1
|
Ghandour F, Kassem S, Simanovich E, Rahat MA. Glucose Promotes EMMPRIN/CD147 and the Secretion of Pro-Angiogenic Factors in a Co-Culture System of Endothelial Cells and Monocytes. Biomedicines 2024; 12:706. [PMID: 38672062 PMCID: PMC11047830 DOI: 10.3390/biomedicines12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Vascular complications in Type 2 diabetes mellitus (T2DM) patients increase morbidity and mortality. In T2DM, angiogenesis is impaired and can be enhanced or reduced in different tissues ("angiogenic paradox"). The present study aimed to delineate differences between macrovascular and microvascular endothelial cells that might explain this paradox. In a monoculture system of human macrovascular (EaHy926) or microvascular (HMEC-1) endothelial cell lines and a monocytic cell line (U937), high glucose concentrations (25 mmole/L) increased the secretion of the pro-angiogenic factors CD147/EMMPRIN, VEGF, and MMP-9 from both endothelial cells, but not from monocytes. Co-cultures of EaHy926/HMEC-1 with U937 enhanced EMMPRIN and MMP-9 secretion, even in low glucose concentrations (5.5 mmole/L), while in high glucose HMEC-1 co-cultures enhanced all three factors. EMMPRIN mediated these effects, as the addition of anti-EMMPRIN antibody decreased VEGF and MMP-9 secretion, and inhibited the angiogenic potential assessed through the wound assay. Thus, the minor differences between the macrovascular and microvascular endothelial cells cannot explain the angiogenic paradox. Metformin, a widely used drug for the treatment of T2DM, inhibited EMMPRIN, VEGF, and MMP-9 secretion in high glucose concentration, and the AMPK inhibitor dorsomorphin enhanced it. Thus, AMPK regulates EMMPRIN, a key factor in diabetic angiogenesis, suggesting that targeting EMMPRIN may help in the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Fransis Ghandour
- Department of Internal Medicine A, Carmel Medical Center, Haifa 3436212, Israel
| | - Sameer Kassem
- Department of Internal Medicine A, Carmel Medical Center, Haifa 3436212, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Michal A. Rahat
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
2
|
Yang J, Gourley GR, Gilbertsen A, Chen C, Wang L, Smith K, Namenwirth M, Yang L. High Glucose Levels Promote Switch to Synthetic Vascular Smooth Muscle Cells via Lactate/GPR81. Cells 2024; 13:236. [PMID: 38334628 PMCID: PMC10854508 DOI: 10.3390/cells13030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Hyperglycemia, lipotoxicity, and insulin resistance are known to increase the secretion of extracellular matrix from cardiac fibroblasts as well as the activation of paracrine signaling from cardiomyocytes, immune cells, and vascular cells, which release fibroblast-activating mediators. However, their influences on vascular smooth muscle cells (vSMCs) have not been well examined. This study aimed to investigate whether contractile vascular vSMCs could develop a more synthetic phenotype in response to hyperglycemia. The results showed that contractile and synthetic vSMCs consumed high glucose in different ways. Lactate/GPR81 promotes the synthetic phenotype in vSMCs in response to high glucose levels. The stimulation of high glucose was associated with a significant increase in fibroblast-like features: synthetic vSMC marker expression, collagen 1 production, proliferation, and migration. GPR81 expression is higher in blood vessels in diabetic patients and in the high-glucose, high-lipid diet mouse. The results demonstrate that vSMCs assume a more synthetic phenotype when cultured in the presence of high glucose and, consequently, that the high glucose could trigger a vSMC-dependent cardiovascular disease mechanism in diabetes via lactate/GPR81.
Collapse
Affiliation(s)
- Jing Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Institute of Virology, Hubei University of Medicine, Shiyan 442000, China
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Glenn R. Gourley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (G.R.G.); (M.N.)
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (A.G.); (K.S.)
| | - Chi Chen
- Department of Food Science and Nutrition, CFANS, University of Minnesota, St Paul, MN 55108, USA; (C.C.); (L.W.)
| | - Lei Wang
- Department of Food Science and Nutrition, CFANS, University of Minnesota, St Paul, MN 55108, USA; (C.C.); (L.W.)
| | - Karen Smith
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (A.G.); (K.S.)
| | - Marion Namenwirth
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (G.R.G.); (M.N.)
| | - Libang Yang
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (A.G.); (K.S.)
| |
Collapse
|
3
|
Liu T, Han S, Yao Y, Zhang G. Role of Human Monocarboxylate Transporter 1 (hMCT1) and 4 (hMCT4) in Tumor Cells and the Tumor Microenvironment. Cancer Manag Res 2023; 15:957-975. [PMID: 37693221 PMCID: PMC10487743 DOI: 10.2147/cmar.s421771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
In recent years, the abnormal glucose metabolism of tumor cells has attracted increasing attention. Abnormal glucose metabolism is closely related to the occurrence and development of tumors. Monocarboxylate transporters (MCTs) transport the sugar metabolites lactic acid and pyruvate, which affect glucose metabolism and tumor progression in a variety of ways. Thus, research has recently focused on MCTs and their potential functions in cancer. The MCT superfamily consists of 14 members. MCT1 and MCT4 play a crucial role in the maintenance of intracellular pH in tumor cells by transporting monocarboxylic acids (such as lactate, pyruvate and butyrate). MCT1 and MCT4 are highly expressed in a variety of tumor cells and are involved the proliferation, invasion and migration of tumor cells, which are closely related to the prognosis of cancer. Because of their important functions in tumor cells, MCT1 and MCT4 have become potential targets for cancer treatment. In this review, we focus on the structure, function and regulation of MCT1 and MCT4 and discuss the developed inhibitors of MCT1 and MCT4 to provide more comprehensive information that might aid in the development of strategies targeting MCTs in cancer.
Collapse
Affiliation(s)
- Tian Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Klement RJ, Sweeney RA. Metabolic factors associated with the prognosis of oligometastatic patients treated with stereotactic body radiotherapy. Cancer Metastasis Rev 2023; 42:927-940. [PMID: 37261610 DOI: 10.1007/s10555-023-10110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Over the past two decades, it has been established that cancer patients with oligometastases, i.e., only a few detectable metastases confined to one or a few organs, may benefit from an aggressive local treatment approach such as the application of high-precision stereotactic body radiotherapy (SBRT). Specifically, some studies have indicated that achieving long-term local tumor control of oligometastases is associated with prolonged overall survival. This motivates investigations into which factors may modify the dose-response relationship of SBRT by making metastases more or less radioresistant. One such factor relates to the uptake of the positron emission tomography tracer 2-deoxy-2-[18F]fluoro-D-glucose (FDG) which reflects the extent of tumor cell glycolysis or the Warburg effect, respectively. Here we review the biological mechanisms how the Warburg effect drives tumor cell radioresistance and metastasis and draw connections to clinical studies reporting associations between high FDG uptake and worse clinical outcomes after SBRT for oligometastases. We further review the evidence for distinct metabolic phenotypes of metastases preferentially seeding to specific organs and their possible translation into distinct radioresistance. Finally, evidence that obesity and hyperglycemia also affect outcomes after SBRT will be presented. While delivered dose is the main determinant of a high local tumor control probability, there might be clinical scenarios when metabolic targeting could make the difference between achieving local control or not, for example when doses have to be compromised in order to spare neighboring high-risk organs, or when tumors are expected to be highly therapy-resistant due to heavy pretreatment such as chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| |
Collapse
|
5
|
He P, Zhang F, Xu B, Wang Y, Pu W, Wang H, Wang B, Zhang J, Chen H, Li Y. Research progress of potential factors influencing photodynamic therapy for gastrointestinal cancer. Photodiagnosis Photodyn Ther 2023; 41:103271. [PMID: 36623701 DOI: 10.1016/j.pdpdt.2022.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Gastrointestinal cancer is a malignant tumor of the gastrointestinal tract and its associated digestive organs, including esophageal cancer, gastric cancer, carcinoma of the ampulla, pancreas, bile duct, intestines and rectal cancer. They account for about 30% of global cancer-related incidence and about 40% of mortality. Photodynamic therapy (PDT), as a treatment mode, has been applied to the treatment of gastrointestinal cancer due to potential advantages targeting and potentially lower toxic side effects. However, In the course of clinical treatment, we have found that different patients have various responsiveness to PDT, and even the same patients may have different clinical effects after receiving treatment in different time periods. For influencing factors, traditionally, we only focus on adjusting the dose of photosensitizer and the intensity and time of irradiation,while minimizing other potential factors.Therefore, this paper looks for factors that affect PDT from the patient's own conditions, tumor characteristics and tumor microenvironment(including:tumor acidic microenvironment,tumor hypoxic microenvironment, multi-drug resistance, different tumor characteristics and the immune status of patients) and summarizes how to potentially improve the curative effect of PDT.
Collapse
Affiliation(s)
- Puyi He
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fan Zhang
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Bo Xu
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yunpeng Wang
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Weigao Pu
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Haiyun Wang
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Bofang Wang
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jing Zhang
- Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou 730030, China; Gansu Provincial Key Laboratory of Digestive System Cancer, Lanzhou 730030, China.
| | - Yumin Li
- Lanzhou University Second Hospital, Lanzhou 730030, China; Gansu Provincial Key Laboratory of Digestive System Cancer, Lanzhou 730030, China.
| |
Collapse
|
6
|
CD147 a direct target of miR-146a supports energy metabolism and promotes tumor growth in ALK+ ALCL. Leukemia 2022; 36:2050-2063. [PMID: 35676454 PMCID: PMC9343252 DOI: 10.1038/s41375-022-01617-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
We recently reported that miR-146a is differentially expressed in ALK+ and ALK− anaplastic large cell lymphoma (ALCL). In this study, the downstream targets of miR-146a in ALK+ ALCL were investigated by transcriptome analysis, identifying CD147 as potential target gene. Because CD147 is differentially expressed in ALK+ ALCL versus ALK− ALCL and normal T cells, this gene emerged as a strong candidate for the pathogenesis of this tumor. Here we demonstrate that CD147 is a direct target of miR-146 and contributes to the survival and proliferation of ALK+ ALCL cells in vitro and to the engraftment and tumor growth in vivo in an ALK+ ALCL-xenotransplant mouse model. CD147 knockdown in ALK+ ALCL cells resulted in loss of monocarboxylate transporter 1 (MCT1) expression, reduced glucose consumption and tumor growth retardation, as demonstrated by [18F]FDG-PET/MRI analysis. Investigation of metabolism in vitro and in vivo supported these findings, revealing reduced aerobic glycolysis and increased basal respiration in CD147 knockdown. In conclusion, our findings indicate that CD147 is of vital importance for ALK+ ALCL to maintain the high energy demand of rapid cell proliferation, promoting lactate export, and tumor growth. Furthermore, CD147 has the potential to serve as a novel therapeutic target in ALK+ ALCL, and warrants further investigation.
Collapse
|
7
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
8
|
Immunometabolic Markers in a Small Patient Cohort Undergoing Immunotherapy. Biomolecules 2022; 12:biom12050716. [PMID: 35625643 PMCID: PMC9139165 DOI: 10.3390/biom12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although the discovery of immune checkpoints was hailed as a major breakthrough in cancer therapy, generating a sufficient response to immunotherapy is still limited. Thus, the objective of this exploratory, hypothesis-generating study was to identify potentially novel peripheral biomarkers and discuss the possible predictive relevance of combining scarcely investigated metabolic and hormonal markers with immune subsets. Sixteen markers that differed significantly between responders and non-responders were identified. In a further step, the correlation with progression-free survival (PFS) and false discovery correction (Benjamini and Hochberg) revealed potential predictive roles for the immune subset absolute lymphocyte count (rs = 0.51; p = 0.0224 *), absolute basophil count (rs = 0.43; p = 0.04 *), PD-1+ monocytes (rs = −0.49; p = 0.04 *), hemoglobin (rs = 0.44; p = 0.04 *), metabolic markers LDL (rs = 0.53; p = 0.0224 *), free androgen index (rs = 0.57; p = 0.0224 *) and CRP (rs = −0.46; p = 0.0352 *). The absolute lymphocyte count, LDL and free androgen index were the most significant individual markers, and combining the immune subsets with the metabolic markers into a biomarker ratio enhanced correlation with PFS (rs = −0.74; p ≤ 0.0001 ****). In summary, in addition to well-established markers, we identified PD-1+ monocytes and the free androgen index as potentially novel peripheral markers in the context of immunotherapy. Furthermore, the combination of immune subsets with metabolic and hormonal markers may have the potential to enhance the power of future predictive scores and should, therefore, be investigated further in larger trials.
Collapse
|
9
|
Rahat MA. Mini-Review: Can the Metastatic Cascade Be Inhibited by Targeting CD147/EMMPRIN to Prevent Tumor Recurrence? Front Immunol 2022; 13:855978. [PMID: 35418981 PMCID: PMC8995701 DOI: 10.3389/fimmu.2022.855978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Solid tumors metastasize very early in their development, and once the metastatic cell is lodged in a remote organ, it can proliferate to generate a metastatic lesion or remain dormant for long periods. Dormant cells represent a real risk for future tumor recurrence, but because they are typically undetectable and insensitive to current modalities of treatment, it is difficult to treat them in time. We describe the metastatic cascade, which is the process that allows tumor cells to detach from the primary tumor, migrate in the tissue, intravasate and extravasate the lymphatics or a blood vessel, adhere to a remote tissue and eventually outgrow. We focus on the critical enabling role of the interactions between tumor cells and immune cells, especially macrophages, in driving the metastatic cascade, and on those stages that can potentially be targeted. In order to prevent the metastatic cascade and tumor recurrence, we would need to target a molecule that is involved in all of the steps of the process, and evidence is brought to suggest that CD147/EMMPRIN is such a protein and that targeting it blocks metastasis and prevents tumor recurrence.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021; 57:13662-13677. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small molecule drugs, including most chemotherapies, are rapidly degraded and/or eliminated from the body, which is why high doses of these drugs are necessary, potentially producing toxic effects. Several types of nanoparticles loaded with anti-cancer drugs have been designed to overcome the disadvantages of conventional therapies. Modified nanoparticles can circulate for a long time, thus improving the solubility and biodistribution of drugs. Furthermore, they also allow the controlled release of the payload once its target tissue has been reached. These mechanisms can reduce the exposure of healthy tissues to chemotherapeutics, since the drugs are only released in the presence of specific tumour stimuli. Overall, these properties can improve the effectiveness of treatments while reducing undesirable side effects. In this article, we review the recent advances in stimuli-responsive albumin, gold and magnetic nanostructures for controlled anti-cancer drug delivery. These nanostructures were designed to release drugs in response to different internal and external stimuli of the cellular environment, including pH, redox, light and magnetic fields. We also describe various examples of applications of these nanomaterials. Overall, we shed light on the properties, potential clinical translation and limitations of stimuli-responsive nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Nuria Lafuente-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ana Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ciro Rodriguez Diaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain. .,Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
11
|
Montella L, Sarno F, Altucci L, Cioffi V, Sigona L, Di Colandrea S, De Simone S, Marinelli A, Facchini BA, De Vita F, Berretta M, de Falco R, Facchini G. A Root in Synapsis and the Other One in the Gut Microbiome-Brain Axis: Are the Two Poles of Ketogenic Diet Enough to Challenge Glioblastoma? Front Nutr 2021; 8:703392. [PMID: 34422883 PMCID: PMC8378133 DOI: 10.3389/fnut.2021.703392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive brain cancer in adults. While precision medicine in oncology has produced remarkable progress in several malignancies, treatment of glioblastoma has still limited available options and a dismal prognosis. After first-line treatment with surgery followed by radiochemotherapy based on the 2005 STUPP trial, no significant therapeutic advancements have been registered. While waiting that genomic characterization moves from a prognostic/predictive value into therapeutic applications, practical and easy-to-use approaches are eagerly awaited. Medical reports on the role of the ketogenic diet in adult neurological disorders and in glioblastoma suggest that nutritional interventions may condition outcomes and be associated with standard therapies. The acceptable macronutrient distribution of daily calories in a regular diet are 45-65% of daily calories from carbohydrates, 20-35% from fats, and 10-35% from protein. Basically, the ketogenic diet follows an approach based on low carbohydrates/high fat intake. In carbohydrates starvation, body energy derives from fat storage which is used to produce ketones and act as glucose surrogates. The ketogenic diet has several effects: metabolic interference with glucose and insulin and IGF-1 pathways, influence on neurotransmission, reduction of oxidative stress and inflammation, direct effect on gene expression through epigenetic mechanisms. Apart from these central effects working at the synapsis level, recent evidence also suggests a role for microbiome and gut-brain axis induced by a ketogenic diet. This review focuses on rationales supporting the ketogenic diet and clinical studies will be reported, looking at future possible perspectives.
Collapse
Affiliation(s)
- Liliana Montella
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Federica Sarno
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Lucia Altucci
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Valentina Cioffi
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Luigi Sigona
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Salvatore Di Colandrea
- Department of Emergency and Critical Care, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Stefano De Simone
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Alfredo Marinelli
- Operative Unit Neuroncology University Federico II, Naples, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Neuromed Istituto Neurologico Mediterraneo (INM), Isernia, Italy
| | - Bianca Arianna Facchini
- Division of Medical Oncology, Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Raffaele de Falco
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Gaetano Facchini
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| |
Collapse
|
12
|
Neural crest metabolism: At the crossroads of development and disease. Dev Biol 2021; 475:245-255. [PMID: 33548210 PMCID: PMC10171235 DOI: 10.1016/j.ydbio.2021.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The neural crest is a migratory stem cell population that contributes to various tissues and organs during vertebrate embryonic development. These cells possess remarkable developmental plasticity and give rise to many different cell types, including chondrocytes, osteocytes, peripheral neurons, glia, melanocytes, and smooth muscle cells. Although the genetic mechanisms underlying neural crest development have been extensively studied, many facets of this process remain unexplored. One key aspect of cellular physiology that has gained prominence in the context of embryonic development is metabolic regulation. Recent discoveries in neural crest biology suggest that metabolic regulation may play a central role in the formation, migration, and differentiation of these cells. This possibility is further supported by clinical studies that have demonstrated a high prevalence of neural crest anomalies in babies with congenital metabolic disorders. Here, we examine why neural crest development is prone to metabolic disruption and discuss how carbon metabolism regulates developmental processes like epithelial-to-mesenchymal transition (EMT) and cell migration. Finally, we explore how understanding neural crest metabolism may inform upon the etiology of several congenital birth defects.
Collapse
|
13
|
Mazuryk J, Puchalska I, Koziński K, Ślusarz MJ, Ruczyński J, Rekowski P, Rogujski P, Płatek R, Wiśniewska MB, Piotrowski A, Janus Ł, Skowron PM, Pikuła M, Sachadyn P, Rodziewicz-Motowidło S, Czupryn A, Mucha P. PTD4 Peptide Increases Neural Viability in an In Vitro Model of Acute Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22116086. [PMID: 34200045 PMCID: PMC8200211 DOI: 10.3390/ijms22116086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49–57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose deprivation, oxidative stress, lactic acidosis, and excitotoxicity. Neurotoxicity of these peptides was excluded below a concentration of 50 μm, and PTD4-induced pro-survival was more pronounced. Circular dichroism spectroscopy and molecular dynamics (MD) calculations proved potential contribution of the peptide conformational properties to neuroprotection: in MD, Tat(49–57)-NH2 adopted a random coil and polyproline type II helical structure, whereas PTD4 adopted a helical structure. In an aqueous environment, the peptides mostly adopted a random coil conformation (PTD4) or a polyproline type II helical (Tat(49–57)-NH2) structure. In 30% TFE, PTD4 showed a tendency to adopt a helical structure. Overall, the pro-viable activity of PTD4 was not correlated with the arginine content but rather with the peptide’s ability to adopt a helical structure in the membrane-mimicking environment, which enhances its cell membrane permeability. PTD4 may act as a leader sequence in novel drugs for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (J.M.); (P.M.); Tel.: +48-22-343-2094 (J.M.); +48-58-523-5432 (P.M.)
| | - Izabela Puchalska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
- Institute of Biotechnology and Molecular Medicine, 80-172 Gdańsk, Poland
| | - Kamil Koziński
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (K.K.); (M.B.W.)
| | - Magdalena J. Ślusarz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Jarosław Ruczyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Piotr Rekowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
- NeuroRepair Department, Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland
| | - Rafał Płatek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Marta Barbara Wiśniewska
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (K.K.); (M.B.W.)
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | - Piotr M. Skowron
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Sylwia Rodziewicz-Motowidło
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
| | - Piotr Mucha
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
- Correspondence: (J.M.); (P.M.); Tel.: +48-22-343-2094 (J.M.); +48-58-523-5432 (P.M.)
| |
Collapse
|
14
|
Tang W, Long T, Li F, Peng C, Zhao S, Chen X, Su J. HIF -1 α may promote glycolysis in psoriasis vulgaris via upregulation of CD147 and GLUT1. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:333-344. [PMID: 33967078 PMCID: PMC10930304 DOI: 10.11817/j.issn.1672-7347.2021.200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To analyze the expressions and distributions of hypoxia-inducible factor-1α (HIF-1α), CD147, and glucose transporter 1 (GLUT1) in epidermis from psoriasis vulgaris and normal people, and to explore the associations among these proteins and their roles in hypoxic HaCaT cell line. METHODS The expression levels of HIF-1α, CD147, and GLUT1 were determined by immunohistochemistry staining in skin biopsies from 48 psoriasis vularis patients and 33 healthy subjects. Cobalt chloride (CoCl2) was added into the culture media of HaCaT cells to mimic hypoxia while RNA interference and transfection technologies were used to explore the association among these proteins by quantitative real-time polymerase chain reaction and Western blotting. Glycolytic capacity was detected by ATP and lactate measurements. RESULTS HIF-1α, CD147, and GLUT1 were highly expressed and the glycolytic capacity was increased in lesions of psoriasis vulgaris; HIF-1α upregulated the expression of CD147 and GLUT1, increased the lactate production and decreased the ATP level in CoCl2-treated HaCaT cells, while CD147 and GLUT1 directly or indirectly bound to each other. CONCLUSIONS Glycolytic capacity increases in the injured keratinocytes of psoriasis vulgaris, suggesting that HIF-1α, CD147, and GLUT1 are associated with glycolysis, which can be considered as the promising targets for psoriasis therapy.
Collapse
Affiliation(s)
- Wen Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008.
| | - Tingting Long
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fangfang Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cong Peng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuang Zhao
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
15
|
Kasai K, Segawa R, Onodera R, Asakawa S, Hiratsuka M, Hirasawa N. Lactate released from human fibroblasts enhances Ni elution from Ni plate. Toxicology 2021; 453:152723. [PMID: 33596451 DOI: 10.1016/j.tox.2021.152723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Elution of Ni ions from medical devices induces inflammation and toxicity. We previously reported that elution of Ni ions from Ni wires induced COX-2 expression and increased lactate production, but whether lactate is involved in the further elution of Ni ions remains unclear. In this study, using KMST-6, a human fibroblast cell line, we examined the molecular mechanisms by which Ni ions increase lactate release and the role of lactate in enhancing the elution of Ni ions. When KMST-6 cells were incubated on a Ni plate or stimulated with NiCl2 (1 mM), the expression of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA), and the release of lactate were enhanced. The NiCl2 (1 mM)-induced expression of these genes was inhibited by a hypoxia-inducible factor-1α (HIF-1α) inhibitor, PX-478 (10-25 μM). Stimulation of cells with a prolyl hydroxylase domain (PHD) inhibitor, roxadustat, increased the expression of these genes, lactate release, and elution of Ni ions at 10 μM. A monocarboxylate transporter-4 (MCT4) inhibitor, syrosingopine, inhibited lactate release from roxadustat-treated cells and reduced the elution of Ni ions by the cells at 10 μM. Finally, syrosingopine (10 μM) reduced the elution of Ni ions by the cells from the Ni plate. These results suggest that elution of Ni ions from metals promotes the production of lactate via HIF-1α-mediated gene expression and causes further Ni elution. Thus, Ni ions show a positive feedback mechanism of Ni elution, and this step may be potentially targeted to protect against metal elution from metal devices.
Collapse
Affiliation(s)
- Koji Kasai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryo Onodera
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Sanki Asakawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
16
|
Wang K, Huang W, Chen R, Lin P, Zhang T, Ni YF, Li H, Wu J, Sun XX, Geng JJ, Zhu YM, Nan G, Zhang W, Chen X, Zhu P, Bian H, Chen ZN. Di-methylation of CD147-K234 Promotes the Progression of NSCLC by Enhancing Lactate Export. Cell Metab 2021; 33:160-173.e6. [PMID: 33406400 DOI: 10.1016/j.cmet.2020.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/17/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-methylated to CD147-K234me2 by lysine methyltransferase 5A (KMT5A). The increase in KMT5A expression boosts the levels of CD147-K234me2, further promoting the interaction between CD147 and monocarboxylate transporter 4 (MCT4), which enhances the translocation of MCT4 from the cytoplasm to the membrane. Overexpression of CD147-K234me2 and KMT5A enhances glycolysis and lactate export in NSCLC cells. Clinical analysis shows that high CD147-K234me2 expression is significantly related to cancer progression and overall survival, and has prognostic significance in individuals with NSCLC, especially for those in the early stages. Our findings indicate that CD147-K234me2 plays a critical role in cancer metabolism, and it can be a highly promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ke Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Tao Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, China
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China; Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology and Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
17
|
PFKFB2 regulates glycolysis and proliferation in pancreatic cancer cells. Mol Cell Biochem 2020; 470:115-129. [PMID: 32415418 DOI: 10.1007/s11010-020-03751-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/08/2020] [Indexed: 12/27/2022]
Abstract
Tumor cells increase glucose metabolism through glycolysis and pentose phosphate pathways to meet the bioenergetic and biosynthetic demands of rapid cell proliferation. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are key regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent activator of glycolysis. Previous studies have reported the co-expression of PFKFB isozymes, as well as the mRNA splice variants of particular PFKFB isozymes, suggesting non-redundant functions. Majority of the evidence demonstrating a requirement for PFKFB activity in increased glycolysis and oncogenic properties in tumor cells comes from studies on PFKFB3 and PFKFB4 isozymes. In this study, we show that the PFKFB2 isozyme is expressed in tumor cell lines of various origin, overexpressed and localizes to the nucleus in pancreatic adenocarcinoma, relative to normal pancreatic tissue. We then demonstrate the differential intracellular localization of two PFKFB2 mRNA splice variants and that, when ectopically expressed, cytoplasmically localized mRNA splice variant causes a greater increase in F2,6BP which coincides with an increased glucose uptake, as compared with the mRNA splice variant localizing to the nucleus. We then show that PFKFB2 expression is required for steady-state F2,6BP levels, glycolytic activity, and proliferation of pancreatic adenocarcinoma cells. In conclusion, this study may provide a rationale for detailed investigation of PFKFB2's requirement for the glycolytic and oncogenic phenotype of pancreatic adenocarcinoma cells.
Collapse
|
18
|
Li Z, Xu J, Cui H, Song J, Chen J, Wei J. Bioinformatics analysis of key biomarkers and potential molecular mechanisms in hepatocellular carcinoma induced by hepatitis B virus. Medicine (Baltimore) 2020; 99:e20302. [PMID: 32443377 PMCID: PMC7254842 DOI: 10.1097/md.0000000000020302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for up to 90% of all primary hepatic malignancies; it is the sixth most common cancer and the second most common cause of cancer mortality worldwide. Numerous studies have shown that hepatitis B virus and its products, HBV integration, and mutation can induce HCC. However, the molecular mechanisms underpinning the regulation of HCC induced by HBV remain unclear. METHODS We downloaded 2 gene expression profiling datasets, of HBV and of HCC induced by HBV, from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between HCC and HBV were identified to explore any predisposing changes in gene expression associated with HCC. DEGs between HCC and adjacent healthy tissues were investigated to identify genes that may play a key role in HCC. Any overlapping genes among these DEGs were included in our bioinformatics analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of overlapping genes were performed using the Metascape online database; the protein-protein interaction (PPI) network was analyzed using the STRING online database; and we obtained the hub genes of the PPI network using Cytoscape software. An overall survival (OS) analysis of hub genes was performed using km-plotter and the gene expression profiling interactive analysis (GEPIA) online database. The expression levels of hub genes were determined using the TCGA and GEPIA databases. Finally, the relationships between hub genes and tumors were analyzed using the comparative toxicogenomics database (CTD). RESULTS We identified 113 overlapping genes from the 2 datasets. Using functional and pathway analyses, we found that the overlapping genes were mainly related to the AMPK signaling pathway and cellular responses to cadmium ions. C8A, SPP2, KLKB1, PROZ, C6, FETUB, MBL2, HGFAC, C8B, and ANGPTL3 were identified as hub genes and C8A, SPP2, PROZ, C6, HGFAC, and C8B were found to be significant for survival. CONCLUSION The DEGs re-analyzed between HCC and hepatitis B enable a systematic understanding of the molecular mechanisms of HCC reliant on hepatitis B virus.
Collapse
|
19
|
耿 良, 吕 静, 范 敬. [Effect of Fei-Liu-Ping ointment combined with cyclophosphamide on lung cancer cell proliferation and acidic microenvironment]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:247-253. [PMID: 32306006 PMCID: PMC7433443 DOI: 10.19723/j.issn.1671-167x.2020.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To observe the effects of Fei-Liu-Ping ointment and chemotherapy on mice with lung cancer, and to explore the inherent mechanism of action from the point of acidic microenvironment and apoptosis. METHODS First of all, the Lewis lung cancer transplanted mouse model was established. Therefore, they were treated by Fei-Liu-Ping ointment, cyclophosphamide, Fei-Liu-Ping ointment + cyclophosphamide and the saline as control. All the groups' tumor size, tumor growth rate and food consumption were recorded. The mice were sacrificed and the tumors were took out after 15 days' interventions. Then lactate relative concentrations were detected with lactate kits and the protein expressions of glucose transporter 4 (GLUT4), hexokinase 1 (HK1), glucose-regulated protein 78 (GRP78), carbonic anhydrase-IX (CA-IX) were detected through immunohistochemical staining. Flow cytometry was adopted to detect the percentage of apoptotic tumor cells and regulatory T cells (Treg), and the expression of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, Caspase-3, interleukin-2 (IL-2) were tested through western blot. RESULTS The strongest inhibition effect and the lowest tumor growth rate was found in Fei-Liu-Ping ointment + cyclophosphamide group. There were significant differences between Fei-Liu-Ping ointment + cyclophosphamide group and saline group(P<0.05). And the highest food consumption was found in Fei-Liu-Ping ointment + cyclophosphamide group while there were no significant differences between Fei-Liu-Ping ointment + cyclophosphamide group and saline group (P>0.05). Further molecular biological detections found that the lowest lactate level and regulatory T cells ratio were found in Fei-Liu-Ping ointment + cyclophosphamide group and these expressions of GLUT4, HK1, GRP78, CA-IX were suppressed. There were significant differences between Fei-Liu-Ping ointment+cyclophosphamide group and saline group (P<0.05). In addition, the Fei-Liu-Ping ointment + cyclophosphamide group's cell apoptosis increased significantly compared with saline group and there were significant differences on expressions of HIF-1α, Bcl-2, Bax, Caspase-3, IL-2 for this group compared with saline group. CONCLUSION Chemotherapy and Fei-Liu-Ping ointment had the synergistic effect on inhibiting tumor growth and improving the general conditions of tumor-bearing mice. The effect was partly owed to the improvement on tissue hypoxia, the inhibition of HIF-1α expression and the regulations on its downstream proteins, such as GLUT4, HK1, GRP78, and CA-IX. And then all these alterations led to the modulation tumor acidic microenvironment, the induced tumor cells apoptosis and suppression of T cells to regulatory T cells differentiation.
Collapse
Affiliation(s)
- 良 耿
- 郑州大学附属肿瘤医院中西医科,郑州 450008Department of Chinese and Western Medicine, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China
| | - 静 吕
- 郑州卫生健康职业学院中医教研室,郑州 450005Traditional Chinese Medicine Teaching and Research Office, Zhengzhou Health Vocational College, Zhengzhou 450005, China
| | - 敬 范
- 河南中医药大学管理学院,郑州 450008College of Management, Henan University of Chinese Medicine, Zhengzhou 450008, China
| |
Collapse
|
20
|
Enhanced glucose metabolism mediated by CD147 contributes to immunosuppression in hepatocellular carcinoma. Cancer Immunol Immunother 2020; 69:535-548. [PMID: 31965268 DOI: 10.1007/s00262-019-02457-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
From a metabolic perspective, cancer may be considered as a metabolic disease characterized by reprogrammed glycolytic metabolism. The aim of the present study was to investigate CD147-mediated glucose metabolic regulation in hepatocellular carcinoma (HCC) and its contribution to altered immune responses in the tumor microenvironment. Several HCC cell lines and corresponding nude mice xenografts models differing in CD147 expressions were established to directly investigate the role of CD147 in the reprogramming of glucose metabolism, and to determine the underlying molecular mechanisms. Immunohistochemistry (IHC) analyses and flow cytometry were used to identify the relationship between reprogrammed glycolysis and immunosuppression in HCC. Upregulated CD147 expressions were found to be associated with enhanced expressions of GLUT1, MCT1 in HCC tumorous tissues. CD147 promoted the glycolytic metabolism in HCC cell lines in vitro via the PI3K/Akt/mTOR signaling pathway. A positive correlation existed between a profile of immunosuppressive lymphocytes infiltration and CD147 expression in HCC tissues. Accumulation of FOXP3-expressing regulatory T cells was induced under a stimulation with lactate in vitro. In conclusion, CD147 promoted glycolytic metabolism in HCC via the PI3K/Akt/mTOR signaling pathway, and was related to immunosuppression in HCC.
Collapse
|
21
|
Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol 2020; 17:77-106. [PMID: 31953517 DOI: 10.1038/s41585-019-0263-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
Bladder cancer - the tenth most frequent cancer worldwide - has a heterogeneous natural history and clinical behaviour. The predominant histological subtype, urothelial bladder carcinoma, is characterized by high recurrence rates, progression and both primary and acquired resistance to platinum-based therapy, which impose a considerable economic burden on health-care systems and have substantial effects on the quality of life and the overall outcomes of patients with bladder cancer. The incidence of urothelial tumours is increasing owing to population growth and ageing, so novel therapeutic options are vital. Based on work by The Cancer Genome Atlas project, which has identified targetable vulnerabilities in bladder cancer, immune checkpoint inhibitors (ICIs) have arisen as an effective alternative for managing advanced disease. However, although ICIs have shown durable responses in a subset of patients with bladder cancer, the overall response rate is only ~15-25%, which increases the demand for biomarkers of response and therapeutic strategies that can overcome resistance to ICIs. In ICI non-responders, cancer cells use effective mechanisms to evade immune cell antitumour activity; the overlapping Warburg effect machinery of cancer and immune cells is a putative determinant of the immunosuppressive phenotype in bladder cancer. This energetic interplay between tumour and immune cells leads to metabolic competition in the tumour ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. Thus, molecular hallmarks of cancer cell metabolism are potential therapeutic targets, not only to eliminate malignant cells but also to boost the efficacy of immunotherapy. In this sense, integrating the targeting of tumour metabolism into immunotherapy design seems a rational approach to improve the therapeutic efficacy of ICIs.
Collapse
|
22
|
Koch A, Ebert EV, Seitz T, Dietrich P, Berneburg M, Bosserhoff A, Hellerbrand C. Characterization of glycolysis-related gene expression in malignant melanoma. Pathol Res Pract 2020; 216:152752. [PMID: 31791701 DOI: 10.1016/j.prp.2019.152752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/02/2023]
Abstract
Malignant melanoma exhibits a distinct metabolic phenotype with high glycolytic activity. Previously, we have shown that glucose transporter isoform 1 (GLUT1) favors growth and metastasis of malignant melanoma. In this study, we investigated the expression of GLUT1 and the further glycolysis-related genes hexokinase 1 and 2 (HK1, HK2), lactate dehydrogenase A (LDH-A) and monocarboxylate transporters 1 and 4 (MCT1, MCT4) in eleven human melanoma cell lines under normoxic and hypoxic conditions. Furthermore, a set of 25 human malignant melanoma tissue samples was analyzed. Under hypoxic conditions, we could observe a significant upregulation of hypoxia-inducible factor 1 alpha (HIF-1a) target genes GLUT1, HK2 and LDH-A, but not MCT4. While under normoxic conditions the expression of glycolysis-related genes showed no correlation with origin or BRAF mutation status, GLUT1 expression was significantly elevated in metastatic and BRAF-V600E mutated melanoma cell lines under hypoxic conditions. Furthermore, GLUT1 expression in human melanoma tissue samples correlated significantly with HK1, LDH-A and MCT1 expression, confirming a glycolytic phenotype. Notably, Cyclin D1 expression, which is used as a prognostic marker for the outcome of melanoma patients, as it is associated with proliferation and invasiveness of melanoma, significantly correlated with GLUT1, HK1, LDH-A and MCT1 expression. In summary, our findings provide further evidence that enhanced glycolytic activity in melanoma favors disease progression and is an attractive therapeutic target for this highly aggressive tumor.
Collapse
Affiliation(s)
- Andreas Koch
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Germany; Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Eva Vanessa Ebert
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Germany
| | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
23
|
Nelson GL, Ronayne CT, Solano LN, Jonnalagadda SK, Jonnalagadda S, Rumbley J, Holy J, Rose-Hellekant T, Drewes LR, Mereddy VR. Development of Novel Silyl Cyanocinnamic Acid Derivatives as Metabolic Plasticity Inhibitors for Cancer Treatment. Sci Rep 2019; 9:18266. [PMID: 31797891 PMCID: PMC6892925 DOI: 10.1038/s41598-019-54709-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Novel silyl cyanocinnamic acid derivatives have been synthesized and evaluated as potential anticancer agents. In vitro studies reveal that lead derivatives 2a and 2b have enhanced cancer cell proliferation inhibition properties when compared to the parent monocarboxylate transporter (MCT) inhibitor cyano-hydroxycinnamic acid (CHC). Further, candidate compounds exhibit several-fold more potent MCT1 inhibition properties as determined by lactate-uptake studies, and these studies are supported by MCT homology modeling and computational inhibitor-docking studies. In vitro effects on glycolysis and mitochondrial metabolism also illustrate that the lead derivatives 2a and 2b lead to significant effects on both metabolic pathways. In vivo systemic toxicity and efficacy studies in colorectal cancer cell WiDr tumor xenograft demonstrate that candidate compounds are well tolerated and exhibit good single agent anticancer efficacy properties.
Collapse
Affiliation(s)
- Grady L Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Conor T Ronayne
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Lucas N Solano
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Sravan K Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Shirisha Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Rumbley
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Teresa Rose-Hellekant
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Lester R Drewes
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA. .,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA. .,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
24
|
Alves WEFM, Bonatelli M, Dufloth R, Kerr LM, Carrara GFA, da Costa RFA, Scapulatempo-Neto C, Tiezzi D, da Costa Vieira RA, Pinheiro C. CAIX is a predictor of pathological complete response and is associated with higher survival in locally advanced breast cancer submitted to neoadjuvant chemotherapy. BMC Cancer 2019; 19:1173. [PMID: 31795962 PMCID: PMC6889185 DOI: 10.1186/s12885-019-6353-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Locally advanced breast cancer often undergoes neoadjuvant chemotherapy (NAC), which allows in vivo evaluation of the therapeutic response. The determination of the pathological complete response (pCR) is one way to evaluate the response to neoadjuvant chemotherapy. However, the rate of pCR differs significantly between molecular subtypes and the cause is not yet determined. Recently, the metabolic reprogramming of cancer cells and its implications for tumor growth and dissemination has gained increasing prominence and could contribute to a better understanding of NAC. Thus, this study proposed to evaluate the expression of metabolism-related proteins and its association with pCR and survival rates. METHODS The expression of monocarboxylate transporters 1 and 4 (MCT1 and MCT4, respectively), cluster of differentiation 147 (CD147), glucose transporter-1 (GLUT1) and carbonic anhydrase IX (CAIX) was analyzed in 196 locally advanced breast cancer samples prior to NAC. The results were associated with clinical-pathological characteristics, occurrence of pCR, disease-free survival (DFS), disease-specific survival (DSS) and overall survival (OS). RESULTS The occurrence of pCR was higher in the group of patients whith tumors expressing GLUT1 and CAIX than in the group without expression (27.8% versus 13.1%, p = 0.030 and 46.2% versus 13.5%, p = 0.007, respectively). Together with regional lymph nodes staging and mitotic staging, CAIX expression was considered an independent predictor of pCR. In addition, CAIX expression was associated with DFS and DSS (p = 0.005 and p = 0.012, respectively). CONCLUSIONS CAIX expression was a predictor of pCR and was associated with higher DFS and DSS in locally advanced breast cancer patients subjected to NAC.
Collapse
Affiliation(s)
- Wilson Eduardo Furlan Matos Alves
- Nuclear Medicine and Molecular Imaging Department, Barretos Cancer Hospital - Pio XII Foundation, Rua Antenor Duarte Vilela, N° 1331, Barretos, São Paulo, 14784-400, Brazil. .,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Rozany Dufloth
- Pathology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Lígia Maria Kerr
- Pathology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Ricardo Filipe Alves da Costa
- Research and Teaching Institute, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| | | | - Daniel Tiezzi
- Department of Gynecology and Obstetrics - Breast Disease Division, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribreirão Preto, São Paulo, Brazil
| | | | - Céline Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| |
Collapse
|
25
|
Guo F, Li X, Yao G, Zeng G, Yu L. Correlation between 18F-FDG maximum standardized uptake value with CD147 expression in lung adenocarcinomas: a retrospective study. PeerJ 2019; 7:e7635. [PMID: 31565568 PMCID: PMC6741284 DOI: 10.7717/peerj.7635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background The pro-tumoral action of the cluster of differentiation 147 (CD147), which is associated with the chemotherapy resistance of lung adenocarcinoma, is partly due to accelerated tumor cell glycolysis. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) metabolic parameters included maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), which are non-invasive markers of the glucose metabolism of tumor cells in vivo. This study aimed to clarify the correlation between PET metabolic parameters and CD147 expression, and to evaluate the prognostic value of CD147 expression in resectable lung adenocarcinoma patients. Methods A total of 89 lung adenocarcinoma chemotherapy-naive patients who underwent 18F-fluorodeoxyglucose positron emission tomography and computerized tomography scan before pulmonary surgery were retrospectively analyzed. The PET metabolic parameters were calculated by 18F-FDG PET imaging, and CD147 expression was analyzed by immunohistochemistry. SUVmax, SUVmean, MTV, and TLG compared for their performance in predicting the expression of CD147 were illustrated with statistical analysis. All patients were then followed-up for survival analysis. Results The SUVmax was significantly correlated with the CD147 expression and was the primary predictor for the CD147 expression of lung adenocarcinoma. A cut-off value of the SUVmax, 9.77 allowed 85.1% sensitivity and 64.3% specificity for predicting the CD147 positive lung adenocarcinoma. CD147 expression was correlated with tumor differentiation and metastasis. Univariate survival analysis showed that CD147 expression was significantly associated with a shorter overall survival (OS) time. Multivariate analysis revealed that CD147 was an independent prognostic factor of lung adenocarcinoma patients. Conclusion The SUVmax of a primary tumor measured with 18F-FDG PET may be a simple and non-invasive marker for predicting CD147 expression in lung adenocarcinoma. CD147 is an independent prognostic factor related to OS of postoperative lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Fei Guo
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueyan Li
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guodong Yao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangchun Zeng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lijuan Yu
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
26
|
Ullmann P, Nurmik M, Begaj R, Haan S, Letellier E. Hypoxia- and MicroRNA-Induced Metabolic Reprogramming of Tumor-Initiating Cells. Cells 2019; 8:E528. [PMID: 31159361 PMCID: PMC6627778 DOI: 10.3390/cells8060528] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC), the second most common cause of cancer mortality in the Western world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Over the past few years, a plethora of different approaches, aimed at identifying and eradicating these self-renewing TICs, have been described. A focus on the metabolic and bioenergetic differences between TICs and less aggressive differentiated cancer cells has thereby emerged as a promising strategy to specifically target the tumorigenic cell compartment. Extrinsic factors, such as nutrient availability or tumor hypoxia, are known to influence the metabolic state of TICs. In this review, we aim to summarize the current knowledge on environmental stress factors and how they affect the metabolism of TICs, with a special focus on microRNA (miRNA)- and hypoxia-induced effects on colon TICs.
Collapse
Affiliation(s)
- Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Martin Nurmik
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Rubens Begaj
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
27
|
Stone SC, Rossetti RAM, Alvarez KLF, Carvalho JP, Margarido PFR, Baracat EC, Tacla M, Boccardo E, Yokochi K, Lorenzi NP, Lepique AP. Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol 2019; 105:1041-1054. [PMID: 30811636 DOI: 10.1002/jlb.3a0718-274rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer continues to be a public health problem in developing countries. Previous studies have shown that cervical cancer cells display markers of aerobic glycolysis, indicating that these tumors are likely to secrete lactate. Mostly, lactate is recognized as a molecule capable of suppressing immune responses, through inhibition of T cells, Mϕs, and dendritic cells. We and others have previously shown that Mϕs are frequent cells infiltrating cervical cancers with the ability to inhibit antitumor immune responses and promote tumor growth through angiogenesis. Here, we have tested the hypothesis that lactate, secreted by cervical cancer cells, can modulate Mϕ phenotype. First, we showed higher lactate plasma concentrations in patients with increasing cervical lesion grades, with maximum concentration in the plasma of cancer patients, which supported our hypothesis. We then inhibited lactate production in tumor cell spheroids established from cervical cancer derived cell lines, using the lactate dehydrogenase inhibitor, oxamate, prior to co-culture with monocytes. Lactate mediated part of the crosstalk between tumor cells and Mϕs, promoting secretion of IL-1β, IL-10, IL-6, and up-regulation of hypoxia induced factor-1α expression, and down-regulation of p65-NFκB phosphorylation in Mϕs. We also showed that Mϕs from co-cultures treated with oxamate were better inducers of T cell activation. Of note, experiments performed with inhibition of the monocarboxylate transporters rendered similar results. Our data confirms the hypothesis that lactate, secreted by cervical tumor cells, influences the phenotype of tumor Mϕs, promoting a suppressive phenotype.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Coculture Techniques
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation
- Glycolysis/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- L-Lactate Dehydrogenase/antagonists & inhibitors
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Lactic Acid/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Middle Aged
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Neoplasm Grading
- Oxidative Phosphorylation/drug effects
- Phenotype
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Simone Cardozo Stone
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Jesus Paula Carvalho
- Department of Oncologic Gynecology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Edmund Chada Baracat
- Department of Oncologic Gynecology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maricy Tacla
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Kaori Yokochi
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Noely Paula Lorenzi
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Huang WT, He RQ, Li XJ, Ma J, Peng ZG, Zhong JC, Hu XH, Chen G. miR‑146a‑5p targets TCSF and influences cell growth and apoptosis to repress NSCLC progression. Oncol Rep 2019; 41:2226-2240. [PMID: 30816543 PMCID: PMC6412506 DOI: 10.3892/or.2019.7030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
Several studies have indicated that microRNAs (miRs) mediate multiple pathways associated with tumorigenesis and progression. Our preliminary study experimentally verified that miR-146a-5p has a role in the biological behavior of non-small cell lung cancer (NSCLC) cells. To perform further investigation of miR-146a-5p, the present study evaluated miR-146a-5p by targeting its downstream gene tumor collagenase stimulatory factor (TCSF) to influence cell viability, proliferation and apoptosis in NSCLC. Online sequence prediction, a thorough search of the open source database The Cancer Genome Atlas (TCGA), immunohistochemistry (IHC) of TCSF in clinical lung cancer tissues, and a dual-luciferase assay, as well as assays to test viability, proliferation and apoptosis in vitro, were conducted to explain the targeted regulation association between miR-146a-5p and TCSF in NSCLC. The miRanda and TargetScanHuman database revealed that TCSF and miR-146a-5p had target binding sites. A luciferase reporter assay demonstrated that miR-146a-5p and TCSF did have complementary sequences (P<0.05). From the TCGA database, TCSF was highly expressed in lung adenocarcinoma and lung squamous cell carcinoma tissues when compared with normal lung tissues (P<0.05). Furthermore, the protein level of TCSF in cancerous lung tissues was determined by IHC, and it was concluded that TCSF protein was also upregulated in NSCLC tissues (P<0.001). A significant difference was identified following in vitro experiments for the NSCLC cell line A549, which revealed that miR-146a-5p and TCSF regulated cell viability, proliferation and apoptosis. In conclusion, the present study verified the target action association between TCSF and miR-146a-5p with high throughput data analysis and experimental results in NSCLC.
Collapse
Affiliation(s)
- Wen-Ting Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- Department of PET‑CT, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
29
|
Li X, Fu Q, Zhu Y, Wang J, Liu J, Yu X, Xu W. CD147-mediated glucose metabolic regulation contributes to the predictive role of 18 F-FDG PET/CT imaging for EGFR-TKI treatment sensitivity in NSCLC. Mol Carcinog 2018; 58:247-257. [PMID: 30320488 DOI: 10.1002/mc.22923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
The aim of this study is to investigate the role of CD147 in glucose metabolic regulation and its association with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment sensitivity prediction using 18 F-fluorodeoxyglucose (18 F-FDG) PET/CT imaging in non-small cell lung cancer (NSCLC). In this study, four human NSCLC cell lines with different EGFR-TKI responses were used to detect p-EGFR/EGFR and CD147 expression via Western blotting and flow cytometric analyses. Radioactive uptake of 18 F-FDG by established stable NSCLC cell lines (HCC827, H1975) with different levels of CD147 expression and the corresponding xenografts was assessed through γ-radioimmunoassays in vitro and micro-PET/CT imaging in vivo to study the role of CD147 in glucose metabolic reprogramming. Correlation analyses were performed to investigate the association between CD147 expression and PD-L1 expression in stable NSCLC cell lines. Higher CD147 expression was found in EGFR-TKI-sensitive NSCLC cell lines than in relatively resistant NSCLC cell lines (HCC827>PC9>A549>H1975). CD147 could promote 18 F-FDG uptake by HCC827 and H1975 cells in vitro and in vivo through an EGFR-initiated Akt/mTOR-dependent signaling pathway. Programmed cell death-ligand 1 (PD-L1) expression was positively correlated with CD147 expression in human NSCLC cell lines. EGFR-TKI treatment sensitivity prediction in NSCLC using 18 F-FDG PET/CT imaging significantly correlated with CD147-mediated glucose metabolic regulation via the Akt/mTOR-dependent pathway. Moreover, PD-L1 expression in NSCLC cell lines could be regulated by CD147, suggesting a potential immunosuppression induced by the upregulation of tumor glucose metabolism.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Fu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjia Zhu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
30
|
Hu C, Dong X, Wu J, Xiao F, Shang J, Liu L, Yang Y, Luo D, Li Q, Song Q, Yang J, Zhang C, Shen L, Luo Z. CD147 overexpression may serve as a promising diagnostic and prognostic marker for gastric cancer: evidence from original research and literature. Oncotarget 2018; 8:30888-30899. [PMID: 28427166 PMCID: PMC5458175 DOI: 10.18632/oncotarget.15737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The expression of CD147 protein is associated with GC. However, the clinical role of CD147 in GC has not been investigated extensively. Hence, we focused on studying the association between the expression of CD147 and clinicopathological features of GC patients in this study. Firstly, sixteen publications (1752 cases and 391 controls) and one from our own original research (143 cases) were included in the meta-analysis to obtain a more precise estimation of the diagnostic value of CD147. The results showed that expression rate of CD147 in the GC group is higher than that in control group. Moreover, gender, TNM stage, lymph node metastasis, and depth of invasion are all associated with CD147. Further, sections of gastric tissue from 143 cases underwent immunohistochemical staining for evaluation of CD147 protein expression. Our retrospective analysis demonstrated CD147 protein expression was significantly associated with clinical N stage, and tumor stage. Meanwhile, it can also serve as an independent prognosis biomarker. In conclusion, our results support the role of CD147 as a good indicator of diagnosis and prognosis.
Collapse
Affiliation(s)
- Chenghao Hu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xiaoxia Dong
- Department of Pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Junbo Wu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Feifan Xiao
- First Clinical Academy, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jun Shang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Liang Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, PR China
| | - Yuan Yang
- School of Life Sciences, Fudan University, Shanghai, PR China
| | - Dongmei Luo
- School of Mathematics and Physics, Anhui University of Technology, Maanshan, Anhui, PR China
| | - Qiuting Li
- Department of Clinical Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qian Song
- First Clinical Academy, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jingcheng Yang
- School of Life Sciences, Fudan University, Shanghai, PR China
| | - Chengdong Zhang
- School of Life Sciences, Fudan University, Shanghai, PR China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| |
Collapse
|
31
|
Kuang Y, Wang S, Tang L, Hai J, Yan G, Liao L. Cluster of differentiation 147 mediates chemoresistance in breast cancer by affecting vacuolar H +-ATPase expression and activity. Oncol Lett 2018; 15:7279-7290. [PMID: 29731886 DOI: 10.3892/ol.2018.8199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
Vacuolar H+-ATPase (V-ATPase) serves a key role in adjusting and maintaining the intracellular pH, as well as in regulating the drug resistance of tumor cells. In recent years, the expression level of V-ATPase has been considered to be able to predict the sensitivity of breast cancer cells to chemotherapy drugs. Cluster of differentiation 147 (CD147) is known to serve a key role in the development and progression of breast cancer. The present study aimed to identify the role CD147 and V-ATPase in chemoresistance in breast cancer, and to characterize the regulation of CD147 on V-ATPase. Firstly, the expression levels of CD147 and V-ATPase were detected in chemotherapy-resistance breast cancer samples. It was demonstrated that V-ATPase was highly expressed in chemotherapy-resistance breast cancer samples, and that its expression was correlated with CD147 expression. Subsequently, MCF-7 and MDA-MB-231 cells were used to study the regulatory effect of CD147 on the expression and function of V-ATPase. Gene transfection or small interfering RNA transfection were used to control the expression of CD147 in the two cell lines. The results revealed that the overexpression of CD147 increased the expression of V-ATPase in MCF-7 cells, whereas CD147 knockdown decreased V-ATPase expression in MDA-MB-231 cells. It was also observed that CD147 affected the V-ATPase activity, regulating the transmembrane pH gradient of cancer cells. These results demonstrated that CD147 was associated with the sensitivity of chemotherapeutic drugs of epirubicin and docetaxel, while pantoprazole was able to partially reverse the CD147-mediated chemoresistance in breast cancer. Therefore, the current study provided a possible mechanism for further examination of drug resistance in breast cancer.
Collapse
Affiliation(s)
- Yehong Kuang
- Department of Dermatology, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shouman Wang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lili Tang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Hai
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guojiao Yan
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
32
|
Wang T, Liu J, Nie F. Non-dye cell viability monitoring by using pH-responsive inverse opal hydrogels. J Mater Chem B 2018; 6:1055-1065. [PMID: 32254293 DOI: 10.1039/c7tb02631e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of drug screening focus on accurate, rapid and high-throughput screening methods. In our work, hydrogel inverse opal photonic crystal microspheres (HPCMs) were fabricated through a templating method and exhibited a robust and reversible response to temperature and pH. The response performance was tested under various temperature (25-55 °C) and pH (1.5-7.5) conditions and the reflective peak shifted noticeably within the visible wavelength range. Furthermore, HPCMs were used as drug delivery carriers and not only displayed high doxorubicin (DOX) drug loading but also presented thermo/pH-induced drug release properties. More importantly, these carriers were shown to be good reporters for monitoring cell viability due to their tunable colour variation. This capability was applied to H460 cell cultures with or without DOX. The structure colour of HPCMs varied in different cell culture microenvironments, and cell apoptosis was able to be distinguished. In this way, this fast, non-dyeing method for reporting cell viability in tumour cytotoxicity assays has potential in the field of drug screening and may give new insights into the use of structural colour to report results in drug screening systems.
Collapse
Affiliation(s)
- Tengfei Wang
- Division of Nanobionic Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China.
| | | | | |
Collapse
|
33
|
Huang Y, Wu S, Zhang Y, Wang L, Guo Y. Antitumor effect of triptolide in T-cell lymphoblastic lymphoma by inhibiting cell viability, invasion, and epithelial-mesenchymal transition via regulating the PI3K/AKT/mTOR pathway. Onco Targets Ther 2018; 11:769-779. [PMID: 29483777 PMCID: PMC5815473 DOI: 10.2147/ott.s149788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION T-cell lymphoblastic lymphoma (T-LBL) is a widely disseminated disease worldwide. Triptolide (TPL) is purified from Chinese herb and displays anti-inflammatory, anti-fertility, anti-tumor and immunosuppressive effects. MATERIALS AND METHODS Here, in vitro and in vivo experiments were conducted to investigate the anti-tumor effect of TPL treatment in T-LBL and the potential mechanism in T-LBL progression. RESULTS TPL inhibited cell proliferation of T-LBL cells (Jurkat cells and Molt-3 cells) in a dose-dependent manner. Flow cytometry analysis showed that cell apoptosis rate was increased by TPL treatment. TPL also up-regulated the expression of Caspase-3, Bax and down-regulated the expression of Bcl-2, indicating that TPL promoted apoptosis in Jurkat cells. Moreover, TPL inhibited invasion ability of Jurkat cells and down-regulated the expression of MMP-3 and MMP-9 in a dose-dependent manner. The expression of Snail, Slug, Twist and Integrin αVβ6 was decreased and the expression of E-cadherin was increased by TPL treatment, indicating that TPL inhibited EMT of Jurkat cells. Apart from that, TPL treatment attenuated the phoslevels of PI3K, Akt and mTOR and suppressed AKT activation compared with control group, suggesting that TPL inhibited PI3K/Akt/mTOR signal pathway in T-LBL. In vivo experiments showed that TPL inhibited tumor growth of T-LBL and promoted apoptosis of tumor cells. The expression of PCNA, Bcl-2, Snail, p-PI3K, p-Akt and mTOR was suppressed by TPL in a dose-dependent manner, suggesting that TPL suppressed tumor growth and promoted apoptosis of tumor cells by inhibiting PI3K/Akt/mTOR signal pathway in T-LBL. CONCLUSION In conclusion, TPL exerted anti-tumor effect in T-LBL by inhibiting cell viability, invasion and EMT via regulating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yan Huang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Sun Wu
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yuan Zhang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Lihua Wang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yan Guo
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
34
|
Yin J, Xu W, Ye M, Zhang Y, Wang H, Zhang J, Li Y, Wang Y. Up-regulated basigin-2 in microglia induced by hypoxia promotes retinal angiogenesis. J Cell Mol Med 2017; 21:3467-3480. [PMID: 28661035 PMCID: PMC5706566 DOI: 10.1111/jcmm.13256] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/20/2017] [Indexed: 11/29/2022] Open
Abstract
Retinal microglia cells contribute to vascular angiogenesis and vasculopathy induced by relative hypoxia. However, its concrete molecular mechanisms in shaping retinal angiogenesis have not been elucidated. Basigin, being involved in tumour neovasculogenesis, is explored to exert positive effects on retinal angiogenesis induced by microglia. Therefore, we set out to investigate the expression of basigin using a well-characterized mouse model of oxygen-induced retinopathy, which recapitulated hypoxia-induced aberrant neovessel growth. Our results elucidate that basigin is overexpressed in microglia, which accumulating in retinal angiogenic sprouts. In vitro, conditioned media from microglia BV2 under hypoxia treatment increase migration and tube formation of retinal capillary endothelia cells, compared with media from normoxic condition. The angiogenic capacity of BV2 is inhibited after basigin knockdown by small interfering RNAs. A new molecular mechanism for high angiogenic capacity, whereby microglia cells release basigin via up-regulation of PI3K-AKT and IGF-1 pathway to induce angiogenesis is unveiled. Collectively, our results demonstrate that basigin from hypoxic microglia plays a pivotal pro-angiogenic role, providing new insights into microglia-promoting retinal angiogenesis.
Collapse
Affiliation(s)
- Jie Yin
- Department of OphthalmologyEye Institute of China PLAXijing HospitalFourth Military Medical UniversityXi'anChina
- Department of OphthalmologyJinling HospitalNanjingChina
| | - Wen‐Qin Xu
- Department of OphthalmologyEye Institute of China PLAXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ming‐Xiang Ye
- Department of Pulmonary MedicineXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yong Zhang
- Department of Pulmonary MedicineXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Hai‐Yan Wang
- Department of OphthalmologyEye Institute of China PLAXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jian Zhang
- Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Yu Li
- State Key Laboratory of Cancer BiologyCell Engineering Research Centre & Department of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Yu‐Sheng Wang
- Department of OphthalmologyEye Institute of China PLAXijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
35
|
Huang CF, Teng YH, Lu FJ, Hsu WH, Lin CL, Hung CC, Tung JN, Hsieh YH, Liu CJ. β-mangostin suppresses human hepatocellular carcinoma cell invasion through inhibition of MMP-2 and MMP-9 expression and activating the ERK and JNK pathways. ENVIRONMENTAL TOXICOLOGY 2017; 32:2360-2370. [PMID: 28722351 DOI: 10.1002/tox.22449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
β-mangostin is a dietary xanthone that has been reported to have the anticancer properties in some human cancer cell types. However, the antimetastatic effect and molecular mechanism of β-mangostin action in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we found that β-mangostin did not induce cytotoxicity in human HCC cells (SK-Hep-1, Huh-7 and HA22T/VGH cells). β-mangostin could inhibit migration and invasion of human HCC cells. Meanwhile, β-mangostin significantly decreased the protein activities and expression of matrix metalloproteinase (MMP)-2 and MMP-9 via increasing the activation of MEK1/2, ERK1/2, MEK4 and JNK1/2 signaling pathways. Furthermore, using specific inhibitor for ERK1/2 (PD98059) and JNK1/2 (JNKII) significantly restored the expression of MMP-2/-9 and invasion by β-mangostin treatment in Huh-7 cells. In addition, β-mangostin effectively restored the protein levels and transcription activity of MMP-2 and MMP-9 in siERK or siJNK-transfected Huh-7 cells, concomitantly with promotion on cell migration and invasion. Taken together, these findings are the first to demonstrate the antimetastatic activity of β-mangostin against human HCC cells, which may act as a promising therapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Chien-Feng Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Critical Care Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Ying-Hock Teng
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Hung Hsu
- Department of Internal Medicine, Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Chen Hung
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Jai-Nien Tung
- Department of Neurosurgery, Tungs'Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Jung Liu
- Department of Internal Medicine, Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Tian C, Yuan Z, Xu D, Ding P, Wang T, Zhang L, Jiang Z. Inhibition of glycolysis by a novel EGFR/HER2 inhibitor KU004 suppresses the growth of HER2+ cancer. Exp Cell Res 2017; 357:211-221. [PMID: 28532652 DOI: 10.1016/j.yexcr.2017.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/27/2022]
Abstract
Upregulation of glycolysis was often observed in human HER2-overexpressing cancers. In this study, we demonstrated that KU004, a dual novel EGFR/HER2 inhibitor, disrupted cancer cell proliferation via modulation of glycolysis. KU004, inhibited the Warburg effect by suppressing hexokinase II (HK2) expression at the transcriptional and post-translational levels. Further study demonstrated that the downregulation of HKII by KU004 was mainly mediated by the PI3K/Akt signaling pathway. Furthermore, the role of HKII downregulation in KU004-mediated antitumor effect was also confirmed in our in vivo xenograft model. Collectively, these data suggest that multifaceted targeting the aberrant glucose metabolism along with the upstream HER2 may be an effective approach for clinical treatment against HER2+ cancer.
Collapse
Affiliation(s)
- Chongchong Tian
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Pingping Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|