1
|
Ibrahim D, Khater SI, Abdelfattah-Hassan A, Alqahtani LS, Metwally AS, Bazeed SM, Elgamal A, Sheraiba NI, Hussein EM, Ali Alasmary F, Salem GA, Ali M, Mahfouz H. Prospects of new targeted nanotherapy combining liponiosomes with berberine to combat colorectal cancer development: An in vivo experimental model. Int J Pharm 2023; 647:123511. [PMID: 37839495 DOI: 10.1016/j.ijpharm.2023.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Colorectal cancer (CRC) is one of the most identified and deadly malignancies worldwide. It presents a serious challenge due to its quick growth, which finally culminates in severe malignancy. It is critical to improve the efficacy of berberine (BR) as an anticancer agent to overcome its limited bioavailability. Implementation of a novel, effective nanocarrier system of liponiosomes for BR (LipoNio.BR) can support mechanistic actions associated with its anti-CRC role. Following CRC induction in rats using 1,2 Dimethylhydrazine (40 mg DMH/kg/week), the potency and mechanistic actions of LipoNio.BR were assessed by evaluating the lesion severity and molecular mechanisms controlling oxidative stress, apoptosis, autophagy, and inflammatory responses, and conducting histopathological and immunohistochemistry examinations of colonic tissues. The results indicated that the severity of clinical signs comprising weight gain loss, increased diarrhea and rectal bleeding, and reduced survivability were greatly restored in the LipoNio.BR-treated group. LipoNio.BR remarkably reduced CRC development compared to FBR (free berberine), as it induced apoptosis via upregulating apoptotic genes (Bax and caspase3, increased up to 7.89 and 6.25-fold, respectively) and downregulating the anti-apoptotic gene Bcl-2 by 2.25-fold. LipoNio.BR mitigated the oxidative stress associated with CRC and maintained redox homeostasis. Notably, the excessive inflammatory response associated with CRC was prominently reduced following administration of LipoNio.BR [which decreased iterleukin (IL-B, IL-6), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA), follistatin, and activin BA (beta-A) expression]. LipoNio.BR modulated the expression of nuclear factor kappa B (NF-κB) and mammalian target of rapamycin (mTOR), which impacted tumor vascularity (decreased Vascular endothelial growth factor (VEGF) expression by 2.36-fold). The severity of the histopathological alterations in the colonic tissues, including the development of neoplastic epithelium and the invasion of some neoplastic masses, was greatly reduced in the LipoNio.BR group compared to the FBR-(free berberine) administrated group. Following CRC induction, immunohistochemical staining revealed that the overexpression of cyclin and COX-2 in colonic tissues were suppressed in the LipoNio.BR group. Taken together, these findings suggest that LipoNio.BR has a potential role in reducing CRC progression to a greater extent compared to free BR and could be considered a promising and potent therapy against CRC.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt.
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia.
| | - Aya Sh Metwally
- Department of Pharmacology, Factulty of Vet. Medicine, Aswan University, Egypt.
| | - Shefaa M Bazeed
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Nagwa I Sheraiba
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt.
| | - Elham M Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Fatmah Ali Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Ali
- Department of Biochemistry, Faculty of Science, Zagazig University, 44519 Zagazig, Egypt.
| | - Hala Mahfouz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
2
|
Chittasupho C, Athikomkulchai S, Samee W, Na Takuathung M, Yooin W, Sawangrat K, Saenjum C. Phenylethanoid Glycoside-Enriched Extract Prepared from Clerodendrum chinense Leaf Inhibits A549 Lung Cancer Cell Migration and Apoptosis Induction through Enhancing ROS Production. Antioxidants (Basel) 2023; 12:antiox12020461. [PMID: 36830019 PMCID: PMC9952440 DOI: 10.3390/antiox12020461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study aims to investigate the antioxidant and anti-cancer activities of Clerodendrum chinense leaf ethanolic extract. The phenylethanoid glycoside-enriched extract, namely verbascoside and isoverbascoside, was determined in the ethanolic C. chinense leaf extract using the validated HPLC method. The ethanolic extract showed DPPH and ABTS free radical scavenging activities with the IC50 values of 334.2 ± 45.48 μg/mL and 1012.77 ± 61.86 µg/mL, respectively, and a FRAP value of 88.73 ± 4.59 to 2480.81 ± 0.00 µM. C. chinense leaf extract exhibited anti-proliferative activity against A549 lung cancer cells in a dose- and time-dependent manner, with the IC50 value of 340.63 ± 89.43, 210.60 ± 81.74, and 107.08 ± 28.90 µg/mL after treatment for 24, 48, and 72 h, respectively. The IC50 values of verbascoside, isoverbascoside, and hispidulin were 248.40 ± 15.82, 393.10 ± 15.27, and 3.86 ± 0.87 µg/mL, respectively, indicating that the anti-proliferative effects of the C. chinense leaf extract mainly resulted from hispidulin and verbascoside. The selectivity index (SI) of C. chinense leaf extract against A549 lung cancer cells vs. normal keratinocytes were 2.4 and 2.8 after incubation for 24 and 48 h, respectively, suggesting the cytotoxic selectivity of the extract toward the cancer cell line. Additionally, the C. chinense leaf extract at 250 µg/mL induced late apoptotic cells up to 21.67% with enhancing reactive oxygen species (ROS) induction. Furthermore, the lung cancer cell colony formation was significantly inhibited after being treated with C. chinense leaf extract in a dose-dependent manner. The C. chinense leaf extract at 250 µg/mL has also shown to significantly inhibit cancer cell migration compared with the untreated group. The obtained results provide evidence of the anti-lung cancer potentials of the C. chinense leaf ethanolic extract.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kasirawat Sawangrat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-5394-4342; Fax: +66-5394-4390
| |
Collapse
|
3
|
Jafari Nivlouei S, Soltani M, Shirani E, Salimpour MR, Travasso R, Carvalho J. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach. Cell Prolif 2022; 55:e13187. [PMID: 35132721 PMCID: PMC8891571 DOI: 10.1111/cpr.13187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Computational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies. MATERIALS AND METHODS A three-dimensional multiscale cell-based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network. RESULTS Considering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens. CONCLUSIONS Results not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor-targeted therapies.
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.,Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| | | | - Rui Travasso
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - João Carvalho
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Wang Q, Zhong S, Wu H, Wu Q. In vitro anti-cancer effect of marmesin by suppression of PI3K/Akt pathway in esophagus cancer cells. Esophagus 2022; 19:163-174. [PMID: 34398363 DOI: 10.1007/s10388-021-00872-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Marmesin, an important coumarin isolated from Broussonetia kazinoki, has been proposed to possess many pharmacological activities including anti-tumor activity. However, the anti-cancer effect of marmesin on esophageal cancer (EC) has not been characterized. The study aimed to explore the anti-cancer role of marmesin using EC cell lines in vitro. METHODS AND RESULTS Cell proliferation was evaluated by CCK-8 and Edu cell proliferation assays and apoptosis was detected by TUNEL assay. Western blot analysis was used to determine the expression of Ki67, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax, phosphatidylinositol 3-kinase (PI3K), phosphoryrated-PI3K (p-PI3K), protein kinase B (Akt), and phosphoryrated-Akt (p-Akt). The mechanism of action of marmesin was analyzed using network pharmacology approach. Marmesin exhibited anti-proliferative effect against EC cells, which was further confirmed by the reduced expression of Ki67 and PCNA. Marmesin exerted pro-apoptotic activity on EC cells by downregulating Bcl-2 and upregulating Bax. According to the results from network pharmacology approach, we speculated that PI3K/Akt pathway may participate in the effect of marmesin on EC cells. Additionally, the PI3K/Akt pathway was suppressed by marmesin in EC cells. Moreover, forced expression of Akt reversed the inhibition of cell proliferation and induction of apoptosis induced by marmesin in EC cells. CONCLUSIONS Marmesin exerted anti-cancer activity in EC cells by inhibiting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huan'an, 223000, China
| | - Sheng Zhong
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huan'an, 223000, China
| | - Hua Wu
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huan'an, 223000, China
| | - Qingquan Wu
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huan'an, 223000, China.
| |
Collapse
|
5
|
Jafari Nivlouei S, Soltani M, Carvalho J, Travasso R, Salimpour MR, Shirani E. Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. PLoS Comput Biol 2021; 17:e1009081. [PMID: 34161319 PMCID: PMC8259971 DOI: 10.1371/journal.pcbi.1009081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/06/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics of tumor growth and associated events cover multiple time and spatial scales, generally including extracellular, cellular and intracellular modifications. The main goal of this study is to model the biological and physical behavior of tumor evolution in presence of normal healthy tissue, considering a variety of events involved in the process. These include hyper and hypoactivation of signaling pathways during tumor growth, vessels' growth, intratumoral vascularization and competition of cancer cells with healthy host tissue. The work addresses two distinctive phases in tumor development-the avascular and vascular phases-and in each stage two cases are considered-with and without normal healthy cells. The tumor growth rate increases considerably as closed vessel loops (anastomoses) form around the tumor cells resulting from tumor induced vascularization. When taking into account the host tissue around the tumor, the results show that competition between normal cells and cancer cells leads to the formation of a hypoxic tumor core within a relatively short period of time. Moreover, a dense intratumoral vascular network is formed throughout the entire lesion as a sign of a high malignancy grade, which is consistent with reported experimental data for several types of solid carcinomas. In comparison with other mathematical models of tumor development, in this work we introduce a multiscale simulation that models the cellular interactions and cell behavior as a consequence of the activation of oncogenes and deactivation of gene signaling pathways within each cell. Simulating a therapy that blocks relevant signaling pathways results in the prevention of further tumor growth and leads to an expressive decrease in its size (82% in the simulation).
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | | | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| |
Collapse
|
6
|
Kosmidou V, Vlassi M, Anagiotos K, Raftopoulou S, Kalogerakou E, Skarmalioraki S, Aggeli C, Choreftaki T, Zografos G, Pintzas A. Noxa upregulation and 5-gene apoptotic biomarker panel in colorectal cancer. Eur J Clin Invest 2021; 51:e13353. [PMID: 32682341 DOI: 10.1111/eci.13353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND NOXA and MCL1 are involved in the intrinsic pathway of apoptosis, where Noxa selectively binds to MCL1 and prevents it from inhibiting apoptosis. Both factors are considered as potential tumour biomarkers, while MCL1 has attracted interest as target in cancer. The purpose of this study was to investigate the expression of NOXA and MCL1 in 160 CRC tumour samples, to investigate their significance, also in combination with IAPs, DR5 expression and KRAS gene mutations in CRC. MATERIALS AND METHODS Fresh frozen colorectal tissue was obtained from patients undergoing surgery for CRC. Real-time quantitative PCR was performed for the determination of mRNA expression levels. Protein expression was determined immunohistochemically. Differences in the mRNA expression profile were evaluated with the nonparametric Wilcoxon signed ranks test. Statistical analysis was performed with the use of Mann-Whitney U test and receiver-operating characteristic (ROC) curve. RESULTS NOXA was found to be overexpressed in CRC tumours (P < .0001), even from early stage. Moreover, NOXA/MCL1 mRNA expression was significantly elevated in tumour samples compared to normal pairs (P < .0001). ROC curve analysis showed that both NOXA expression and its combination with Mcl1 expression have fair discriminatory value between CRC and normal colorectal tissue. Combinatorial ROC analysis revealed the most significant discriminatory value of NOXA, MCL1 with cIAP1 and cIAP2 (AUC = 0.834, P < .0001) as a 5-gene panel of markers. CONCLUSION Noxa, Mcl1, DR5, cIAP1 and cIAP2 mRNA expressions are significantly deregulated in CRC and could provide a panel of markers with significant discriminatory value between CRC and normal colorectal tissue.
Collapse
Affiliation(s)
- Vivian Kosmidou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Vlassi
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Kyriakos Anagiotos
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sofia Raftopoulou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Eirini Kalogerakou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Salomi Skarmalioraki
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Chrysanthi Aggeli
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Theodosia Choreftaki
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - George Zografos
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
7
|
Measuring signal transduction and transcription molecules for clinical use. ASIAN BIOMED 2020; 14:175-176. [PMID: 37551264 PMCID: PMC10373411 DOI: 10.1515/abm-2020-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
|
8
|
Tamayo AG, Shukor S, Burr A, Erickson P, Parekkadan B. Tracking leukemic T-cell transcriptional dynamics in vivo with a blood-based reporter assay. FEBS Open Bio 2020; 10:1868-1879. [PMID: 32710494 PMCID: PMC7459418 DOI: 10.1002/2211-5463.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Transcriptional dynamics of cancer cells govern cell fate decisions and are therapeutically actionable drug targets. In this study, we engineered a circulating cancer cell line that secretes a luciferase reporter to capture constitutive and circadian clock-driven transcription dynamics over the course of a day. Engineered human leukemic T cells (Jurkat) were observed to rhythmically secrete luciferase in a continuous flow cell culture system. When transplanted in vivo, engineered leukemic cells caused circadian plasma luciferase activity and had expected pathological signs of leukemic disease. This technique is rapid and noninvasive, requiring only a few microliters of media or blood, and can aid in investigating relationships between in vivo cancer cell signaling and behavior, such as diet or sleep.
Collapse
Affiliation(s)
- Alfred G. Tamayo
- Center for Surgery, Innovation, and BioengineeringDepartment of SurgeryHarvard Medical SchoolMassachusetts General HospitalShriners Hospitals for ChildrenBostonMAUSA
| | - Syukri Shukor
- Center for Surgery, Innovation, and BioengineeringDepartment of SurgeryHarvard Medical SchoolMassachusetts General HospitalShriners Hospitals for ChildrenBostonMAUSA
| | - Alexandra Burr
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJUSA
| | - Patrick Erickson
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJUSA
| | - Biju Parekkadan
- Center for Surgery, Innovation, and BioengineeringDepartment of SurgeryHarvard Medical SchoolMassachusetts General HospitalShriners Hospitals for ChildrenBostonMAUSA
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJUSA
- Harvard Stem Cell InstituteCambridgeMAUSA
| |
Collapse
|
9
|
Hussain S, Singh A, Nazir SU, Tulsyan S, Khan A, Kumar R, Bashir N, Tanwar P, Mehrotra R. Cancer drug resistance: A fleet to conquer. J Cell Biochem 2019; 120:14213-14225. [PMID: 31037763 DOI: 10.1002/jcb.28782] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Cancer is a disease that claims millions of lives each year across the world. Despite advancement in technologies and therapeutics for treating the disease, these modes are often found to turn ineffective during the course of treatment. The resistance against drugs in cancer patients stems from multiple factors, which constitute genetic heterogeneity like gene mutations, tumor microenvironment, exosomes, miRNAs, high rate of drug efflux from cells, and so on. This review attempts to collate all such known and reported factors that influence cancer drug resistance and may help researchers with information that might be useful in developing better therapeutics in near future to enable better management of several cancers across the world.
Collapse
Affiliation(s)
- Showket Hussain
- Division of Cellular and Molecular Diagnostics, National Institute of Cancer Prevention and Research, Noida, India
| | - Ankita Singh
- Division of Cellular and Molecular Diagnostics, National Institute of Cancer Prevention and Research, Noida, India
| | - Sheeraz Un Nazir
- Division of Cellular and Molecular Diagnostics, National Institute of Cancer Prevention and Research, Noida, India
| | - Sonam Tulsyan
- Division of Preventive Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Asiya Khan
- Department of Lab Oncology, AIIMS, New Delhi, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, India
| | - Nasreena Bashir
- College of Applied Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Ravi Mehrotra
- Division of Preventive Oncology, National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
10
|
Yi ZY, Liang QX, Meng TG, Li J, Dong MZ, Hou Y, Ouyang YC, Zhang CH, Schatten H, Sun QY, Qiao J, Qian WP. PKCβ1 regulates meiotic cell cycle in mouse oocyte. Cell Cycle 2019; 18:395-412. [PMID: 30730241 DOI: 10.1080/15384101.2018.1564492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes. Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint.
Collapse
Affiliation(s)
- Zi-Yun Yi
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Qiu-Xia Liang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Tie-Gang Meng
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jian Li
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Ming-Zhe Dong
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yi Hou
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ying-Chun Ouyang
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Chun-Hui Zhang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Heide Schatten
- c Department of Veterinary Pathobiology , University of Missouri-Columbia , Columbia , MO , USA
| | - Qing-Yuan Sun
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jie Qiao
- d Reproductive Medical Center , Peking University Third Hospital , Beijing , China
| | - Wei-Ping Qian
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| |
Collapse
|
11
|
Attia YM, El-Kersh DM, Wagdy HA, Elmazar MM. Verbascoside: Identification, Quantification, and Potential Sensitization of Colorectal Cancer Cells to 5-FU by Targeting PI3K/AKT Pathway. Sci Rep 2018; 8:16939. [PMID: 30446678 PMCID: PMC6240071 DOI: 10.1038/s41598-018-35083-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer mortality worldwide. Although, 5-Fluorouracil (5-FU)-based chemotherapeutic regimens remain the mainstay for treatment of CRC, intrinsic and acquired resistance to 5-FU is the main reason for treatment failure and relapse. Adjunct or add-on therapy, therefore, should be thought of to enhance responsiveness to 5-FU. Verbascoside (VER) is a phenylethanoid glycoside ingredient present in many Plantago species and was widely used in traditional medicine. VER showed antiproliferative effects in many cancer types including CRC. In the present study, VER in Plantago seeds was identified using UPLC-MS/MS and quantified using newly developed and validated UPLC-DAD followed by investigating its potential sensitization of CRC cells to 5-FU in vitro. The potential impact on PI3K/AKT pathway was also investigated. A synergistic cytotoxic interaction between 5-FU and VER besides G1 cell cycle arrest were detected. Enhanced apoptosis mainly by affecting Bax and Bcl-2 and to a lesser extent Bcl-xL and p53 was also observed. Additionally, 5-FU combined to VER was capable of significantly reducing PI3K and p-AKT/total AKT ratio. Overall, these results suggest a potential role of VER as an adjuvant treatment to decrease the resistance of CRC cells to 5-FU possibly by targeting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt. .,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt.
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt. .,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt.
| | - Hebatallah A Wagdy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt.,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt
| | - Mohamed M Elmazar
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt.,The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, P.O. Box 43, Cairo, 11837, Egypt
| |
Collapse
|
12
|
Jia Y, Xiao Z, Gongsun X, Xin Z, Shang B, Chen G, Wang Z, Jiang W. CEP55 promotes the proliferation, migration and invasion of esophageal squamous cell carcinoma via the PI3K/Akt pathway. Onco Targets Ther 2018; 11:4221-4232. [PMID: 30050313 PMCID: PMC6055835 DOI: 10.2147/ott.s168861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Centrosomal protein 55 (CEP55) is an important prognostic biomarker that plays an essential role in the proliferation, migration and invasion of multiple tumors. We aimed to investigate the prognostic value of CEP55 in pN0 esophageal squamous cell carcinoma (ESCC) and explore its biological function in ESCC cells. Methods We used immunohistochemistry and Western blot analysis to detect the expression of CEP55 in ESCC. Furthermore, both in vitro and in vivo assays were used to determine the effect of CEP55 on malignant behavior in ESCC cells. Results As expected, we found that CEP55 was overexpressed in ESCC. Univariate and multivariate analyses demonstrated that patients with CEP55 overexpression had a poor prognosis. Additionally, the abilities of proliferation, migration and invasion of cells, as well as the epithelial–mesenchymal transition markers, were all altered with the changed CEP55 expression levels in ESCC cells. Further study elucidated that CEP55 facilitated ESCC via the PI3K/Akt pathway. Blockade of this pathway markedly attenuated CEP55-mediated proliferation, migration, invasion and epithelial–mesenchymal transition of ESCC cells. Conclusion Oncogenic CEP55 correlates with a poor prognosis by regulating tumor cell proliferation, migration and invasion via the PI3K/Akt pathway. It can serve as a promising prognostic biomarker and therapeutic target of pN0 ESCC after Ivor-Lewis esophagectomy.
Collapse
Affiliation(s)
- Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Zhaohua Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Xin Gongsun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| | - Wenpeng Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| |
Collapse
|
13
|
Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget 2018; 8:38755-38766. [PMID: 28418888 PMCID: PMC5503569 DOI: 10.18632/oncotarget.16333] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the most lethal hallmark of esophageal squamous cell carcinoma (ESCC). The aim of the study is to identify key signaling pathways that control metastasis in ESCC. Highly invasive ESCC sublines (designated I3 cells) were established through three rounds of selection of cancer cells invading through matrigel-coated chambers. Gene expression profile of one of the I3 sublines was compared with that of its parental cell line using cDNA microarray analysis. Gene ontology and pathway analyses of the differentially expressed genes (both upregulated and downregulated) indicated that genes associated with cellular movement and the AKT pathway were associated with increased cancer cell invasiveness. Western blot analysis confirmed increased phosphorylated AKT (p-AKT), N-cadherin and decreased E-cadherin expression in the I3 cells. Immunohistochemistry was used to evaluate the clinical significance of p-AKT expression in ESCC, and the results showed higher p-AKT nuclear expression in lymph node metastases when compared with primary carcinoma. Inactivation of the PI3K/AKT pathway with specific inhibitors, or with PTEN overexpression, resulted in reversed cadherin switching and inhibited cancer cell motility. Inhibition of the pathway by treatment with wortmannin markedly suppressed experimental metastasis in nude mice. Our data demonstrated the importance of the PI3K/AKT signaling pathway in ESCC metastasis and support PI3K/AKT as a valid therapeutic target in treatment of metastatic ESCC.
Collapse
|
14
|
Ishibashi O, Akagi I, Ogawa Y, Inui T. MiR-141-3p is upregulated in esophageal squamous cell carcinoma and targets pleckstrin homology domain leucine-rich repeat protein phosphatase-2, a negative regulator of the PI3K/AKT pathway. Biochem Biophys Res Commun 2018; 501:507-513. [DOI: 10.1016/j.bbrc.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022]
|
15
|
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 2018; 7:50845-50863. [PMID: 27447556 PMCID: PMC5239441 DOI: 10.18632/oncotarget.10689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.
Collapse
Affiliation(s)
- Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - George Ferraye
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Leonid Gontmacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - David Graziano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
16
|
Shin SW, Choi C, Lee GH, Son A, Kim SH, Park HC, Batinic-Haberle I, Park W. Mechanism of the Antitumor and Radiosensitizing Effects of a Manganese Porphyrin, MnHex-2-PyP. Antioxid Redox Signal 2017; 27:1067-1082. [PMID: 28358581 DOI: 10.1089/ars.2016.6889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Cationic manganese (Mn)-substituted N-pyridylporphyrin-based potent mimics of the family of superoxide dismutases (SODs) protect normal tissues from injury related to ionizing radiation (IR) by reducing levels of reactive oxygen and nitrogen species (ROS/RNS). Furthermore, Mn-porphyrins have demonstrated antitumor and radiosensitizing effects on cancer cells by promoting IR-induced tumor vasculature damage and apoptotic processes. In this study, we explored the underlying mechanisms of Mn-porphyrin-mediated tumor radiosensitization using murine mammary carcinoma 4T1 and melanoma B16 cells in vitro and in vivo. RESULTS Combination treatment with MnTnHex-2-PyP and IR substantially reduced cell viability, clonogenic cell survival, and DNA damage repair and synergistically increased IR-induced apoptosis of 4T1 and B16 cells. MnTnHex-2-PyP in combination with IR caused a significant delay in growth of 4T1 and B16 xenograft tumors. MnTnHex-2-PyP dose-dependently enhanced IR-mediated production of H2O2-derived species, but not superoxide. Catalase overexpression reversed MnTnHex-2-PyP-enhanced ROS production and apoptosis. Demonstrated suppression of phosphorylation of several mitogen-activated protein (MAP) kinases and activation of NF-κB by MnTnHex-2-PyP/IR, which presumably inhibited activation of the antiapoptotic pathway, are in agreement with our other data on the apoptosis of cancer cells. Innovation and Conclusions: MnTnHex-2-PyP exerted a radiosensitizing effect on 4T1 and B16 tumor models in vitro and in vivo via pro-oxidative actions and therefore bears a large therapeutic potential. When combined with IR, it attenuated DNA damage repair and triggered a shift from prosurvival pathways to apoptotic cell death, likely due to increased ROS production and disturbed cellular redox balance, acting at the level of nuclear factor κB (NF-κB). Antioxid. Redox Signal. 27, 1067-1082.
Collapse
Affiliation(s)
- Sung-Won Shin
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea.,2 Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Changhoon Choi
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Ga-Haeng Lee
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Arang Son
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Su-Hyeon Kim
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea
| | - Hee Chul Park
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea.,2 Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Ines Batinic-Haberle
- 3 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Won Park
- 1 Department of Radiation Oncology, Samsung Medical Center , Seoul, Republic of Korea.,2 Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| |
Collapse
|
17
|
Johnson MD, O’Connell M, Walter K, Silberstein H. mTOR activation is increased in pilocytic astrocytomas from older adults compared with children. Surg Neurol Int 2017; 8:85. [PMID: 28607819 PMCID: PMC5461564 DOI: 10.4103/sni.sni_367_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/20/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Recent studies suggest that the behavior and biology of WHO grade I pilocytic astrocytomas (PAs) in adults is different than that associated with grade I PAs in children. METHODS We evaluated Ki-67 labeling, BRAF abnormalities, isocitrate dehydrogenase R132 immunoreactivity phosphorylation (activation) of p44/42 mitogen activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) in formalin-fixed tissue from 21 adult (18 years or older, mean age 37 years) and 10 children (mean age 9.4 years) WHO grade I PAs. RESULTS The mean Ki-67 labeling was 4.8% in adults and 3.8% in children. There was no significant difference between Ki-67 labeling in children and adults or either subgroups of adults. No differences were found in phospho p44/42MAPK in adult subgroups (18-33 years and 34 and older) compared to children. Activation/phosphorylation of mTOR was biphasic in adults being significantly lower than children in young adults but significantly higher than children in older adults (age 34 and older). CONCLUSIONS Identifying mTOR phosphorylation/activation may represent a difference in biology and a new marker to guide chemotherapy with recently approved mTOR inhibitors.
Collapse
Affiliation(s)
- Mahlon D. Johnson
- Department of Pathology, Division of Neuropathology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Mary O’Connell
- Department of Pathology, Division of Neuropathology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kevin Walter
- Department of Neurosurgery, University of Rochester School of Medicine, Rochester, New York, USA
| | - Howard Silberstein
- Department of Neurosurgery, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
18
|
Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, Zografos G, Oikonomou E, Pintzas A. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget 2016; 7:9188-221. [PMID: 26802026 PMCID: PMC4891035 DOI: 10.18632/oncotarget.6942] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/02/2016] [Indexed: 02/05/2023] Open
Abstract
Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer – both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene.
Collapse
Affiliation(s)
- Maria Goulielmaki
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Evangelos Koustas
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Eirini Moysidou
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Vlassi
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - George Zografos
- 3rd Department of Surgery, General Hospital of Athens G. Gennimatas, Athens, Greece
| | - Eftychia Oikonomou
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
19
|
Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML, Mattiolo A, Sgarbi G, Baracca A, Pinton P, Riva G, Rampazzo E, Petrizza L, Prodi L, Milani D, Luppi M, Potenza L, De Pol A, Cocco L, Capitani S, Marmiroli S. Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget 2016; 7:5521-37. [PMID: 26575168 PMCID: PMC4868703 DOI: 10.18632/oncotarget.6315] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Abstract
PEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition. Furthermore, since PI3K/Akt/mTOR has been proposed as a drug target in PEL, we ascertained that pathway-specific inhibitors, namely the dual PI3K and mTOR inhibitor, PF-04691502, and the Akt inhibitor, Akti 1/2, display improved cytotoxicity to PEL cells in hypoxic conditions. Unexpectedly, we found that these drugs reduce lactate production/extracellular acidification rate, and, in combination with the glycolysis inhibitor 2-deoxyglucose (2-DG), they shift PEL cells metabolism from aerobic glycolysis towards oxidative respiration. Moreover, the associations possess strong synergistic cytotoxicity towards PEL cells, and thus may reduce adverse reaction in vivo, while displaying very low toxicity to normal lymphocytes. Finally, we showed that the association of 2-DG and PF-04691502 maintains its cytotoxic and proapoptotic effect also in PEL cells co-cultured with human primary mesothelial cells, a condition known to mimic the in vivo environment and to exert a protective and pro-survival action. All together, these results provide a compelling rationale for the clinical development of new therapies for the treatment of PEL, based on combined targeting of glycolytic metabolism and constitutively activated signaling pathways.
Collapse
Affiliation(s)
- Laura Mediani
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Gibellini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Chiara Frasson
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Raffaella Bosco
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Benedetta Accordi
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health and Institute of Pediatric Research - Città della Speranza Foundation, University of Padova, Padova, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV IRCCS, Padova, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Giovanni Riva
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Enrico Rampazzo
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Petrizza
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Anto De Pol
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia. Oncotarget 2016; 6:32089-103. [PMID: 26392332 PMCID: PMC4741661 DOI: 10.18632/oncotarget.5156] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL.
Collapse
|
21
|
Rosen LS, LoRusso P, Ma WW, Goldman JW, Weise A, Colevas AD, Adjei A, Yazji S, Shen A, Johnston S, Hsieh HJ, Chan IT, Sikic BI. A first-in-human phase I study to evaluate the MEK1/2 inhibitor, cobimetinib, administered daily in patients with advanced solid tumors. Invest New Drugs 2016; 34:604-13. [PMID: 27424159 DOI: 10.1007/s10637-016-0374-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/03/2016] [Indexed: 12/12/2022]
Abstract
Objective Cobimetinib, a MEK1/2 inhibitor, was administered to patients with advanced solid tumors to assess safety, pharmacokinetics, pharmacodynamics, and anti-tumor activity. Methods For dose-escalation, a 3 + 3 design was used. Oral cobimetinib was administered once daily on a 21-day on/7-day off (21/7) or a 14-day on/14-day off (14/14) schedule. Serial plasma samples were collected for pharmacokinetic (PK) analysis on Day 1 and at steady state. In expansion stages, patients with RAS or RAF mutant tumors were treated at the maximum tolerated dose (MTD) of the 21/7 or 14/14 schedule. Results Ninety-seven patients received cobimetinib. In the 21/7 dose escalation, 36 patients enrolled in 8 cohorts (0.05 mg/kg-80 mg). Dose-limiting toxicities (DLTs) were Grade 4 hepatic encephalopathy, Grade 3 diarrhea, and Grade 3 rash. In the 14/14 dose escalation, 20 patients enrolled in 4 cohorts (60-125 mg). DLTs were Grade 3 rash and Grade 3 blurred vision associated with presence of reversible subretinal fluid. The MTD was 60 mg on 21/7 schedule and 100 mg on 14/14 schedule. Cobimetinib PK showed dose-proportional increases in exposure. The most frequent adverse events attributed to cobimetinib were diarrhea, rash, fatigue, edema, nausea, and vomiting. In patients treated at the 60-mg (21/7) or 100-mg (14/14) dose, one unconfirmed complete response and 6 confirmed partial responses were observed. All responses occurred in melanoma patients; 6 harbored the BRAF(V600E) mutation. Conclusions Cobimetinib is generally well tolerated and durable responses were observed in BRAF(V600E) mutant melanoma patients. Evaluation of cobimetinib in combination with other therapies is ongoing.
Collapse
Affiliation(s)
- Lee S Rosen
- David Geffen School of Medicine, UCLA, 2020 Santa Monica Blvd, Suite 600, Santa Monica, CA, 90404, USA.
| | | | - Wen Wee Ma
- Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jonathan W Goldman
- David Geffen School of Medicine, UCLA, 2020 Santa Monica Blvd, Suite 600, Santa Monica, CA, 90404, USA
| | - Amy Weise
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | - Alex Adjei
- Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Salim Yazji
- Exelixis, Inc., South San Francisco, CA, USA.,Baxalta, Cambridge, MA, USA
| | - Angela Shen
- Exelixis, Inc., South San Francisco, CA, USA.,Arvinas, New Haven, CT, USA
| | - Stuart Johnston
- Exelixis, Inc., South San Francisco, CA, USA.,Nektar Therapeutics, San Francisco, CA, USA
| | | | - Iris T Chan
- Genentech, Inc., South San Francisco, CA, USA
| | | |
Collapse
|
22
|
Cani A, Simioni C, Martelli AM, Zauli G, Tabellini G, Ultimo S, McCubrey JA, Capitani S, Neri LM. Triple Akt inhibition as a new therapeutic strategy in T-cell acute lymphoblastic leukemia. Oncotarget 2016; 6:6597-610. [PMID: 25788264 PMCID: PMC4466637 DOI: 10.18632/oncotarget.3260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/29/2015] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder in which chemotherapy resistance and refractory relapses occur, with a poorer prognostic outcome. Constitutively active PI3K/Akt/mTOR pathway is a common feature of T-ALL upregulating cell proliferation, survival and drug resistance. This pathway is currently under clinical trials with small molecules inhibitors (SMI). To verify whether a multi-inhibition treatment against Akt protein could enhance the efficacy of individual drug administration and overcome drug resistance as well as to obtain a decrease in single drug concentration, we tested on T-ALL cell lines the effects of combined treatments with three Akt inhibitors with different mode of action, GSK690693, MK-2206 and Perifosine. In cells with hyperactivated Akt, combined administration of the drugs displayed a significant synergistic and cytotoxic effect and affected PI3K/Akt/mTOR pathway at much lower concentration than single drug use. Highest synergistic effect for full inhibition of Akt was also related to the timing of every drug administration. Furthermore the triple treatment had greater efficacy in inducing cell cycle arrest in G0/G1 phase and both apoptosis and autophagy. Targeting Akt as a key protein of PI3K/Akt/mTOR pathway with multiple drugs might represent a new and promising pharmacological strategy for treatment of T-ALL patients.
Collapse
Affiliation(s)
- Alice Cani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget 2015; 5:11576-87. [PMID: 25344912 PMCID: PMC4294385 DOI: 10.18632/oncotarget.2596] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022] Open
Abstract
Esophageal cancer is the sixth most common cause of cancer-related deaths worldwide. Novel therapeutic intervention is urgently needed for this deadly disease. The functional role of PI3K/AKT pathway in esophageal cancer is little known. In this study, our results from 49 pairs of human esophageal tumor and normal specimens demonstrated that AKT was constitutively active in the majority (75.5%) of esophageal tumors compared with corresponding normal tissues. Inhibition of the PI3K/AKT pathway with specific inhibitors, wortmannin and LY294002, significantly reduced Bcl-xL expression, induced caspase-3-dependent apoptosis, and repressed cell proliferation and tumor growth in vitro and in vivo without obvious toxic effects. Moreover, significantly higher expression level of p-AKT was observed in fluorouracil (5-FU)-resistant esophageal cancer cells. Inactivation of PI3K/AKT pathway markedly increased the sensitivity and even reversed acquired resistance of esophageal cancer cells to chemotherapeutic drugs in vitro. More importantly, the resistance of tumor xenografts derived from esophageal cancer cells with acquired 5-FU resistance to chemotherapeutic drugs was significantly abrogated by wortmannin treatment in animals. In summary, our data support PI3K/AKT as a valid therapeutic target and strongly suggest that PI3K/AKT inhibitors used in conjunction with conventional chemotherapy may be a potentially useful therapeutic strategy in treating esophageal cancer patients.
Collapse
|
24
|
Poli A, Ramazzotti G, Matteucci A, Manzoli L, Lonetti A, Suh PG, McCubrey JA, Cocco L. A novel DAG-dependent mechanism links PKCɑ and Cyclin B1 regulating cell cycle progression. Oncotarget 2015; 5:11526-40. [PMID: 25362646 PMCID: PMC4294327 DOI: 10.18632/oncotarget.2578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/06/2014] [Indexed: 01/11/2023] Open
Abstract
Through the years, different studies showed the involvement of Protein Kinase C (PKC) in cell cycle control, in particular during G1/S transition. Little is known about their role at G2/M checkpoint. In this study, using K562 human erythroleukemia cell line, we found a novel and specific mechanism through which the conventional isoform PKC⍺ positively affects Cyclin B1 modulating G2/M progression of cell cycle. Since the kinase activity of this PKC isoform was not necessary in this process, we demonstrated that PKC⍺, physically interacting with Cyclin B1, avoided its degradation and stimulated its nuclear import at mitosis. Moreover, the process resulted to be strictly connected with the increase in nuclear diacylglycerol levels (DAG) at G2/M checkpoint, due to the activity of nuclear Phospholipase C β1 (PLCβ1), the only PLC isoform mainly localized in the nucleus of K562 cells. Taken together, our findings indicated a novel DAG dependent mechanism able to regulate the G2/M progression of the cell cycle.
Collapse
Affiliation(s)
- Alessandro Poli
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Matteucci
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Lucia Manzoli
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cell Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget 2015; 5:4603-50. [PMID: 25051360 PMCID: PMC4148087 DOI: 10.18632/oncotarget.2209] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.
Collapse
|
26
|
Sopko R, Lin YB, Makhijani K, Alexander B, Perrimon N, Brückner K. A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. PLoS Genet 2015; 11:e1005056. [PMID: 25749252 PMCID: PMC4352040 DOI: 10.1371/journal.pgen.1005056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - You Bin Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
27
|
Glinskii OV, Li F, Wilson LS, Barnes S, Rittenhouse-Olson K, Barchi JJ, Pienta KJ, Glinsky VV. Endothelial integrin α3β1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane. Oncotarget 2015; 5:1382-9. [PMID: 24675526 PMCID: PMC4012737 DOI: 10.18632/oncotarget.1837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Blood borne metastatic tumor cell adhesion to endothelial cells constitutes a critical rate-limiting step in hematogenous cancer metastasis. Interactions between cancer associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag) and endothelium-expressed galectin-3 (Gal-3) have been identified as the leading molecular mechanism initiating tumor/endothelial cell adhesion in several types of cancer. However, it is unknown how these rather weak and transient carbohydrate/lectin mediated interactions are stabilized. Here, using Western blot and LC tandem mass spectrometry analyses of pull-downs utilizing TF-Ag loaded gold nanoparticles, we identified Gal-3, endothelial integrin α3β1, Src kinase, as well as 5 additional molecules mapping onto focal adhesion pathway as parts of the macromolecular complexes formed at the endothelial cell membranes downstream of TF-Ag/Gal-3 interactions. In a modified parallel flow chamber assay, inhibiting α3β1 integrin greatly reduced the strength of tumor/endothelial cell interactions without affecting the initial cancer cell adhesion. Further, the macromolecular complex induced by TF-Ag/Gal-3/α3β1 interactions activates Src kinase, p38, and ERK1/2, pathways in endothelial cells in a time- and α3β1-dependent manner. We conclude that, following the initial metastatic cell attachment to endothelial cells mediated by TF-Ag/Gal-3 interactions, endothelial integrin α3β1 stabilizes tumor/endothelial cell adhesion and induces the formation of macromolecular signaling complex activating several major signaling pathways in endothelial cells.
Collapse
Affiliation(s)
- Olga V Glinskii
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaszuba-Zwoińska J, Ćwiklińska M, Balwierz W, Chorobik P, Nowak B, Wójcik-Piotrowicz K, Ziomber A, Malina-Novak K, Zaraska W, Thor PJ. Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/cmble-2015-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPulsed electromagnetic field (PEMF) influenced the viability of proliferating in vitro peripheral blood mononuclear cells (PBMCs) isolated from Crohn’s disease patients as well as acute myeloblastic leukemia (AML) patients by induction of cell death, but did not cause any vital changes in cells from healthy donors. Experiments with lymphoid U937 and monocytic MonoMac6 cell lines have shown a protective effect of PEMF on the death process in cells treated with death inducers.The aim of the current study was to investigate the influence of PEMF on native proliferating leukocytes originating from newly diagnosed acute lymphoblastic leukemia (ALL) patients.The effects of exposure to PEMF were studied in PBMCs from 20 children with ALL. PBMCs were stimulated with three doses of PEMF (7 Hz, 30 mT) for 4 h each with 24 h intervals. After the last stimulation, the cells were double stained with annexin V and propidium iodide dye to estimate viability by flow cytometric analysis.The results indicated an increase of annexin V positive as well as double stained annexin V and propidium iodide positive cells after exposure to threefold PEMF stimulation.A low-frequency pulsed electromagnetic field induces cell death in native proliferating cells isolated from ALL patients. The increased vulnerability of proliferating PBMCs to PEMF-induced interactions may be potentially applied in the therapy of ALL.The analysis of expression of apoptosis-related genes revealed changes in mRNA of some genes engaged in the intrinsic apoptotic pathway belonging to the Bcl-2 family and the pathway with apoptosis-inducing factor (AIF) abundance upon PEMF stimulation of PBMCs.
Collapse
|
29
|
Wu Q, Wang R, Yang Q, Hou X, Chen S, Hou Y, Chen C, Yang Y, Miele L, Sarkar FH, Chen Y, Wang Z. Chemoresistance to gemcitabine in hepatoma cells induces epithelial-mesenchymal transition and involves activation of PDGF-D pathway. Oncotarget 2014; 4:1999-2009. [PMID: 24158561 PMCID: PMC3875765 DOI: 10.18632/oncotarget.1471] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignances in the world and has high mortality in part due to development of acquired drug resistance. Therefore, it is urgent to investigate the molecular mechanism of drug resistance in HCC. To explore the underlying mechanism of drug resistance in HCC, we developed gemcitabine-resistant (GR) HCC cells. We used multiple methods to achieve our goal including RT-PCR, Western blotting analysis, transfection, Wound-healing assay, migration and invasion assay. We observed that gemcitabine-resistant cells acquired epithelial-mesenchymal transition (EMT) phenotype. Moreover, we found that PDGF-D is highly expressed in GR cells. Furthermore, down-regulation of PDGF-D in GR cells led to partial reversal of the EMT phenotype. Our findings demonstrated that targeting PDGF-D could be a novel strategy to overcome gemcitabine resistance in HCC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Libra M, Nicoletti F, D'Assoro AB, Cocco L, Martelli AM, Steelman LS. Targeting breast cancer initiating cells: advances in breast cancer research and therapy. Adv Biol Regul 2014; 56:81-107. [PMID: 24913694 DOI: 10.1016/j.jbior.2014.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Over the past 10 years there have been significant advances in our understanding of breast cancer and the important roles that breast cancer initiating cells (CICs) play in the development and resistance of breast cancer. Breast CICs endowed with self-renewing and tumor-initiating capacities are believed to be responsible for the relapses which often occur after various breast cancer therapies. In this review, we will summarize some of the key developments in breast CICs which will include discussion of some of the key genes implicated: estrogen receptor (ER), HER2, BRCA1, TP53, PIK3CA, RB, P16INK1 and various miRs as well some drugs which are showing promise in targeting CICs. In addition, the concept of combined therapies will be discussed. Basic and clinical research is resulting in novel approaches to improve breast cancer therapy by targeting the breast CICs.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Antonino B D'Assoro
- Department of Medical Oncology, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| |
Collapse
|
31
|
The AKT inhibitor MK-2206 is cytotoxic in hepatocarcinoma cells displaying hyperphosphorylated AKT-1 and synergizes with conventional chemotherapy. Oncotarget 2014; 4:1496-506. [PMID: 24036604 PMCID: PMC3824526 DOI: 10.18632/oncotarget.1236] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common potentially lethal human malignancies worldwide. Advanced or recurrent HCC is frequently resistant to conventional chemotherapeutic agents and radiation. Therefore, targeted agents with tolerable toxicity are mandatory to improve HCC therapy and prognosis. In this neoplasia, the PI3K/Akt signaling network has been frequently shown to be aberrantly up-regulated. To evaluate whether Akt could represent a target for treatment of HCC, we studied the effects of the allosteric Akt inhibitor, MK-2206, on a panel of HCC cell lines characterized by different levels of Akt-1 activation. The inhibitor decreased cell viability and induced cell cycle arrest in the G0/G1 phase of the cell cycle, with a higher efficacy in cells with hyperphosphorylated Akt-1. Moreover, MK-2206 induced apoptosis, as documented by Annexin V labeling, and also caused autophagy, as evidenced by increased levels of the autophagy marker LC3A/B. Autophagy was shown to be a protective mechanism against MK-2206 cytotoxicity. MK-2206 down-regulated, in a concentration-dependent manner, the phosphorylation levels of Akt-1 synergizedand its downstream targets, GSK3 α/β and FOXO3A. MK-2206 synergized with doxorubicin, a chemotherapeutic drug widely used for HCC treatment. Our findings suggest that the use of Akt inhibitors, either alone or in combination with doxorubicin, may be considered as an attractive therapeutic regimen for the treatment of HCC.
Collapse
|
32
|
Danilov A, Shaposhnikov M, Plyusnina E, Kogan V, Fedichev P, Moskalev A. Selective anticancer agents suppress aging in Drosophila. Oncotarget 2014; 4:1507-26. [PMID: 24096697 PMCID: PMC3824538 DOI: 10.18632/oncotarget.1272] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data.
Collapse
Affiliation(s)
- Anton Danilov
- Institute of Biology, Komi Science Center, Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | | | | | | | | | | |
Collapse
|
33
|
von Manstein V, Yang CM, Richter D, Delis N, Vafaizadeh V, Groner B. Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops. ACTA ACUST UNITED AC 2014; 8:193-202. [PMID: 25045345 PMCID: PMC4095943 DOI: 10.2174/1574362409666140206221931] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 01/05/2023]
Abstract
The emergence of low molecular weight kinase inhibitors as “targeted” drugs has led to remarkable advances in the treatment of cancer patients. The clinical benefits of these tumor therapies, however, vary widely in patient populations and with duration of treatment. Intrinsic and acquired resistance against such drugs limits their efficacy. In addition to the well studied mechanisms of resistance based upon drug transport and metabolism, genetic alterations in drug target structures and the activation of compensatory cell signaling have received recent attention. Adaptive responses can be triggered which counteract the initial dependence of tumor cells upon a particular signaling molecule and allow only a transient inhibition of tumor cell growth. These compensating signaling mechanisms are often based upon the relief of repression of regulatory feedback loops. They might involve cell autonomous, intracellular events or they can be mediated via the secretion of growth factor receptor ligands into the tumor microenvironment and signal induction in an auto- or paracrine fashion. The transcription factors Stat3 and Stat5 mediate the biological functions of cytokines, interleukins and growth factors and can be considered as endpoints of multiple signaling pathways. In normal cells this activation is transient and the Stat molecules return to their non-phosphorylated state within a short time period. In tumor cells the balance between activating and de-activating signals is disturbed resulting in the persistent activation of Stat3 or Stat5. The constant activation of Stat3 induces the expression of target genes, which cause the proliferation and survival of cancer cells, as well as their migration and invasive behavior. Activating components of the Jak-Stat pathway have been recognized as potentially valuable drug targets and important principles of compensatory signaling circuit induction during targeted drug treatment have been discovered in the context of kinase inhibition studies in HNSCC cells [1]. The treatment of HNSCC with a specific inhibitor of c-Src, initially resulted in reduced Stat3 and Stat5 activation and subsequently an arrest of cell proliferation and increased apoptosis. However, the inhibition of c-Src only caused a persistent inhibition of Stat5, whereas the inhibition of Stat3 was only transient. The activation of Stat3 was restored within a short time period in the presence of the c-Src inhibitor. This process is mediated through the suppression of P-Stat5 activity and the decrease in the expression of the Stat5 dependent target gene SOCS2, a negative regulator of Jak2. Jak2 activity is enhanced upon SOCS2 downregulation and causes the reactivation of Stat3. A similar observation has been made upon inhibition of Bmx, bone marrow kinase x-linked, activated in the murine glioma cell lines Tu-2449 and Tu-9648. Its inhibition resulted in a transient decrease of P-Stat3 and the induction of a compensatory Stat3 activation mechanism, possibly through the relief of negative feedback inhibition and Jak2 activation. These observations indicate that the inhibition of a single tyrosine kinase might not be sufficient to induce lasting therapeutic effects in cancer patients. Compensatory kinases and pathways might become activated and maintain the growth and survival of tumor cells. The definition of these escape pathways and their preemptive inhibition will suggest effective new combination therapies for cancer.
Collapse
Affiliation(s)
| | - Chul Min Yang
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Diane Richter
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Natalia Delis
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Vida Vafaizadeh
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| |
Collapse
|
34
|
DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development. Cancer Chemother Pharmacol 2014; 73:1089-93. [DOI: 10.1007/s00280-014-2433-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
|
35
|
Cipriano R, Miskimen KLS, Bryson BL, Foy CR, Bartel CA, Jackson MW. FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies. Oncotarget 2014; 4:729-38. [PMID: 23676467 PMCID: PMC3742833 DOI: 10.18632/oncotarget.1027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Therapies targeting MAPK and AKT/mTOR signaling are currently being evaluated in clinical trials for several tumor types. However, recent studies suggest that these therapies may be limited due to acquired cancer cell resistance and a small therapeutic index between normal and cancer cells. The identification of novel proteins that are involved in MAPK or AKT/mTOR signaling and differentially expressed between normal and cancer cells will provide mechanistically distinct therapeutic targets with the potential to inhibit these key cancer-associated pathways. We recently identified FAM83B as a novel, previously uncharacterized oncogene capable of hyperactivating MAPK and mTOR signaling and driving the tumorigenicity of immortalized human mammary epithelial cells (HMEC). We show here that elevated FAM83B expression also activates the PI3K/AKT signaling pathway and confers a decreased sensitivity to PI3K, AKT, and mTOR inhibitors. FAM83B co-precipitated with the p85α and p110α subunits of PI3K, as well as AKT, and increased p110α and AKT membrane localization, consistent with elevated PI3K/AKT signaling. In tumor-derived cells harboring elevated FAM83B expression, ablation of FAM83B decreased p110α and AKT membrane localization, suppressed AKT phosphorylation, and diminished proliferation, AIG, and tumorigenicity in vivo. We propose that the level of FAM83B expression may be an important factor to consider when combined therapies targeting MAPK and AKT/mTOR signaling are used. Moreover, the identification of FAM83B as a novel oncogene and its integral involvement in activating PI3K/AKT and MAPK provides a foundation for future therapies aimed at targeting FAM83B in order to suppress the growth of PI3K/AKT- and MAPK-driven cancers.
Collapse
Affiliation(s)
- Rocky Cipriano
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
36
|
Diersch S, Wenzel P, Szameitat M, Eser P, Paul MC, Seidler B, Eser S, Messer M, Reichert M, Pagel P, Esposito I, Schmid RM, Saur D, Schneider G. Efemp1 and p27(Kip1) modulate responsiveness of pancreatic cancer cells towards a dual PI3K/mTOR inhibitor in preclinical models. Oncotarget 2014; 4:277-88. [PMID: 23470560 PMCID: PMC3712573 DOI: 10.18632/oncotarget.859] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a dismal disease with a poor prognosis and targeted therapies have failed in the clinic so far. Several evidences point to the phosphatidylinositol 3-kinase (PI3K)-mTOR pathway as a promising signaling node for targeted therapeutic intervention. Markers, which predict responsiveness of PDAC cells towards PI3K inhibitors are unknown. However, such markers are needed and critical to better stratify patients in clinical trials. We used a large murine KrasG12D- and PI3K (p110αH1047R)-driven PDAC cell line platform to unbiased define modulators of responsiveness towards the dual PI3K-mTOR inhibitor Bez235. In contrast to other tumor models, we show that KrasG12D- and PI3K (p110αH1047R)-driven PDAC cell lines are equally sensitive towards Bez235. In an unbiased approach we found that the extracellular matrix protein Efemp1 controls sensitivity of murine PDAC cells towards Bez235. We show that Efemp1 expression is connected to the cyclin-dependent kinase inhibitor p27Kip1. In a murine KrasG12D- driven PDAC model, p27Kip1 haploinsufficiency accelerates cancer development in vivo. Furthermore, p27Kip1 controls Bez235 sensitivity in a gene dose-dependent fashion in murine PDAC cells and lowering of p27Kip1 decreases Bez235 responsiveness in murine PDAC models. Together, we define the Efemp1-p27Kip1 axis as a potential marker module of PDAC cell sensitivity towards dual PI3K-mTOR inhibitors, which might help to better stratify patients in clinical trials.
Collapse
Affiliation(s)
- Sandra Diersch
- II. Medizinische Klinik, Technische Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Astolfi A, Vendemini F, Urbini M, Melchionda F, Masetti R, Franzoni M, Libri V, Serravalle S, Togni M, Paone G, Montemurro L, Bressanin D, Chiarini F, Martelli AM, Tonelli R, Pession A. MYCN is a novel oncogenic target in pediatric T-cell acute lymphoblastic leukemia. Oncotarget 2014; 5:120-30. [PMID: 24334727 PMCID: PMC3960194 DOI: 10.18632/oncotarget.1337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/27/2013] [Indexed: 12/30/2022] Open
Abstract
MYCN is an oncogene frequently overexpressed in pediatric solid tumors whereas few evidences suggest his involvement in the pathogenesis of haematologic malignancies. Here we show that MYCN is overexpressed in a relevant proportion (40 to 50%) of adult and pediatric T-cell acute lymphoblastic leukemias (T-ALL). Focusing on pediatric T-ALL, MYCN-expressing samples were found almost exclusively in the TAL1-positive subgroup. Moreover, TAL1 knockdown in T-ALL cell lines resulted in a reduction of MYCN expression, and TAL1 directly binds to MYCN promoter region, suggesting that TAL1 pathway activation could sustain the up-regulation of MYCN. The role of MYCN in T-ALL was investigated by peptide nucleic acid (PNA-MYCN)-mediated transcriptional silencing of MYCN and by siRNAs. MYCN knockdown in T-ALL cell lines resulted in a reduction of cell viability, up to 50%, while no effect was elicited with a mismatch PNA. The inhibitory effect of PNA-MYCN on cell viability was due to a significant increase in apoptosis. PNA-MYCN treatment in pediatric T-ALL samples reduced cell viability of leukemic cells from patients with high MYCN expression, while no effect was obtained in MYCN-negative blast cells. These results showed that MYCN is frequently overexpressed in pediatric T-ALL and suggested his role as a candidate for molecularly-directed therapies.
Collapse
Affiliation(s)
- Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Francesca Vendemini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Milena Urbini
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Monica Franzoni
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Virginia Libri
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Salvatore Serravalle
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Marco Togni
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giuseppina Paone
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Pession
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna, Italy
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Vari S, Pilotto S, Maugeri-Saccà M, Ciuffreda L, Cesta Incani U, Falcone I, Del Curatolo A, Ceribelli A, Gelibter A, De Maria R, Tortora G, Cognetti F, Bria E, Milella M. Advances towards the design and development of personalized non-small-cell lung cancer drug therapy. Expert Opin Drug Discov 2013; 8:1381-97. [PMID: 24088065 DOI: 10.1517/17460441.2013.843523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Non-small-cell lung cancer (NSCLC) subtypes are driven by specific genetic aberrations. For reasons such as this, there is a call for treatment personalization. The ability to instigate NSCLC fragmentation poses new methodological problems, and new 'driver' molecular aberrations are being discovered at an unprecedented pace. AREAS COVERED This article describes the clinical development of epidermal growth factor-tyrosine kinase inhibitors (EGFR-TKIs) and crizotinib for EGFR-mutant and anaplastic lymphoma kinase (ALK)-rearranged NSCLC. Further, the authors briefly describe the emerging molecular targets in NSCLC, in terms of both rationale for therapeutic targeting and strategies, for clinical development. EXPERT OPINION Target identification and validation in NSCLC still requires considerable effort, as not all of the molecular alterations are clear 'drivers' nor can they be efficiently targeted with available drugs. However, 50% of the NSCLC cases are without clear-defined molecular aberrations. Clinical trial methodology will need to develop novel paradigms for targeted drug development, aiming at the validation of an ideal 'biology-to-trial' approach. Despite significant challenges, a truly 'personalized' approach to NSCLC therapy appears to be within our reach.
Collapse
Affiliation(s)
- Sabrina Vari
- Regina Elena National Cancer Institute, Division of Medical Oncology A , Via Elio Chianesi 53, 00144, Rome , Italy +39 06 52666919 ; +39 06 52665637 ; ;
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Poli A, Faenza I, Chiarini F, Matteucci A, McCubrey JA, Cocco L. K562 cell proliferation is modulated by PLCβ1 through a PKCα-mediated pathway. Cell Cycle 2013; 12:1713-21. [PMID: 23656785 DOI: 10.4161/cc.24806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phospholipase C β1 (PLCβ1) is known to play an important role in cell proliferation. Previous studies reported an involvement of PLCβ1 in G 0-G 1/S transition and G 2/M progression in Friend murine erythroleukemia cells (FELC). However, little has been found about its role in human models. Here, we used K562 cell line as human homologous of FELC in order to investigate the possible key regulatory role of PLCβ1 during cell proliferation of this human cell line. Our studies on the effects of the overexpression of both these isoforms showed a specific and positive connection between cyclin D3 and PLCβ1 in K562 cells, which led to a prolonged S phase of the cell cycle and a delay in cell proliferation. In order to shed light on this mechanism, we decided to study the possible involvement of protein kinases C (PKC), known to be direct targets of PLC signaling and important regulators of cell proliferation. Our data showed a peculiar decrease of PKCα levels in cells overexpressing PLCβ1. Moreover, when we silenced PKCα, by RNAi technique, in order to mimic the effects of PLCβ1, we caused the same upregulation of cyclin D3 levels and the same decrease of cell proliferation found in PLCβ1-overexpressing cells. The key features emerging from our studies in K562 cells is that PLCβ1 targets cyclin D3, likely through a PKCα-mediated-pathway, and that, as a downstream effect of its activity, K562 cells undergo an accumulation in the S phase of the cell cycle.
Collapse
Affiliation(s)
- Alessandro Poli
- Cellular Signaling Laboratory, Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|