chanock SJ, Harris CC. Genome-wide association study confirms lung cancer susceptibility loci on chromosomes 5p15 and 15q25 in an African-American population. Lung Cancer 2016; 98:33-42. [PMID: 27393504 PMCID: PMC4939239 DOI: 10.1016/j.lungcan.2016.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Genome-wide association studies (GWAS) of lung cancer have identified regions of common genetic variation with lung cancer risk in Europeans who smoke and never-smoking Asian women. This study aimed to conduct a GWAS in African Americans, who have higher rates of lung cancer despite smoking fewer cigarettes per day when compared with Caucasians. This population provides a different genetic architecture based on underlying African ancestry allowing the identification of new regions and exploration of known regions for finer mapping. MATERIALS AND METHODS We genotyped 1,024,001 SNPs in 1737 cases and 3602 controls in stage 1, followed by a replication phase of 20 SNPs (p<1.51×10(-5)) in an independent set of 866 cases and 796 controls in stage 2. RESULTS AND CONCLUSION In the combined analysis, we confirmed two loci to be associated with lung cancer that achieved the threshold of genome-wide significance: 15q25.1 marked by rs2036527 (p=1.3×10(-9); OR=1.32; 95% CI=1.20-1.44) near CHRNA5, and 5p15.33 marked by rs2853677 (p=2.8×10(-9); OR=1.28; 95% CI=1.18-1.39) near TERT. The association with rs2853677 is driven by the adenocarcinoma subtype of lung cancer (p=1.3×10(-8); OR=1.37; 95% CI=1.23-1.54). No SNPs reached genome-wide significance for either of the main effect models examining smoking - cigarettes per day and current or former smoker. Our study was powered to identify strong risk loci for lung cancer in African Americans; we confirmed results previously reported in African Americans and other populations for two loci near plausible candidate genes, CHRNA5 and TERT, on 15q25.1 and 5p15.33 respectively, are associated with lung cancer. Additional work is required to map and understand the biological underpinnings of the strong association of these loci with lung cancer risk in African Americans.
Collapse
Affiliation(s)
- Krista A Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Melinda Aldrich
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA; Department of Thoracic Surgery, Vanderbilt University Medical Center, 609 Oxford House, 1313 21st Ave South, Nashville, TN 37232-4682, USA.
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, 1 Rope Ferry Road, Dartmouth, Lebanon, NH 03755-1404, USA.
| | - William J Blot
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA.
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 3068A, Bethesda, MD 20892, USA.
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA.
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Elizabeth M Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California and Norris Comprehensive Cancer Center, 1975 Zonal Avenue, Los Angeles, CA 90033, USA.
| | - Helen M Hansen
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California and Norris Comprehensive Cancer Center, 1975 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Laurence N Kolonel
- Epidemiology Program, Cancer Research Center, University of Hawaii, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Shengchao Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Lorna Haughton McNeill
- Department of Health Disparities Research, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 91, Houston, TX 77030, USA.
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 3068A, Bethesda, MD 20892, USA.
| | - Ann G Schwartz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.
| | - Jennette D Sison
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Margaret R Spitz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM225, Houston, TX 77030, USA.
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Angela S Wenzlaff
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.
| | - John K Wiencke
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Lynne Wilkens
- Epidemiology Program, Cancer Research Center, University of Hawaii, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - Margaret R Wrensch
- Department of Neurological Surgery, University of California, 505 Parnassus Ave., Room 779 M, San Francisco, San Francisco, CA 94143-00112, USA.
| | - Xifeng Wu
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Unit 1340, PO Box 301439, Houston, TX 77230-1439, USA.
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN 37232, USA.
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - David Christiani
- Harvard School of Public Health, Massachusetts General Hospital/Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Julie R Palmer
- Slone Epidemiology Cancer Center at Boston University, 1010 Commonwealth Avenue, 4th Floor, Boston, MA 02215, USA.
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA; Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA.
| | - Alyssa G Rieber
- Department of General Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Lynn Rosenberg
- Slone Epidemiology Cancer Center at Boston University, 1010 Commonwealth Avenue, 4th Floor, Boston, MA 02215, USA.
| | - Edward A Ruiz-Narvaez
- Slone Epidemiology Cancer Center at Boston University, 1010 Commonwealth Avenue, 4th Floor, Boston, MA 02215, USA.
| | - Li Su
- Harvard School of Public Health, Massachusetts General Hospital/Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Anil Vachani
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia, PA 19104, USA.
| | - Yongyue Wei
- Harvard School of Public Health, Massachusetts General Hospital/Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Alexander S Whitehead
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA; Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia PA 19104, USA.
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20892, USA.
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 3068A, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Li D, Zhu G, Di H, Li H, Liu X, Zhao M, Zhang Z, Yang Y. Associations between genetic variants located in mature microRNAs and risk of lung cancer. Oncotarget 2016; 7:41715-41724. [PMID: 27232940 PMCID: PMC5173090 DOI: 10.18632/oncotarget.9566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
MiRNAs have been focused for their wide range of biological regulatory functions. Previous studies have suggested that individual miRNAs could influence tumorigenesis through their regulation of specific proto-oncogenes and tumor suppressor genes. This study was implemented to investigate the associations between SNPs in mature microRNAs (miRNAs) and development of lung cancer in a two-stage, case-control study, followed by some functional validations. First, 11 SNPs were analyzed in a case-control study of lung cancer, and the significant results were validated in an additional population. Our results showed that rs3746444 in mir-499 (allele C vs T: OR = 1.33; 95% CI = 1.15-1.54; P = 1.2 × 10-4) and rs4919510 in mir-608 (allele G vs C: OR = 1.27; 95% CI= 1.13-1.43; P = 5.1 × 10-5) were significantly associated with increased risk of lung cancer. Rs3746444 in mir-499 was also significantly associated with poor survival of lung cancer (HR, 1.35; 95% CI, 1.15-1.58; P = 0.0002). The expression levels of mir-499 and mir-608 were significantly lower than those of adjacent normal tissues (P < 0.0005), and the carriers of minor alleles have lower expression levels of mir-499 and mir-608 than those of major alleles (P < 0.001). These findings indicated that rs3746444 in mir-499 and rs4919510 in mir-608 might play a substantial role in the susceptibility to lung cancer.
Collapse
Affiliation(s)
- Dengrui Li
- Department of General Internal Medicine, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| | - Guiyun Zhu
- Department of Pathology, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| | - Hongqin Di
- Clinical Laboratory, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| | - Hui Li
- Department of Thoracic Surgery, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| | - Xinyan Liu
- The First Department of Oncology, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| | - Min Zhao
- The Second Department of Oncology, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| | - Zhihua Zhang
- Medical Department, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| | - Yonghui Yang
- Department of Pathology, Chest Hospital of Hebei Province, Lung Cancer Prevention and Control Center of Hebei Province, Shijiazhuang, Hebei, China, 050041
| |
Collapse
|
6
|
David SP, Wang A, Kapphahn K, Hedlin H, Desai M, Henderson M, Yang L, Walsh KM, Schwartz AG, Wiencke JK, Spitz MR, Wenzlaff AS, Wrensch MR, Eaton CB, Furberg H, Mark Brown W, Goldstein BA, Assimes T, Tang H, Kooperberg CL, Quesenberry CP, Tindle H, Patel MI, Amos CI, Bergen AW, Swan GE, Stefanick ML. Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans. EBioMedicine 2016; 4:153-61. [PMID: 26981579 PMCID: PMC4776066 DOI: 10.1016/j.ebiom.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified polymorphisms linked to both smoking exposure and risk of lung cancer. The degree to which lung cancer risk is driven by increased smoking, genetics, or gene-environment interactions is not well understood. METHODS We analyzed associations between 28 single nucleotide polymorphisms (SNPs) previously associated with smoking quantity and lung cancer in 7156 African-American females in the Women's Health Initiative (WHI), then analyzed main effects of top nominally significant SNPs and interactions between SNPs, cigarettes per day (CPD) and pack-years for lung cancer in an independent, multi-center case-control study of African-American females and males (1078 lung cancer cases and 822 controls). FINDINGS Nine nominally significant SNPs for CPD in WHI were associated with incident lung cancer (corrected p-values from 0.027 to 6.09 × 10(-5)). CPD was found to be a nominally significant effect modifier between SNP and lung cancer for six SNPs, including CHRNA5 rs2036527[A](betaSNP*CPD = - 0.017, p = 0.0061, corrected p = 0.054), which was associated with CPD in a previous genome-wide meta-analysis of African-Americans. INTERPRETATION These results suggest that chromosome 15q25.1 variants are robustly associated with CPD and lung cancer in African-Americans and that the allelic dose effect of these polymorphisms on lung cancer risk is most pronounced in lighter smokers.
Collapse
Affiliation(s)
- Sean P. David
- Division of General Medical Disciplines, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ange Wang
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Kristopher Kapphahn
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Haley Hedlin
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Manisha Desai
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Henderson
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Lingyao Yang
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Kyle M. Walsh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Program in Cancer Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ann G. Schwartz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - John K. Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Margaret R. Spitz
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Angela S. Wenzlaff
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Margaret R. Wrensch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Charles B. Eaton
- Center for Primary Care and Prevention, Department of Family Medicine, Warren Alpert Medical School of Brown University, Pawtucket, RI, United States
| | - Helena Furberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - W. Mark Brown
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, United States
| | - Benjamin A. Goldstein
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Themistocles Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Charles L. Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | - Hilary Tindle
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Manali I. Patel
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Christopher I. Amos
- Departments of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | - Gary E. Swan
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Marcia L. Stefanick
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Mei Y, Wang SY, Li Y, Yi SQ, Wang CY, Yang M, Duan KM. Role of SLCO1B1, ABCB1, and CHRNA1 gene polymorphisms on the efficacy of rocuronium in Chinese patients. J Clin Pharmacol 2014; 55:261-8. [PMID: 25279974 DOI: 10.1002/jcph.405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
This study explored the role of SLCO1B1, ABCB1, and CHRNA1 gene polymorphisms on the efficacy and duration of action of rocuronium in Chinese patients. Two hundred seven unrelated Chinese patients scheduled for elective surgery were recruited, and 200 completed the study. Their ABCB1, SLCO1B1, and CHRNA1 genotypes were determined. Demographic and clinical non-genetic data also were collected. The SLCO1B1, ABCB1, and CHRNA1 variants did not affect the onset time of rocuronium. Clinical duration and recovery time of rocuronium were prolonged in patients with the ABCB1 rs1128503TT and SLCO1B1 rs2306283 AG and GG genotypes. We demonstrate that the SLCO1B1 and ABCB1 gene variants could affect the pharmacodynamics of rocuronium. The ABCB1 rs1128503 C>T genotype was the most important factor on the efficacy of rocuronium.
Collapse
Affiliation(s)
- Yang Mei
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Sai-Ying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Li
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Shuang-Qiang Yi
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chun-Yan Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Mi Yang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Kai-Ming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
8
|
Abstract
Regular smoking is the major risk factor for cardiovascular disease and cancers, and thus is one of the most preventable causes of morbidity and mortality worldwide. Intake of nicotine, its central nervous system effects, and its metabolism are regulated by biological pathways; some of these are well known, but others are not. Genetic studies offer a method for developing insights into the genes contributing to those pathways. In recent years, large genome-wide association study (GWAS) meta-analyses have consistently revealed that the strongest genetic contribution to smoking-related traits comes from variation in the nicotinic receptor subunit genes. Many other genes, including those coding for enzymes involved in nicotine metabolism, also have been implicated. However, the proportion of phenotypic variance explained by the identified genetic variants is very modest. This review intends to cover progress made in genetics and genetic epidemiology of smoking behavior in recent years, and focuses on studies revealing the nicotinic receptor gene cluster on chromosome 15q25. Evidence supporting the involvement of a novel pathway in the shared pathophysiology of nicotine dependence and schizophrenia is also briefly reviewed. A summary of the current knowledge on gene-environment interactions involved in smoking behavior is included.
Collapse
|
9
|
Brait M, Munari E, LeBron C, Noordhuis MG, Begum S, Michailidi C, Gonzalez-Roibon N, Maldonado L, Sen T, Guerrero-Preston R, Cope L, Parrella P, Fazio VM, Ha PK, Netto GJ, Sidransky D, Hoque MO. Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma. Cell Cycle 2013; 12:1058-70. [PMID: 23435205 PMCID: PMC3646862 DOI: 10.4161/cc.24050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022] Open
Abstract
Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood. To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when compared with non-CSE exposed cells. The methylation status of these genes was validated using quantitative methylation-specific PCR (QMSP), confirming an increase in methylation of CSE-treated urothelial cells compared to untreated controls. Therefore, our findings suggest that a tobacco signature could emerge from distinctive patterns of genetic and epigenetic alterations and can be identified using an in vitro cellular model for the development of smoking-induced cancer.
Collapse
Affiliation(s)
- Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Clinical Research Coordination; Instituto Nacional de Câncer (INCA)-Brazilian National Cancer Institute; Rio de Janeiro, Brazil
| | - Enrico Munari
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Pathology; Johns Hopkins Medical Institutions; Baltimore, MD USA
| | - Cynthia LeBron
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Maartje G. Noordhuis
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Gynecologic Oncology; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands
| | - Shahnaz Begum
- Department of Pathology; Johns Hopkins Medical Institutions; Baltimore, MD USA
| | - Christina Michailidi
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | | | - Leonel Maldonado
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Tanusree Sen
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Leslie Cope
- Oncology Center-Biostatistics/Bioinformatics; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands
| | - Paola Parrella
- Oncology Research Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo, Foggia, Italy
| | - Vito Michele Fazio
- Oncology Research Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo, Foggia, Italy
- Laboratory of Molecular Medicine and Biotechnology; CIR; University Campus BioMedico; Rome, Italy
| | - Patrick K. Ha
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - George J. Netto
- Department of Pathology; Johns Hopkins Medical Institutions; Baltimore, MD USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Mohammad O. Hoque
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|