1
|
Jiang J, Lin F, Wu W, Zhang Z, Zhang C, Qin D, Xu Z. Exosomal long non-coding RNAs in lung cancer: A review. Medicine (Baltimore) 2024; 103:e38492. [PMID: 39705424 DOI: 10.1097/md.0000000000038492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Lung cancer is one of the most threatening malignancies among the different kinds of tumors. The incidence and mortality rate are increasing especially in male. Advances in diagnosis and treatment have been achieve in recent years. However, the lung tumor cells also developing chemo- and radio-resistance. Novel approaches and new treatments are stilled needed to develop for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) original exosomes were proved different expression in lung tumor, which mediate multiple biological processes and is responsible for tumor proliferation and metastasis. In this review, we focus on the emerging roles of both lncRNAs and exosomal lncRNAs in lung cancer and their roles on angiogenesis, metastasis, diagnosis, drug resistance, and immune regulation of lung cancer. Exosome lncRNAs were proved to serve as regulatory factors for gene expression, mediating intercellular communication, and participating in the occurrence and development of various diseases. In addition, exosomes lnc RNA has advantages on the early diagnosis of lung cancer, tumor cell metastasis, drug resistance, and immune regulation. Exosome lncRNAs an provide some unique ideas on how to improve the efficiency of diagnosis and treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Jingyuan Jiang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Wu B, Wu B, Benkaci S, Shi L, Lu P, Park T, Morrow BE, Wang Y, Zhou B. Crk and Crkl Are Required in the Endocardial Lineage for Heart Valve Development. J Am Heart Assoc 2023; 12:e029683. [PMID: 37702066 PMCID: PMC10547300 DOI: 10.1161/jaha.123.029683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Background Endocardial cells are a major progenitor population that gives rise to heart valves through endocardial cushion formation by endocardial to mesenchymal transformation and the subsequent endocardial cushion remodeling. Genetic variants that affect these developmental processes can lead to congenital heart valve defects. Crk and Crkl are ubiquitously expressed genes encoding cytoplasmic adaptors essential for cell signaling. This study aims to explore the specific role of Crk and Crkl in the endocardial lineage during heart valve development. Methods and Results We deleted Crk and Crkl specifically in the endocardial lineage. The resultant heart valve morphology was evaluated by histological analysis, and the underlying cellular and molecular mechanisms were investigated by immunostaining and quantitative reverse transcription polymerase chain reaction. We found that the targeted deletion of Crk and Crkl impeded the remodeling of endocardial cushions at the atrioventricular canal into the atrioventricular valves. We showed that apoptosis was temporally increased in the remodeling atrioventricular endocardial cushions, and this developmentally upregulated apoptosis was repressed by deletion of Crk and Crkl. Loss of Crk and Crkl also resulted in altered extracellular matrix production and organization in the remodeling atrioventricular endocardial cushions. These morphogenic defects were associated with altered expression of genes in BMP (bone morphogenetic protein), connective tissue growth factor, and WNT signaling pathways, and reduced extracellular signal-regulated kinase signaling activities. Conclusions Our findings support that Crk and Crkl have shared functions in the endocardial lineage that critically regulate atrioventricular valve development; together, they likely coordinate the morphogenic signals involved in the remodeling of the atrioventricular endocardial cushions.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Brian Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Sonia Benkaci
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Lijie Shi
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Pengfei Lu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Taeju Park
- Children’s Mercy Research Institute, Children’s Mercy Kansas City and Department of Pediatrics, University of Missouri‐Kansas City School of MedicineKansas CityMO
| | | | - Yidong Wang
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
- Cardiovascular Research Center, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Bin Zhou
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| |
Collapse
|
3
|
The Nitric Oxide Donor [Zn(PipNONO)Cl] Exhibits Antitumor Activity through Inhibition of Epithelial and Endothelial Mesenchymal Transitions. Cancers (Basel) 2022; 14:cancers14174240. [PMID: 36077778 PMCID: PMC9454450 DOI: 10.3390/cancers14174240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Nitric oxide (NO) plays a critical pathophysiological role in cancer by modulating several processes, such as angiogenesis, tumor growth, and metastatic potential. The aim of this study was to characterize the antitumor effects of a novel NO donor, [Zn(PipNONO)Cl], on the processes of epithelial– and endothelial–mesenchymal transitions (EMT and EndMT), known to actively participate in cancer progression. Two tumor cells lines were used in this study: human lung cancer cells (A549) and melanoma cells (A375), alone and co-cultured with human endothelial cells. Our results demonstrate that both tumor and endothelial cells were targets of NO action, which impaired EMT and EndMT functional and molecular features. Further studies are needed to finalize the therapeutic use of the novel NO donor. Abstract Exogenous nitric oxide appears a promising therapeutic approach to control cancer progression. Previously, a nickel-based nonoate, [Ni(SalPipNONO)], inhibited lung cancer cells, along with impairment of angiogenesis. The Zn(II) containing derivatives [Zn(PipNONO)Cl] exhibited a protective effect on vascular endothelium. Here, we have evaluated the antitumor properties of [Zn(PipNONO)Cl] in human lung cancer (A549) and melanoma (A375) cells. Metastasis initiates with the epithelial–mesenchymal transition (EMT) process, consisting of the acquisition of invasive and migratory properties by tumor cells. At not cytotoxic levels, the nonoate significantly impaired A549 and A375 EMT induced by transforming growth factor-β1 (TGF-β1). Reduction of the mesenchymal marker vimentin, upregulated by TGF-β1, and restoration of the epithelial marker E-cadherin, reduced by TGF-β1, were detected in both tumor cell lines in the presence of Zn-nonoate. Further, the endothelial–mesenchymal transition achieved in a tumor-endothelial cell co-culture was assessed. Endothelial cells co-cultured with A549 or A375 acquired a mesenchymal phenotype with increased vimentin, alpha smooth muscle actin and Smad2/3, and reduced VE-cadherin. The presence of [Zn(PipNONO)Cl] maintained a typical endothelial phenotype. In conclusion, [Zn(PipNONO)Cl] appears a promising therapeutic tool to control tumor growth and metastasis, by acting on both tumor and endothelial cells, reprogramming the cells toward their physiologic phenotypes.
Collapse
|
4
|
Tobar LE, Farnsworth RH, Stacker SA. Brain Vascular Microenvironments in Cancer Metastasis. Biomolecules 2022; 12:biom12030401. [PMID: 35327593 PMCID: PMC8945804 DOI: 10.3390/biom12030401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Primary tumours, particularly from major solid organs, are able to disseminate into the blood and lymphatic system and spread to distant sites. These secondary metastases to other major organs are the most lethal aspect of cancer, accounting for the majority of cancer deaths. The brain is a frequent site of metastasis, and brain metastases are often fatal due to the critical role of the nervous system and the limited options for treatment, including surgery. This creates a need to further understand the complex cell and molecular biology associated with the establishment of brain metastasis, including the changes to the environment of the brain to enable the arrival and growth of tumour cells. Local changes in the vascular network, immune system and stromal components all have the potential to recruit and foster metastatic tumour cells. This review summarises our current understanding of brain vascular microenvironments, fluid circulation and drainage in the context of brain metastases, as well as commenting on current cutting-edge experimental approaches used to investigate changes in vascular environments and alterations in specialised subsets of blood and lymphatic vessel cells during cancer spread to the brain.
Collapse
Affiliation(s)
- Lucas E. Tobar
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rae H. Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven A. Stacker
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
- Correspondence: ; Tel.: +61-3-8559-7106
| |
Collapse
|
5
|
Park T. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Cells 2021; 10:cells10040739. [PMID: 33801580 PMCID: PMC8065463 DOI: 10.3390/cells10040739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.
Collapse
Affiliation(s)
- Taeju Park
- Children's Mercy Research Institute, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Park T, Large N, Curran T. Quantitative assessment of glioblastoma phenotypes in vitro establishes cell migration as a robust readout of Crk and CrkL activity. J Biol Chem 2021; 296:100390. [PMID: 33561443 PMCID: PMC7961105 DOI: 10.1016/j.jbc.2021.100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/03/2023] Open
Abstract
The expression levels of CT10 regulator of kinase (Crk) and Crk-like (CrkL) are elevated in many human cancers, including glioblastoma (GBM), and are believed to contribute to poor prognosis. Although Crk and CrkL have been proposed as therapeutic targets in these tumors, the lack of a reliable, quantitative assay to measure Crk and CrkL activity has hindered development of inhibitors. Here, we knocked down Crk, CrkL, or both using siRNAs in a human GBM cell line, U-118MG, to determine the respective, quantitative contributions of Crk and CrkL to cellular phenotypes. The combined use of specific and potent Crk and CrkL siRNAs induced effective knockdown of CrkII, CrkI, and CrkL. Whereas Crk knockdown did not affect cell morphology, proliferation, adhesion, or invasion, CrkL knockdown caused shrinkage of cells and inhibition of cell proliferation, adhesion, and invasion. Crk/CrkL double knockdown resulted in more pronounced morphological alterations and more robust inhibition of proliferation, adhesion, and invasion. Furthermore, Crk/CrkL double knockdown completely blocked cell migration, and this effect was rescued by transient overexpression of CrkL but not of Crk. Quantification of protein levels indicated that CrkL is expressed more abundantly than CrkII and CrkI in U-118MG cells. These results demonstrate both the predominant role of CrkL and the essential overlapping functions of Crk and CrkL in U-118MG cells. Furthermore, our study indicates that migration of U-118MG cells depends entirely on Crk and CrkL. Thus, impedance-based, real-time measurement of tumor cell migration represents a robust assay for monitoring Crk and CrkL activities.
Collapse
Affiliation(s)
- Taeju Park
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.
| | - Neka Large
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Tom Curran
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
7
|
Ungefroren H. Autocrine TGF-β in Cancer: Review of the Literature and Caveats in Experimental Analysis. Int J Mol Sci 2021; 22:977. [PMID: 33478130 PMCID: PMC7835898 DOI: 10.3390/ijms22020977] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Autocrine signaling is defined as the production and secretion of an extracellular mediator by a cell followed by the binding of that mediator to receptors on the same cell to initiate signaling. Autocrine stimulation often operates in autocrine loops, a type of interaction, in which a cell produces a mediator, for which it has receptors, that upon activation promotes expression of the same mediator, allowing the cell to repeatedly autostimulate itself (positive feedback) or balance its expression via regulation of a second factor that provides negative feedback. Autocrine signaling loops with positive or negative feedback are an important feature in cancer, where they enable context-dependent cell signaling in the regulation of growth, survival, and cell motility. A growth factor that is intimately involved in tumor development and progression and often produced by the cancer cells in an autocrine manner is transforming growth factor-β (TGF-β). This review surveys the many observations of autocrine TGF-β signaling in tumor biology, including data from cell culture and animal models as well as from patients. We also provide the reader with a critical discussion on the various experimental approaches employed to identify and prove the involvement of autocrine TGF-β in a given cellular response.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| |
Collapse
|
8
|
Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. J Immunol Res 2021; 2021:6668573. [PMID: 33506060 PMCID: PMC7808819 DOI: 10.1155/2021/6668573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.
Collapse
|
9
|
Uemura S, Wang L, Tsuda M, Suzuka J, Tanikawa S, Sugino H, Nakamura T, Mitsuhashi T, Hirano S, Tanaka S. Signaling adaptor protein Crk is involved in malignant feature of pancreatic cancer associated with phosphorylation of c-Met. Biochem Biophys Res Commun 2020; 524:378-384. [PMID: 32005519 DOI: 10.1016/j.bbrc.2020.01.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
Signaling adaptor protein Crk has been shown to play an important role in various human cancers. Crk links tyrosine kinases and guanine nucleotide exchange factors (GEFs) such as C3G and Dock180 to activate small G-proteins Rap and Rac, respectively. In pancreatic cancer, various molecular targeted therapies have provided no significant therapeutic benefit for the patients so far due to constitutive activation of KRAS by frequent KRAS mutation. Therefore, the establishment of novel molecular targeted therapy in KRAS-independent manner is required. Here, we investigated a potential of Crk as a therapeutic target in pancreatic cancer. Immunohistochemistry on human pancreatic cancer specimens revealed that the patients with high expression of Crk had a worse prognosis than those with low expression. We established Crk-knockdown pancreatic cancer cells by siRNA using PANC-1, AsPC-1, and MIA PaCa-2 cells, which showed decreased cell proliferation, invasion, and adhesion. In Crk-knockdown pancreatic cancer cells, the decrease of c-Met phosphorylation was observed. In the orthotopic xenograft model, Crk depletion prolonged survival of mice significantly. Thus, signaling adaptor protein Crk is involved in malignant potential of pancreatic cancer associated with decrease of c-Met phosphorylation, and Crk can be considered to be a potential therapeutic molecular target.
Collapse
Affiliation(s)
- Satoko Uemura
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter (GSS), Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter (GSS), Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jun Suzuka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter (GSS), Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hirokazu Sugino
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter (GSS), Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
The role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential. Contemp Oncol (Pozn) 2019; 23:187-194. [PMID: 31992949 PMCID: PMC6978756 DOI: 10.5114/wo.2019.91543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LA) is the most common cause of cancer-related death worldwide. Despite the advances over last decade in new targeted therapies, cancer genetics, diagnostics, staging, and surgical techniques as well as new chemotherapy and radiotherapy protocols, the death rate from LA remains high. The tumour microenvironment is composed of several cytokines, one of which is transforming growth factor β1 (TGF-β1), which modulates and mediates the expression of epithelial-mesenchymal transition (EMT), correlated with invasive growth in LAs, and exhibits its pleiotropic effects through binding to transmembrane receptors TβR-1 (also termed activin receptor-like kinases – ALKs) and TβR-2. Accordingly, there is an urgent need to elucidate the molecular mechanisms associated with the tumoural spreading process and therapeutic resistance of this serious pathology. In this review, we briefly discuss the current role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases, and give an overview of our current mechanistic understanding of the TGF-β1-related pathways in brain metastases progression, TGF-β1 pathway inhibitors that could be used for clinical treatment, and examination of models used to study these processes. Finally, we summarise the current progress in the therapeutic approaches targeting TGF-β1.
Collapse
|
11
|
Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent Eur J Immunol 2019; 44:190-200. [PMID: 31530989 PMCID: PMC6745546 DOI: 10.5114/ceji.2018.76273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are signalling proteins generated in most part by immune cells that have critical functions in cellular lifespan. Here we present recent data on three selected anti-inflammatory cytokines: interleukin (IL)-10, IL-4 and transforming growth factor β (TGF-β). IL-10 inhibits the synthesis of major pro-inflammatory cytokines, chemokines, and mediates anti-inflammatory reactions. IL-4 is a multifunctional cytokine which plays a crucial role in the regulation of immune responses and is involved in processes associated with development and differentiation of lymphocytes and regulation of T cell survival. Transforming TGF-β, which in normal cells or pre-cancerous cells, promotes proliferation arrest which represses tumour growth. In this review, we focus on the influence of IL-10, IL-4 and TGF-β on various types of cancer as well as potential of these selected cytokines to serve as new biomarkers which can support effective therapies for cancer patients. This article is presented based on a review of the newest research results.
Collapse
|
12
|
Li J, Shen C, Wang X, Lai Y, Zhou K, Li P, Liu L, Che G. Prognostic value of TGF-β in lung cancer: systematic review and meta-analysis. BMC Cancer 2019; 19:691. [PMID: 31307405 PMCID: PMC6631541 DOI: 10.1186/s12885-019-5917-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 07/09/2019] [Indexed: 02/05/2023] Open
Abstract
Background Lung cancer is the most important cause of cancer-related deaths worldwide and the overall survival of patients with non-small cell lung cancer has not improved. Transforming growth factor beta or TGF-β is a polypeptide member of the transforming growth factor beta superfamily of cytokines, while far fewer clinical studies addressing the association between TGF-β expression and the disease prognosis have been reported up to now. Therefore, our meta-analysis aims to determine the prognostic significance of TGF-β expression in lung cancer patients. Methods PubMed, EMBASE, the Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for full-text literature citations. We applied the hazard ratio (HR) with 95% confidence interval (CI) as the appropriate summarized statistics. Q-test and I2 statistic were used to estimate the level of heterogeneity. The publication bias was detected by Begg’s test and Egger’s test. Results Eight eligible studies involving 579 patients were selected for this meta-analysis. The combined HR for the eight eligible studies was 2.17 (95% CI: 1.71–2.77, P < 0.00001) and heterogeneity of overall prognosis was relatively low (I2 = 14.2%, P = 0.319). We further undertook the subgroup analysis including assessment of the association between TGF-β expression and pathology of the lung cancer, treatment and quantity of sample in studies. All the results revealed that a significantly high TGF-β expression in patients was an indicator of poor survival. Neither Begg’s test nor Egger’s test found publication bias in any analysis. Conclusions The present evidence indicates that TGF-β expression can significantly predict the worse prognosis in patients with lung cancer. The findings of our meta-analysis may be confirmed in the future by the use of more updated review pooling and additional relevant investigations.
Collapse
Affiliation(s)
- Jue Li
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Shen
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yutian Lai
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Zhou
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengfei Li
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Huang D, Huang Y, Huang Z, Weng J, Zhang S, Gu W. Relation of AURKB over-expression to low survival rate in BCRA and reversine-modulated aurora B kinase in breast cancer cell lines. Cancer Cell Int 2019; 19:166. [PMID: 31244554 PMCID: PMC6582545 DOI: 10.1186/s12935-019-0885-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background New therapeutic drug for breast cancer (BRCA), especially triple negative BRCA (TNBC), is urgently needed. Even though 2-(4-morpholinoanilino)-6-cyclohexylaminopurine (reversine) is an aurora kinase inhibitor, it also inhibits some cancer cells and human BRCA cells. However, the potential roles of reversine as a novel therapeutic agent for the treatment of BRCA remains unknown and must be further investigation. Thus, the relationship of reversine to aurora kinase in BCRA has not been reported. The relationship between AURKB and survival rate in BRCA has never been reported. Herein, we tested the roles of reversine on different BRCA cell line subtypes. We also investigated the relationship between AURKB and survival rate in BRCA as well as reversine to Aurora kinase expression in BCRA cell lines, including TNBC subtype, 4T1, MDA-MB-231, and luminal subtype MCF-7. Methods Cell viability and apoptosis were detected using Cell Counting Kit-8 and flow cytometry analysis, respectively. Apoptotic and tumor-related proteins were tested using Western blot analysis. Important microRNAs that regulate BRCA were analyzed using RT-PCR. UALCAN public databases were used to analyze the targeted gene profiles, and the PROGgeneV2 database was used to study the prognostic implications of genes. Results Reversine inhibits cell proliferation and induces cell apoptosis by modulating caspase-3 and bax/bcl-2 among the three cell lines. Data from the UALCAN public database show that BRCA tissues expressed high gene levels of AURKB, TIMP1, MMP9, and TGFB1 compared with the normal tissue. Among the over-expressed genes in BRCA, AURKB ranks 9th in TNBC, 49th in luminal subtype, and 48th in HER2 subtype. High AURKB level in BRCA is highly related to the low survival rate in patients displayed in 18 databases searched via PROGgeneV2. The protein levels of aurora B kinase (Aurora B), which is encoded by AURKB gene, are highly suppressed by reversine in the three cell lines. The tumor-related proteins TGF-β1, TIMP1, and MMP9 are partially suppressed by reversine but with different sensitivity in the three cell lines. The reversine-affected microRNAs, such as miR129-5p, miR-199a-3p, and miR-3960, in MDA-MB-231 cell line might be the research targets in TNBC regulation. Conclusions In BRCA, the level of AURKB are over-expressed and is related to low survival rate. Reversine contributes to anti-growth effect in BRCA cell lines, especially for TNBC, by modulating the aurora B. However, the invasiveness, metastasis, and anti-tumor effects of reversine in vivo and in vitro must be further investigated.
Collapse
Affiliation(s)
- Di Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510180 Guangdong China
| | - Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510180 Guangdong China
| | - Zisheng Huang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510180 Guangdong China
| | - Jiefeng Weng
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510180 Guangdong China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510180 Guangdong China
| | - Weili Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510180 Guangdong China
| |
Collapse
|
14
|
Franke FC, Müller J, Abal M, Medina ED, Nitsche U, Weidmann H, Chardonnet S, Ninio E, Janssen KP. The Tumor Suppressor SASH1 Interacts With the Signal Adaptor CRKL to Inhibit Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2018; 7:33-53. [PMID: 30480076 PMCID: PMC6251370 DOI: 10.1016/j.jcmgh.2018.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The tumor-suppressor sterile α motif- and Src-homology 3-domain containing 1 (SASH1) has clinical relevance in colorectal carcinoma and is associated specifically with metachronous metastasis. We sought to identify the molecular mechanisms linking decreased SASH1 expression with distant metastasis formation. METHODS SASH1-deficient, SASH1-depleted, or SASH1-overexpressing HCT116 colon cancer cells were generated by the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9-method, RNA interference, and transient plasmid transfection, respectively. Epithelial-mesenchymal transition (EMT) was analyzed by quantitative reverse-transcription polymerase chain reaction, immunoblotting, immunofluorescence microscopy, migration/invasion assays, and 3-dimensional cell culture. Yeast 2-hybrid assays and co-immunoprecipitation/mass-spectrometry showed V-Crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) as a novel interaction partner of SASH1, further confirmed by domain mapping, site-directed mutagenesis, co-immunoprecipitation, and dynamic mass redistribution assays. CRKL-deficient cells were generated in parental or SASH1-deficient cells. Metastatic capacity was analyzed with an orthotopic mouse model. Expression and significance of SASH1 and CRKL for survival and response to chemotherapy was assessed in patient samples from our department and The Cancer Genome Atlas data set. RESULTS SASH1 expression is down-regulated during cytokine-induced EMT in cell lines from colorectal, pancreatic, or hepatocellular cancer, mediated by the putative SASH1 promoter. Deficiency or knock-down of SASH1 induces EMT, leading to an aggressive, invasive phenotype with increased chemoresistance. SASH1 counteracts EMT through interaction with the oncoprotein CRKL, inhibiting CRKL-mediated activation of SRC kinase, which is crucially required for EMT. SASH1-deficient cells form significantly more metastases in vivo, depending entirely on CRKL. Patient tumor samples show significantly decreased SASH1 and increased CRKL expression, associated with significantly decreased overall survival. Patients with increased CRKL expression show significantly worse response to adjuvant chemotherapy. CONCLUSIONS We propose SASH1 as an inhibitor of CRKL-mediated SRC signaling, introducing a potentially druggable mechanism counteracting chemoresistance and metastasis formation.
Collapse
Key Words
- BSA, bovine serum albumin
- CRISPR/Cas9, Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9
- CRKL, V-Crk avian sarcoma virus CT10 oncogene homolog-like
- Chemoresistance
- DMEM, Dulbecco's modified Eagle medium
- EMT
- EMT, epithelial-mesenchymal transition
- GFP, green fluorescent protein
- GTPase, guanosine triphosphatase
- MS, mass spectrometry
- NLS, nuclear localization signal
- PBS, phosphate-buffered saline
- SASH1, sterile α motif– and Src-homology 3–domain containing 1
- SH2, Src-homology 2 domain
- SH3, Src-homology 3 domain
- SH3N, N-terminal Src-homology 3 domain
- SRC-Kinase
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- Tumor Suppressor
- ZEB, zinc-finger δEF1 family
- cDNA, complementary DNA
- gRNA, guide RNA
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
Affiliation(s)
- Fabian Christoph Franke
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Johannes Müller
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago (Instituto de Investigacións Sanitarias de Santiago/Servizo Galego de Saúde), Santiago de Compostela, Spain
| | - Eduardo Domínguez Medina
- BioFarma-Unidade de Screening de Fármacos Research Group, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ulrich Nitsche
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Henri Weidmann
- Sorbonne Université, INSERM UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hôpital, Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, INSERM, Unité Mixte de Service Omique, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Ewa Ninio
- Sorbonne Université, INSERM UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hôpital, Paris, France
| | - Klaus-Peter Janssen
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany.
| |
Collapse
|
15
|
Wu DM, Deng SH, Liu T, Han R, Zhang T, Xu Y. TGF-β-mediated exosomal lnc-MMP2-2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression. Cancer Med 2018; 7:5118-5129. [PMID: 30256540 PMCID: PMC6198203 DOI: 10.1002/cam4.1758] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies indicated that transforming growth factor (TGF)-β-mediated exosomal microRNAs (miRNAs) regulate the migration and invasion of lung cancer cells; however, whether and how TGF-β-mediated exosomal long noncoding (lnc) RNAs regulate migration and invasion of lung cancer cells remains unclear. Here, coculture experiments showed that TGF-β pretreatment increased the migration and invasion potential of lung cancer cells and TGF-β pretreated A549 cells increases vascular permeability. Furthermore, we found that TGF-β-mediated exosomes, as carriers of intercellular communication, regulated lung cancer invasion, and vascular permeability. Transcriptional analysis also revealed that lnc-MMP2-2 was highly enriched in TGF-β-mediated exosomes and might function by increasing the expression of matrix metalloproteinase (MMP)2 through its enhancer activity, with ectopic expression and silencing of lnc-MMP2-2 affecting lung cancer invasion and vascular permeability. Additionally, lnc-MMP2-2 and MMP2 expression was assessed semiquantitatively, and tissue-specific correlations between lnc-MMP2-2 and MMP2 expression were evaluated. These results suggested that exosomal lnc-MMP2-2 might regulate the migration and invasion of lung cancer cells into the vasculature by promoting MMP2 expression, suggesting this lncRNA as a novel therapeutic target and predictive marker of tumor metastasis in lung cancer.
Collapse
Affiliation(s)
- Dong-Ming Wu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shi-Hua Deng
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Teng Liu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Rong Han
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ting Zhang
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Xu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
16
|
Chorionic Gonadotropin-β Modulates Epithelial-Mesenchymal Transition in Colorectal Carcinoma Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:204-215. [PMID: 29037859 DOI: 10.1016/j.ajpath.2017.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Ectopic production of free β human chorionic gonadotropin (hCGβ) has been associated with aggressive behavior in non-trophoblastic tumors. hCGβ shares common evolutionary sequences with transforming growth factor-β (TGF-β), which represents a major driving force of epithelial-to-mesenchymal transition (EMT). In this study, we examined the biological roles of hCGβ during EMT and its clinical significance in colorectal cancer (CRC) progression. Eighty CRC specimens and 54 preoperative serum samples were analyzed. hCGβ-overexpressing human CRC cell lines were examined for invasiveness and tumorigenicity, and the expression of EMT-associated genes was investigated. In human CRC, histologic hCGβ positivity [13/80 (16.3%)] was lower than serologic hCGβ positivity [13/54 (24.1%)]. However, it was significantly correlated with several clinicopathological features and unfavorable outcome (P < 0.05). hCGβ-overexpressing cell lines had increased invasiveness, migratory ability, and metastatic potential in mice (P < 0.01). Western blot, PCR, and microarray analyses showed hCGβ altered expression of EMT-related genes, including E-cadherin, phosphorylated SMAD2, SNAIL, and TWIST. hCGβ-induced SNAIL and TWIST overexpression levels were reversible by type I and type II TGF-β receptor inhibitors (P < 0.05). hCGβ thus induces EMT via the TGF-β signaling pathway, and it may represent a molecular target in CRC treatment.
Collapse
|
17
|
Kumar S, Davra V, Obr AE, Geng K, Wood TL, De Lorenzo MS, Birge RB. Crk adaptor protein promotes PD-L1 expression, EMT and immune evasion in a murine model of triple-negative breast cancer. Oncoimmunology 2017; 7:e1376155. [PMID: 29296536 DOI: 10.1080/2162402x.2017.1376155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
The tumor infiltration of immune cells in solid cancers can profoundly influence host antitumor responses. In recent years, immunotherapeutic regimens, that target immune checkpoints, demonstrated significant antitumor response by increasing intra-tumoral immune cell populations, including CD8+ effector T cells. However, administration of such immune checkpoint inhibitors is largely inefficacious in inducing immunogenicity and treating breast cancer. Currently, there is a great need to better understand cell autonomous mechanisms of immune evasion in breast cancer to identify upstream therapeutic targets that increase the efficacy of immunotherapy. Here we show that Crk, an SH2 and SH3 domain-containing adaptor protein implicated in focal adhesion signaling, cell migration, and invasion, and frequently up-regulated in human cancers, has an important role in regulating the tumor immune microenvironment. Using a murine 4T1 breast adenocarcinoma model of spontaneous metastasis in immune-competent BALB/C mice, we show that genetic ablation of Crk by CRISPR-Cas9 leads to enhanced anti-tumor immune cell populations, cytotoxic effector and immune surveillance cytokines in primary tumor. Pathologically, this leads to a significant reduction in tumor growth and lung metastasis. Mechanistically, Crk KO suppresses EMT and PD-L1 expression on tumor cells and acts additively with anti-PD1 therapy to suppress tumor growth and metastasis outcomes. Taken together, these data reveal a previously un-described function of Crk adaptor protein expression in tumor cells for cell autonomous regulation of tumor immune microenvironment.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, 205 South Orange Ave, Newark, NJ, USA
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, 205 South Orange Ave, Newark, NJ, USA
| | - Alison E Obr
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Cancer Center, Rutgers- New Jersey Medical School, 205 South Orange Ave, Newark, NJ, USA
| | - Ke Geng
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, 205 South Orange Ave, Newark, NJ, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Cancer Center, Rutgers- New Jersey Medical School, 205 South Orange Ave, Newark, NJ, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology & Molecular Medicine Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, 205 South Orange Ave, Newark, NJ, USA
| |
Collapse
|
18
|
De Munter S, Görnemann J, Derua R, Lesage B, Qian J, Heroes E, Waelkens E, Van Eynde A, Beullens M, Bollen M. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Lett 2017; 591:415-424. [DOI: 10.1002/1873-3468.12548] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/03/2016] [Accepted: 12/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Sofie De Munter
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| | - Janina Görnemann
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| | - Rita Derua
- Protein Phosphorylation & Proteomics Lab; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
- SyBioMa; KU Leuven; Belgium
| | - Bart Lesage
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| | - Junbin Qian
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| | - Ewald Heroes
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| | - Etienne Waelkens
- Protein Phosphorylation & Proteomics Lab; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
- SyBioMa; KU Leuven; Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics; KU Leuven Department of Cellular and Molecular Medicine; University of Leuven; Belgium
| |
Collapse
|
19
|
Park T, Koptyra M, Curran T. Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). J Biol Chem 2016; 291:26273-26290. [PMID: 27807028 DOI: 10.1074/jbc.m116.764613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
CT10 regulator of kinase (Crk) and Crk-like (CrkL) are the cellular counterparts of the viral oncogene v-Crk Elevated levels of Crk and CrkL have been observed in many human cancers; inhibition of Crk and CrkL expression reduced the tumor-forming potential of cancer cell lines. Despite a close relationship between the Crk family proteins and tumorigenesis, how Crk and CrkL contribute to cell growth is unclear. We ablated endogenous Crk and CrkL from cultured fibroblasts carrying floxed alleles of Crk and CrkL by transfection with synthetic Cre mRNA (synCre). Loss of Crk and CrkL induced by synCre transfection blocked cell proliferation and caused shrinkage of the cytoplasm and the nucleus, formation of adherens junctions, and reduced cell motility. Ablation of Crk or CrkL alone conferred a much more modest reduction in cell proliferation. Reintroduction of CrkI, CrkII, or CrkL individually rescued cell proliferation in the absence of the endogenous Crk and CrkL, suggesting that Crk and CrkL play overlapping functions in regulating fibroblast growth. Serum and basic FGF induced phosphorylation of Akt, MAP kinases, and S6 kinase and Fos expression in the absence of Crk and CrkL, suggesting that cells lacking Crk and CrkL are capable of initiating major signal transduction pathways in response to extracellular stimuli. Furthermore, cell cycle and cell death analyses demonstrated that fibroblasts lacking Crk and CrkL become arrested at the G1-S transition and undergo a modest apoptosis. Taken together, our results suggest that Crk and CrkL play essential overlapping roles in fibroblast growth.
Collapse
Affiliation(s)
- Taeju Park
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Mateusz Koptyra
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Tom Curran
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| |
Collapse
|