1
|
Chen JK, Merrick KA, Kong YW, Izrael-Tomasevic A, Eng G, Handly ED, Patterson JC, Cannell IG, Suarez-Lopez L, Hosios AM, Dinh A, Kirkpatrick DS, Yu K, Rose CM, Hernandez JM, Hwangbo H, Palmer AC, Vander Heiden MG, Yilmaz ÖH, Yaffe MB. An RNA damage response network mediates the lethality of 5-FU in colorectal cancer. Cell Rep Med 2024; 5:101778. [PMID: 39378883 PMCID: PMC11514606 DOI: 10.1016/j.xcrm.2024.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
5-fluorouracil (5-FU), a major anti-cancer therapeutic, is believed to function primarily by inhibiting thymidylate synthase, depleting deoxythymidine triphosphate (dTTP), and causing DNA damage. Here, we show that clinical combinations of 5-FU with oxaliplatin or irinotecan show no synergy in human colorectal cancer (CRC) trials and sub-additive killing in CRC cell lines. Using selective 5-FU metabolites, phospho- and ubiquitin proteomics, and primary human CRC organoids, we demonstrate that 5-FU-mediated CRC cell killing primarily involves an RNA damage response during ribosome biogenesis, causing lysosomal degradation of damaged rRNAs and proteasomal degradation of ubiquitinated ribosomal proteins. Tumor types clinically responsive to 5-FU treatment show upregulated rRNA biogenesis while 5-FU clinically non-responsive tumor types do not, instead showing greater sensitivity to 5-FU's DNA damage effects. Finally, we show that treatments upregulating ribosome biogenesis, including KDM2A inhibition, promote RNA-dependent cell killing by 5-FU, demonstrating the potential for combinatorial targeting of this ribosomal RNA damage response for improved cancer therapy.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl A Merrick
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - George Eng
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erika D Handly
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian G Cannell
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron M Hosios
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anh Dinh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Kebing Yu
- Genentech Biotechnology company, South San Francisco, CA 94080, USA
| | | | - Jonathan M Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haeun Hwangbo
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam C Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G Vander Heiden
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H Yilmaz
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Beth Israel Medical Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
4
|
Chen JS, Teng YN, Chen CY, Chen JY. A novel STAT3/ NFκB p50 axis regulates stromal-KDM2A to promote M2 macrophage-mediated chemoresistance in breast cancer. Cancer Cell Int 2023; 23:237. [PMID: 37821959 PMCID: PMC10568766 DOI: 10.1186/s12935-023-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Lysine Demethylase 2A (KDM2A) plays a crucial role in cancer cell growth, differentiation, metastasis, and the maintenance of cancer stemness. Our previous study found that cancer-secreted IL-6 can upregulate the expression of KDM2A to promote further the transition of cells into cancer-associated fibroblasts (CAFs). However, the molecular mechanism by which breast cancer-secreted IL-6 regulates the expression of KDM2A remains unclear. Therefore, this study aimed to elucidate the underlying molecular mechanism of IL-6 in regulating KDM2A expression in CAFs and KDM2A-mediated paclitaxel resistance in breast cancer. METHODS The ectopic vector expression and biochemical inhibitor were used to analyze the KDM2A expression regulated by HS-578 T conditioned medium or IL-6 in mammary fibroblasts. Immunoprecipitation and chromatin immunoprecipitation assays were conducted to examine the interaction between STAT3 and NFκB p50. M2 macrophage polarization was assessed by analyzing M2 macrophage-specific markers using flow cytometry and RT-PCR. ESTIMATE algorithm was used to analyze the tumor microenvironment-dominant breast cancer samples from the TCGA database. The correlation between stromal KDM2A and CD163 + M2 macrophages was analyzed using the Pearson correlation coefficient. Cell viability was determined using trypan blue exclusion assay. RESULTS IL-6 regulates gene expression via activation and dimerization of STAT3 or collaboration of STAT3 and NFκB. However, STAT3, a downstream transcription factor of the IL-6 signaling pathway, was directly complexed with NFκB p50, not NFκB p65, to upregulate the expression of KDM2A in CAFs. Enrichment analysis of immune cells/stromal cells using TCGA-breast cancer RNA-seq data unveiled a positive correlation between stromal KDM2A and the abundance of M2 macrophages. CXCR2-associated chemokines secreted by KDM2A-expressing CAFs stimulated M2 macrophage polarization, which in turn secreted CCL2 to increase paclitaxel resistance in breast cancer cells by activating CCR2 signaling. CONCLUSION This study revealed the non-canonical molecular mechanism of IL-6 secreted by breast cancer upregulated KDM2A expression in CAFs via a novel STAT3/NFκB p50 axis, which STAT3 complexed with NFκB p50 in NFκB p50 binding motif of KDM2A promoter. KDM2A-expressing CAFs dominantly secreted the CXCR2-associated chemokines to promote M2 macrophage polarization and enhance paclitaxel resistance in breast cancer. These findings underscore the therapeutic potential of targeting the CXCR2 or CCR2 pathway as a novel strategy for paclitaxel-resistant breast cancer.
Collapse
Affiliation(s)
- Jia-Shing Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung, 82445, Taiwan ROC
- Department of Pharmacy, E-Da Cancer Hospital, 21 Yida Road, Kaohsiung, 82445, Taiwan ROC
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan ROC
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan.
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan ROC.
| |
Collapse
|
5
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Li Z, Ren Y, Li X, Wang W. KDM2A interacts with estrogen receptor α to promote bisphenol A and S-induced breast cancer cell proliferation by repressing TET2 expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115132. [PMID: 37315367 DOI: 10.1016/j.ecoenv.2023.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
As a recognized endocrine disruptor in the environment targeting estrogen receptors (ERs), Bisphenol A (BPA) and its bisphenol S (BPS) analogs are involved in the development of breast cancer. Epigenetic modifications are crucial in many biological processes, and DNA hydroxymethylation (DNAhm) coupled with histone methylation is implicated in epigenetic machinery covering cancer occurrence. Our previous study indicated that BPA/BPS induces breast cancer cell (BCC) proliferation with enhanced estrogenic transcriptional activity and causes the change of DNAhm depending on ten-eleven translocation 2 (TET2) dioxygenase. Herein, we investigated the interplay of KDM2A-mediated histone demethylation with ER-dependent estrogenic activity (EA) and identified their function in DNAhm catalyzed by TET2 for ER-positive (ER+) BCC proliferation induced by BPA/BPS. We found that BPA/BPS-treated ER+ BCCs presented increased KDM2A mRNA and protein levels but reduced TET2 and genomic DNAhm. Furthermore, KDM2A promoted H3K36me2 loss and suppressed TET2-dependent DNAhm by reducing its chromatin binding during BPA/BPS-induced cell proliferation. Results of Co-IP & ChIP assays suggested the direct interplay of KDM2A with ERα in multiple manners. KDM2A reduced the lysine methylation of ERα protein to increase its phosphorylated activation. On the other hand, ERα did not affect KDM2A expression, while KDM2A protein levels decreased after ERα deletion, indicating that ERα binding might maintain KDM2A protein stability. In conclusion, a potential feedback circuit of KDM2A/ERα-TET2-DNAhm was identified among ER+ BCCs with significant effects on regulating BPA/BPS-induced cell proliferation. These insights advanced the understanding of the relationship between histone methylation, DNAhm, and cancer cell proliferation with EA attributed to BPA/BPS exposure in the environment.
Collapse
Affiliation(s)
- Zhe Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China.
| | - Yun Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Xuan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenwen Wang
- Agilent Technologies (China) Co., Ltd, Beijing 100102, China
| |
Collapse
|
7
|
Srivastava R, Singh R, Jauhari S, Lodhi N, Srivastava R. Histone Demethylase Modulation: Epigenetic Strategy to Combat Cancer Progression. EPIGENOMES 2023; 7:epigenomes7020010. [PMID: 37218871 DOI: 10.3390/epigenomes7020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Epigenetic modifications are heritable, reversible changes in histones or the DNA that control gene functions, being exogenous to the genomic sequence itself. Human diseases, particularly cancer, are frequently connected to epigenetic dysregulations. One of them is histone methylation, which is a dynamically reversible and synchronously regulated process that orchestrates the three-dimensional epigenome, nuclear processes of transcription, DNA repair, cell cycle, and epigenetic functions, by adding or removing methylation groups to histones. Over the past few years, reversible histone methylation has become recognized as a crucial regulatory mechanism for the epigenome. With the development of numerous medications that target epigenetic regulators, epigenome-targeted therapy has been used in the treatment of malignancies and has shown meaningful therapeutic potential in preclinical and clinical trials. The present review focuses on the recent advances in our knowledge on the role of histone demethylases in tumor development and modulation, in emphasizing molecular mechanisms that control cancer cell progression. Finally, we emphasize current developments in the advent of new molecular inhibitors that target histone demethylases to regulate cancer progression.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Rubi Singh
- Department of Hematology, Bioreference Laboratories, Elmwood Park, NJ 07407, USA
| | - Shaurya Jauhari
- Division of Education, Training, and Assessment, Global Education Center, Infosys Limited, Mysuru 570027, Karnataka, India
| | - Niraj Lodhi
- Clinical Research (Research and Development Division) Mirna Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rakesh Srivastava
- Molecular Biology and Microbiology, GenTox Research and Development, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
8
|
Chen JK, Merrick KA, Kong YW, Izrael-Tomasevic A, Eng G, Handly ED, Patterson JC, Cannell IG, Suarez-Lopez L, Hosios AM, Dinh A, Kirkpatrick DS, Yu K, Rose CM, Hernandez JM, Hwangbo H, Palmer AC, Vander Heiden MG, Yilmaz ÖH, Yaffe MB. An RNA Damage Response Network Mediates the Lethality of 5-FU in Clinically Relevant Tumor Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538590. [PMID: 37162991 PMCID: PMC10168374 DOI: 10.1101/2023.04.28.538590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
5-fluorouracil (5-FU) is a successful and broadly used anti-cancer therapeutic. A major mechanism of action of 5-FU is thought to be through thymidylate synthase (TYMS) inhibition resulting in dTTP depletion and activation of the DNA damage response. This suggests that 5-FU should synergize with other DNA damaging agents. However, we found that combinations of 5-FU and oxaliplatin or irinotecan failed to display any evidence of synergy in clinical trials, and resulted in sub-additive killing in a panel of colorectal cancer (CRC) cell lines. In seeking to understand this antagonism, we unexpectedly found that an RNA damage response during ribosome biogenesis dominates the drug's efficacy in tumor types for which 5-FU shows clinical benefit. 5-FU has an inherent bias for RNA incorporation, and blocking this greatly reduced drug-induced lethality, indicating that accumulation of damaged RNA is more deleterious than the lack of new RNA synthesis. Using 5-FU metabolites that specifically incorporate into either RNA or DNA revealed that CRC cell lines and patient-derived colorectal cancer organoids are inherently more sensitive to RNA damage. This difference held true in cell lines from other tissues in which 5-FU has shown clinical utility, whereas cell lines from tumor tissues that lack clinical 5-FU responsiveness typically showed greater sensitivity to the drug's DNA damage effects. Analysis of changes in the phosphoproteome and ubiquitinome shows RNA damage triggers the selective ubiquitination of multiple ribosomal proteins leading to autophagy-dependent rRNA catabolism and proteasome-dependent degradation of ubiquitinated ribosome proteins. Further, RNA damage response to 5-FU is selectively enhanced by compounds that promote ribosome biogenesis, such as KDM2A inhibitors. These results demonstrate the presence of a strong RNA damage response linked to apoptotic cell death, with clear utility of combinatorially targeting this response in cancer therapy.
Collapse
Affiliation(s)
- Jung-Kuei Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karl A. Merrick
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - George Eng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erika D. Handly
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse C. Patterson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian G. Cannell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron M. Hosios
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anh Dinh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Kebing Yu
- Genentech Biotechnology company, South San Francisco, CA 94080, USA
| | | | - Jonathan M. Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haeun Hwangbo
- Curriculum in Bioinformatics and Computational Biology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, Computational Medicine Program, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B. Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Surgery, Beth Israel Medical Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Assi R, Cherifi C, Cornelis FMF, Zhou Q, Storms L, Pazmino S, Coutinho de Almeida R, Meulenbelt I, Lories RJ, Monteagudo S. Inhibition of KDM7A/B histone demethylases restores H3K79 methylation and protects against osteoarthritis. Ann Rheum Dis 2023:ard-2022-223789. [PMID: 36927643 DOI: 10.1136/ard-2022-223789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES In osteoarthritis, methylation of lysine 79 on histone H3 (H3K79me), a protective epigenetic mechanism, is reduced. Histone methylation levels are dynamically regulated by histone methyltransferases and demethylases. Here, we aimed to identify which histone demethylases regulate H3K79me in cartilage and investigate whether their targeting protects against osteoarthritis. METHODS We determined histone demethylase expression in human non-osteoarthritis and osteoarthritis cartilage using qPCR. The role of histone demethylase families and subfamilies on H3K79me was interrogated by treatment of human C28/I2 chondrocytes with pharmacological inhibitors, followed by western blot and immunofluorescence. We performed C28/I2 micromasses to evaluate effects on glycosaminoglycans by Alcian blue staining. Changes in H3K79me after destabilisation of the medial meniscus (DMM) in mice were determined by immunohistochemistry. Daminozide, a KDM2/7 subfamily inhibitor, was intra-articularly injected in mice upon DMM. Histone demethylases targeted by daminozide were individually silenced in chondrocytes to dissect their role on H3K79me and osteoarthritis. RESULTS We documented the expression signature of histone demethylases in human non-osteoarthritis and osteoarthritis articular cartilage. Inhibition of Jumonji-C demethylase family increased H3K79me in human chondrocytes. Blockade of KDM2/7 histone demethylases with daminozide increased H3K79me and glycosaminoglycans. In mouse articular cartilage, H3K79me decayed rapidly upon induction of joint injury. Early and sustained intra-articular treatment with daminozide enhanced H3K79me and exerted protective effects in mice upon DMM. Individual silencing of KDM7A/B demethylases in human chondrocytes demonstrated that KDM7A/B mediate protective effects of daminozide on H3K79me and osteoarthritis. CONCLUSION Targeting KDM7A/B histone demethylases could be an attractive strategy to protect joints against osteoarthritis.
Collapse
Affiliation(s)
- Reem Assi
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Chahrazad Cherifi
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium .,Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Gly-CRRET, Univ Paris Est Créteil, Créteil, France
| | - Frederique M F Cornelis
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Qiongfei Zhou
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Lies Storms
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Sofia Pazmino
- Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - Rodrigo Coutinho de Almeida
- Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Integrated research on Developmental determinants of Ageing and Longevity (IDEAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Rik J Lories
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Liu J, Wang Q, Kang Y, Xu S, Pang D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci 2022; 12:22. [PMID: 35216622 PMCID: PMC8881842 DOI: 10.1186/s13578-022-00756-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractBreast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.
Collapse
|
11
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
12
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
13
|
Guha L, Bhat IA, Bashir A, Rahman JU, Pottoo FH. Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review. Curr Drug Metab 2022; 23:781-799. [PMID: 35676850 DOI: 10.2174/1389200223666220608144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, S.A.S Nagar, Punjab 160062, India
| | - Ishfaq Ahmad Bhat
- Northern Railway Hospital, Sri Mata Vaishno Devi, Katra, Reasi 182320, India
| | - Aasiya Bashir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
14
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
15
|
Kawabata A, Hayashi T, Akasu-Nagayoshi Y, Yamada A, Shimizu N, Yokota N, Nakato R, Shirahige K, Okamoto A, Akiyama T. CRISPR/Cas9 Screening for Identification of Genes Required for the Growth of Ovarian Clear Cell Carcinoma Cells. Curr Issues Mol Biol 2022; 44:1587-1596. [PMID: 35723366 PMCID: PMC9164056 DOI: 10.3390/cimb44040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial ovarian cancer is classified into four major histological subtypes: serous, clear cell, endometrioid and mucinous. Ovarian clear cell carcinoma (OCCC) responds poorly to conventional chemotherapies and shows poor prognosis. Thus, there is a need to develop new drugs for the treatment of OCCC. In this study, we performed CRISPR/Cas9 screens against OCCC cell lines and identified candidate genes important for their proliferation. We found that quite different genes are required for the growth of ARID1A and PIK3CA mutant and wild-type OCCC cell lines, respectively. Furthermore, we found that the epigenetic regulator KDM2A and the translation regulator PAIP1 may play important roles in the growth of ARID1A and PIK3CA mutant, but not wild-type, OCCC cells. The results of our CRISPR/Cas9 screening may be useful in elucidating the molecular mechanism of OCCC tumorigenesis and in developing OCCC-targeted drugs.
Collapse
Affiliation(s)
- Ayako Kawabata
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (A.K.); (Y.A.-N.); (A.Y.); (N.S.)
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Tomoatsu Hayashi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (A.K.); (Y.A.-N.); (A.Y.); (N.S.)
| | - Yoko Akasu-Nagayoshi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (A.K.); (Y.A.-N.); (A.Y.); (N.S.)
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Ai Yamada
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (A.K.); (Y.A.-N.); (A.Y.); (N.S.)
| | - Naomi Shimizu
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (A.K.); (Y.A.-N.); (A.Y.); (N.S.)
| | - Naoko Yokota
- Laboratory of Computational Genetics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (N.Y.); (R.N.)
| | - Ryuichiro Nakato
- Laboratory of Computational Genetics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (N.Y.); (R.N.)
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan;
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; (A.K.); (Y.A.-N.); (A.Y.); (N.S.)
| |
Collapse
|
16
|
Zhong C, Tao B, Li X, Xiang W, Peng L, Peng T, Chen L, Xia X, You J, Yang X. HOXA-AS2 contributes to regulatory T cell proliferation and immune tolerance in glioma through the miR-302a/KDM2A/JAG1 axis. Cell Death Dis 2022; 13:160. [PMID: 35181676 PMCID: PMC8857186 DOI: 10.1038/s41419-021-04471-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been manifested to manipulate diverse biological processes, including tumor-induced immune tolerance. Thus, we aimed in this study to identify the expression pattern of lncRNA homeobox A cluster antisense RNA 2 (HOXA-AS2) in glioma and decipher its role in immune tolerance and glioma progression. We found aberrant upregulation of lncRNA HOXA-AS2, lysine demethylase 2A (KDM2A), and jagged 1 (JAG1) and a downregulation of microRNA-302a (miR-302a) in glioma specimens. Next, RNA immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter gene assay demonstrated that lncRNA HOXA-AS2 upregulated KDM2A expression by preventing miR-302a from binding to its 3′untranslated region. The functional experiments suggested that lncRNA HOXA-AS2 could promote regulatory T (Treg) cell proliferation and immune tolerance, which might be achieved through inhibition of miR-302a and activation of KDM2A/JAG1 axis. These findings were validated in a tumor xenograft mouse model. To conclude, lncRNA HOXA-AS2 facilitates KDM2A/JAG1 expression to promote Treg cell proliferation and immune tolerance in glioma by binding to miR-302a. These findings may aid in the development of novel antitumor targets.
Collapse
Affiliation(s)
- Chuanhong Zhong
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Bei Tao
- Rheumatism Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China
| | - Xianglong Li
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Wei Xiang
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Lilei Peng
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Tangming Peng
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Ligang Chen
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Xiangguo Xia
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Jian You
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China. .,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China. .,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China. .,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China.
| | - Xiaobo Yang
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China. .,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China. .,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China. .,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China.
| |
Collapse
|
17
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
18
|
Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2021; 34:1422-1438. [PMID: 33872192 PMCID: PMC7608750 DOI: 10.1101/gad.342287.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, Nandi et al. revisit the mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. The authors also discuss combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may improve prognosis in breast cancer patients. Breast cancer is the second leading cause of cancer-related death in women and is a complex disease with high intratumoral and intertumoral heterogeneity. Such heterogeneity is a major driving force behind failure of current therapies and development of resistance. Due to the limitations of conventional therapies and inevitable emergence of acquired drug resistance (chemo and endocrine) as well as radio resistance, it is essential to design novel therapeutic strategies to improve the prognosis for breast cancer patients. Deregulated Notch signaling within the breast tumor and its tumor microenvironment (TME) is linked to poor clinical outcomes in treatment of resistant breast cancer. Notch receptors and ligands are also important for normal mammary development, suggesting the potential for conserved signaling pathways between normal mammary gland development and breast cancer. In this review, we focus on mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. We also discuss how complex interactions between cancer cells and the TME may reduce treatment efficacy and ultimately lead to acquired drug or radio resistance. Potential combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may aid in achieving in an improved patient prognosis are also highlighted.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
19
|
Miralaei N, Hoghoughi N, Azadeh M, Alborzian K, Ghaedi K. rs12287003 modifies the susceptibility to breast cancer by altering the interactions between KDM2A and miRNAs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Liu L, Liu J, Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review). Exp Ther Med 2021; 22:723. [PMID: 34007332 DOI: 10.3892/etm.2021.10155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Histone lysine demethylation modification is a critical epigenetic modification. Lysine demethylase 2A (KDM2A), a Jumonji C domain-containing demethylase, demethylates the dimethylated H3 lysine 36 (H3K36) residue and exerts little or no activity on monomethylated and trimethylated H3K36 residues. KDM2A expression is regulated by several factors, such as microRNAs, and the phosphorylation of KDM2A also plays a vital role in its function. KDM2A mainly recognizes the unmethylated region of CpG islands and subsequently demethylates histone H3K36 residues. In addition, KDM2A recognizes and binds to phosphorylated proteins, and promotes their ubiquitination and degradation. KDM2A plays an important role in chromosome remodeling and gene transcription, and is involved in cell proliferation and differentiation, cell metabolism, heterochromosomal homeostasis and gene stability. Notably, KDM2A is crucial for tumorigenesis and progression. In the present review, the documented biological functions of KDM2A in physiological and pathological processes are comprehensively summarized.
Collapse
Affiliation(s)
- Lisheng Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
21
|
Fukusumi T, Guo TW, Ren S, Haft S, Liu C, Sakai A, Ando M, Saito Y, Sadat S, Califano JA. Reciprocal activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma. Int J Oncol 2020; 58:226-237. [PMID: 33491747 PMCID: PMC7864008 DOI: 10.3892/ijo.2020.5156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Several comprehensive studies have demonstrated that the NOTCH pathway is altered in a bimodal manner in head and neck squamous cell carcinoma (HNSCC). In a previous study, it was found that the NOTCH4/HEY1 pathway was specifically upregulated in HNSCC and promoted epithelial-mesenchymal transition (EMT), and that HEY1 activation supported SOX2 expression. However, the interactions in this pathway have not yet been fully elucidated. The present study investigated the NOTCH4/HEY1/SOX2 axis in HNSCC using in vitro models and the Cancer Genome Atlas (TCGA) database. To explore the association, reporter and ChIP RT-qPCR assays using SOX2-overexpressing (SOX2-OE) cells were performed. The association between NOTCH4 and HEY1 was examined in the same manner using HEY1-overexpressing (HEY1-OE) cells. The results of the in vitro experiments indicated that HEY1 promoted EMT in the HNSCC cells. Furthermore, the overexpression of HEY1 also promoted sphere formation and increased murine xenograft tumorigenicity. Reporter assays and ChIP RT-qPCR experiments indicated that SOX2 regulated HEY1 expression via direct binding of the HEY1 promoter. HEY1 expression significantly correlated with SOX2 expression in primary lung SCC and other SCCs using the TCGA database. HEY1 also regulated NOTCH4 expression to create a positive reciprocal feedback loop. On the whole, the present study demonstrates that HEY1 expression in HNSCC is regulated via the promotion of SOX2 and promotes EMT. The NOTCH4/HEY1 pathway is specifically upregulated via a positive reciprocal feedback loop mediated by the HEY1-medaited regulation of NOTCH4 transcription, and SOX2 correlates with HEY1 expression in SCC from other primary sites.
Collapse
Affiliation(s)
- Takahito Fukusumi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Theresa W Guo
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuling Ren
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sunny Haft
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chao Liu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Akihiro Sakai
- Department of Otolaryngology‑Head and Neck Surgery, Tokai University, School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Mizuo Ando
- Department of Otolaryngology‑Head and Neck Surgery, University of Tokyo, Tokyo 113‑8655, Japan
| | - Yuki Saito
- Department of Otolaryngology‑Head and Neck Surgery, University of Tokyo, Tokyo 113‑8655, Japan
| | - Sayed Sadat
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Kim DH, Choi MR, Lee JK, Hong DK, Jung KE, Choi CW, Lee Y, Kim CD, Seo YJ, Lee JH. Possible Role of Lysine Demethylase 2A in the Pathophysiology of Psoriasis. Ann Dermatol 2020; 32:481-486. [PMID: 33911791 PMCID: PMC7875244 DOI: 10.5021/ad.2020.32.6.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease. The development of psoriasis is dependent on many intercellular events such as innate immunity and T cell-mediated inflammation. Furthermore, genetic factors are strongly implicated in the pathophysiology of psoriasis. Although a variety of susceptible genes are identified, it is likely that many important genes remain undisclosed. Objective The aim of this study is to investigate the possible role of lysine demethylase 2A (KDM2A) in the pathophysiology of psoriasis. Methods We examined the expression of KDM2A using a well established imiquimod-induced psoriasiform dermatitis model. Results Immunohistochemistry analysis showed that expression of KDM2A was increased in imiquimod-induced psoriasiform dermatitis. Consistent with this result, KDM2A level was markedly increased in the epidermis of psoriatic patient. When keratinocytes were stimulated with TLR3 agonist poly(I:C), KDM2A was increased at both the mRNA and protein levels. Poly(I:C) increased the expression of psoriasis-related cytokines including tumor necrosis factor-α, interleukin-8, and CCL20, and KDM2A inhibitor daminozide enhanced the poly(I:C)-induced cytokine expression. Finally, topical co-application of imiquimod and daminozide exacerbated the imiquimod-induced psoriasiform dermatitis. Conclusion Together, these results suggest that KDM2A is increased to negatively regulate the inflammatory reaction of epidermal keratinocytes in psoriasis.
Collapse
Affiliation(s)
- Dong Ha Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Mi-Ra Choi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jae Kyung Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Dong-Kyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chong Won Choi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
23
|
Tanaka Y, Obinata H, Konishi A, Yamagiwa N, Tsuneoka M. Production of ROS by Gallic Acid Activates KDM2A to Reduce rRNA Transcription. Cells 2020; 9:E2266. [PMID: 33050392 PMCID: PMC7601038 DOI: 10.3390/cells9102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin, which is suggested to have anti-cancer effects, activates KDM2A to reduce rRNA transcription and proliferation of cancer cells. Thus, the specific activation of KDM2A may be applicable to the treatment of cancers. In this study, we screened a food-additive compound library to identify compounds that control cell proliferation. We found that gallic acid activated KDM2A to reduce rRNA transcription and cell proliferation in breast cancer MCF-7 cells. Gallic acid accelerated ROS production and activated AMPK. When ROS production or AMPK activity was inhibited, gallic acid did not activate KDM2A. These results suggest that both ROS production and AMPK activation are required for activation of KDM2A by gallic acid. Gallic acid did not reduce the succinate level, which was required for KDM2A activation by metformin. Metformin did not elevate ROS production. These results suggest that the activation of KDM2A by gallic acid includes mechanisms distinct from those by metformin. Therefore, signals from multiple intracellular conditions converge in KDM2A to control rRNA transcription. Gallic acid did not induce KDM2A-dependent anti-proliferation activity in non-tumorigenic MCF10A cells. These results suggest that the mechanism of KDM2A activation by gallic acid may be applicable to the treatment of breast cancers.
Collapse
Affiliation(s)
- Yuji Tanaka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
| | - Noriyuki Yamagiwa
- Laboratory of Molecular Design Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Makoto Tsuneoka
- Laboratory of Molecular and Cellular Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| |
Collapse
|
24
|
Chen JY, Li CF, Lai YS, Hung WC. Lysine demethylase 2A expression in cancer-associated fibroblasts promotes breast tumour growth. Br J Cancer 2020; 124:484-493. [PMID: 33024266 PMCID: PMC7852571 DOI: 10.1038/s41416-020-01112-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our previous study demonstrated that lysine demethylase 2A (KDM2A) enhances stemness in breast cancer cells. This demethylase is also highly expressed in cancer-associated fibroblasts (CAFs). However, its clinical significance is unclear. METHODS The expression of KDM2A in CAFs was studied using immunohistochemical staining and its association with clinicopathological features and patient's survival was tested. Overexpression and knockdown strategies were used to investigate KDM2A-regulated genes in fibroblasts. Senescent cells were detected by using β-galactosidase staining. The in vivo tumour-promoting activity of stromal KDM2A was confirmed by animal study. RESULTS Increase of stromal KDM2A is associated with advanced tumour stage and poor clinical outcome in breast cancer patients. Cancer-derived cytokines stimulated KDM2A expression in normal fibroblasts and transformed them into CAFs. Upregulation of KDM2A induced p53-dependent senescence in fibroblasts and enhanced the release of cytokines, which reciprocally promoted cancer cell proliferation. Additionally, KDM2A upregulated programmed death-ligand 1 (PD-L1) expression via transcriptional activation in fibroblasts. Knockdown of KDM2A completely abolished the tumour-promoting activity of CAFs on breast tumour growth in vivo and diminished PD-L1 expression in the stroma of tumour tissues. CONCLUSIONS Stromal KDM2A plays an oncogenic role in breast cancer and inhibition of KDM2A reduces fibroblast senescence and suppresses tumour growth.
Collapse
Affiliation(s)
- Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, 840, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundation Medical Center, 710, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, 807, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, 807, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Palano MT, Giannandrea D, Platonova N, Gaudenzi G, Falleni M, Tosi D, Lesma E, Citro V, Colombo M, Saltarella I, Ria R, Amodio N, Taiana E, Neri A, Vitale G, Chiaramonte R. Jagged Ligands Enhance the Pro-Angiogenic Activity of Multiple Myeloma Cells. Cancers (Basel) 2020; 12:cancers12092600. [PMID: 32932949 PMCID: PMC7565520 DOI: 10.3390/cancers12092600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The Jagged family of ligands are aberrantly expressed during multiple myeloma progression and contributes to activate Notch signaling both in myeloma cells and in the nearby bone marrow cell populations activating several pro-tumor effects. This work elucidates, in vitro, in vivo as well as in patients’ bone marrow biopsies, different mechanisms by which tumor cell-derived Jagged1 and 2 contribute to myeloma-associated angiogenesis. These include the ability to induce myeloma and bone marrow stromal cell secretion of VEGF along with a direct activation of the pro-angiogenic Notch signaling pathway in endothelial cells. This research provides a rational for a Jagged-directed therapy in multiple myeloma. Abstract Multiple myeloma (MM) is an incurable plasma cell malignancy arising primarily within the bone marrow (BM). During MM progression, different modifications occur in the tumor cells and BM microenvironment, including the angiogenic shift characterized by the increased capability of endothelial cells to organize a network, migrate and express angiogenic factors, including vascular endothelial growth factor (VEGF). Here, we studied the functional outcome of the dysregulation of Notch ligands, Jagged1 and Jagged2, occurring during disease progression, on the angiogenic potential of MM cells and BM stromal cells (BMSCs). Jagged1–2 expression was modulated by RNA interference or soluble peptide administration, and the effects on the MM cell lines’ ability to induce human pulmonary artery cells (HPAECs) angiogenesis or to indirectly increase the BMSC angiogenic potential was analyzed in vitro; in vivo validation was performed on a zebrafish model and MM patients’ BM biopsies. Overall, our results indicate that the MM-derived Jagged ligands (1) increase the tumor cell angiogenic potential by directly triggering Notch activation in the HPAECs or stimulating the release of angiogenic factors, i.e., VEGF; and (2) stimulate the BMSCs to promote angiogenesis through VEGF secretion. The observed pro-angiogenic effect of Notch activation in the BM during MM progression provides further evidence of the potential of a therapy targeting the Jagged ligands.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Germano Gaudenzi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, 20095 Cusano Milanino, Italy; (G.G.); (G.V.)
| | - Monica Falleni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Delfina Tosi
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Valentina Citro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, 70124 Bari, Italy; (I.S.); (R.R.)
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, 70124 Bari, Italy; (I.S.); (R.R.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milano. Hematology, Fondazione Ca’ Granda IRCCS Policlinico, 20122 Milano, Italy; (E.T.); (A.N.)
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano. Hematology, Fondazione Ca’ Granda IRCCS Policlinico, 20122 Milano, Italy; (E.T.); (A.N.)
| | - Giovanni Vitale
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, 20095 Cusano Milanino, Italy; (G.G.); (G.V.)
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, 20122 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (M.T.P.); (D.G.); (N.P.); (M.F.); (D.T.); (E.L.); (V.C.); (M.C.)
- Correspondence: ; Tel.: +39-02-50323249
| |
Collapse
|
26
|
Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, Dermime S, Haris M, Junejo K, Uddin S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin Cancer Biol 2020; 83:152-165. [PMID: 32858230 DOI: 10.1016/j.semcancer.2020.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Nadia Aziz Salman
- Kingston University London, School of Life Science, Pharmacy and Chemistry, SEC Faculty, Kingston, upon Thames, London, KT1 2EE, UK
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Sidra Medicine, P.O. Box 26999, Qatar; Laboratory Animal Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
| |
Collapse
|
27
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
28
|
Li X, Wei C, Zhang Z, Jin Q, Xiao X. MiR-134-5p Regulates Myocardial Apoptosis and Angiogenesis by Directly Targeting KDM2A After Myocardial Infarction. Int Heart J 2020; 61:815-821. [DOI: 10.1536/ihj.19-468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xue Li
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Caiwen Wei
- Department of Cardiology, Chongming Branch Xinhua Hospital affiliated to Medical College of Shanghai Jiaotong University
| | - Zhaozhi Zhang
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Qu Jin
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Xue Xiao
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| |
Collapse
|
29
|
The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020; 129:110416. [PMID: 32593969 DOI: 10.1016/j.biopha.2020.110416] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch signaling plays an oncogenic role in cancer development. Jagged1 (JAG1) is an important Notch ligand that triggers Notch signaling through cell-cell interactions. JAG1 overexpression has been reported in many different types of cancer and correlates with a poor clinical prognosis. JAG1/Notch signaling controls oncogenic processes in different cell types and cellular contexts. Furthermore, JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular functions such as proliferation, metastasis, drug-resistance, and angiogenesis. To suppress the severe toxicity of pan-Notch inhibitors, JAG1 is attracting increasing attention as a source of therapeutic targets for cancers. In this review, the oncogenic role of JAG1/Notch signaling in cancer is discussed, as well as implications of strategies to inhibit JAG1/Notch signaling activity.
Collapse
|
30
|
Higashijima Y, Matsui Y, Shimamura T, Nakaki R, Nagai N, Tsutsumi S, Abe Y, Link VM, Osaka M, Yoshida M, Watanabe R, Tanaka T, Taguchi A, Miura M, Ruan X, Li G, Inoue T, Nangaku M, Kimura H, Furukawa T, Aburatani H, Wada Y, Ruan Y, Glass CK, Kanki Y. Coordinated demethylation of H3K9 and H3K27 is required for rapid inflammatory responses of endothelial cells. EMBO J 2020; 39:e103949. [PMID: 32125007 DOI: 10.15252/embj.2019103949] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yusuke Matsui
- Division of Biomedical and Health Informatics, Graduate school of medicine, Nagoya university, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Nao Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shuichi Tsutsumi
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, Germany.,Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mizuko Osaka
- Department of Nutrition in Cardiovascular Disease, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Xiaoan Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Tsuyoshi Inoue
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsushi Furukawa
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yijun Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Lin Q, Wu Z, Yue X, Yu X, Wang Z, Song X, Xu L, He Y, Ge Y, Tan S, Wang T, Song H, Yuan D, Gong Y, Gao L, Liang X, Ma C. ZHX2 restricts hepatocellular carcinoma by suppressing stem cell-like traits through KDM2A-mediated H3K36 demethylation. EBioMedicine 2020; 53:102676. [PMID: 32114388 PMCID: PMC7047184 DOI: 10.1016/j.ebiom.2020.102676] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver cancer stem cells (CSCs) are critical determinants of HCC relapse and therapeutic resistance, but the mechanisms underlying the maintenance of CSCs are poorly understood. We aimed to explore the role of tumor repressor Zinc-fingers and homeoboxes 2 (ZHX2) in liver CSCs. Methods CD133+ or EPCAM+ stem-like liver cancer cells were sorted from tumor tissues of HCC patients and HCC cell lines by flow cytometry. In addition, sorafenib-resistant cells, tumor-sphere forming cells and side population (SP) cells were respectively cultured and isolated as hepatic CSCs. The tumor-initiating and chemoresistance properties of ZHX2-overexpressing and ZHX2-knockdown cells were analyzed in vivo and in vitro. Microarray, luciferase reporter assay, chromatin immunoprecipitation (ChIP) and ChIP-on-chip analyses were performed to explore ZHX2 target genes. The expression of ZHX2 and its target gene were determined by quantitative RT-PCR, western blot, immunofluorescence and immunohistochemical staining in hepatoma cells and tumor and adjacent tissues from HCC patients. Results ZHX2 expression was significantly reduced in liver CSCs from different origins. ZHX2 deficiency led to enhanced liver tumor progression and expansion of CSC populations in vitro and in vivo. Re-expression of ZHX2 restricted capabilities of hepatic CSCs in supporting tumor initiation, self-renewal and sorafenib-resistance. Mechanically, ZHX2 suppressed liver CSCs via inhibiting KDM2A-mediated demethylation of histone H3 lysine 36 (H3K36) at the promoter regions of stemness-associated transcription factors, such as NANOG, SOX4 and OCT4. Moreover, patients with lower expression of ZHX2 and higher expression of KDM2A in tumor tissues showed significantly poorer survival. Conclusion ZHX2 counteracts stem cell traits through transcriptionally repressing KDM2A in HCC. Our data will aid in a better understanding of molecular mechanisms underlying HCC relapse and drug resistance.
Collapse
Affiliation(s)
- Qinghai Lin
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiangguo Yu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Leiqi Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Ying He
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China; Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yutong Ge
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Hui Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, 44# Wenhua Xi Road, Jinan, Shandong 250012, PR China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
32
|
Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 2019; 9:431-441. [PMID: 30059280 PMCID: PMC7000146 DOI: 10.1080/19491034.2018.1498707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant levels of histone modifications lead to chromatin malfunctioning and consequently to various developmental defects and human diseases. Therefore, the proteins bearing the ability to modify histones have been extensively studied and the molecular mechanisms of their action are now fairly well understood. However, little attention has been paid to naturally occurring alternative isoforms of chromatin modifying proteins and to their biological roles. In this review, we focus on mammalian KDM2A and KDM2B, the only two lysine demethylases whose genes have been described to produce also an alternative isoform lacking the N-terminal demethylase domain. These short KDM2A/B-SF isoforms arise through alternative promoter usage and seem to play important roles in development and disease. We hypothesise about the biological significance of these alternative isoforms, which might represent a more common evolutionarily conserved regulatory mechanism.
Collapse
Affiliation(s)
- Tomáš Vacík
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Dijana Lađinović
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| |
Collapse
|
33
|
Zhang Y, Xie ZY, Guo XT, Xiao XH, Xiong LX. Notch and breast cancer metastasis: Current knowledge, new sights and targeted therapy. Oncol Lett 2019; 18:2743-2755. [PMID: 31452752 PMCID: PMC6704289 DOI: 10.3892/ol.2019.10653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common type of invasive cancer in females and metastasis is one of the major causes of breast cancer-associated mortality. Following detachment from the primary site, disseminated tumor cells (DTCs) enter the bloodstream and establish secondary colonies during the metastatic process. An increasing amount of studies have elucidated the importance of Notch signaling in breast cancer metastasis; therefore, the present review focuses on the mechanisms by which Notch contributes to the occurrence of breast cancer DTCs, increases their motility, establishes interactions with the tumor microenvironment, protects DTCs from host surveillance and finally facilitates secondary colonization. Identification of the underlying mechanisms of Notch-associated breast cancer metastasis will provide additional insights that may contribute towards the development of novel Notch-targeted therapeutic strategies, which may aid in reducing metastasis, culminating in an improved patient prognosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Yan Xie
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuan-Tong Guo
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing-Hua Xiao
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
McCann TS, Sobral LM, Self C, Hsieh J, Sechler M, Jedlicka P. Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opin Ther Targets 2019; 23:267-280. [PMID: 30759030 DOI: 10.1080/14728222.2019.1580692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Epigenetic mechanisms of gene regulatory control play fundamental roles in developmental morphogenesis, and, as more recently appreciated, are heavily implicated in the onset and progression of neoplastic disease, including cancer. Many epigenetic mechanisms are therapeutically targetable, providing additional incentive for understanding of their contribution to cancer and other types of neoplasia. Areas covered: The Jumonji-domain histone demethylase (JHDM) family exemplifies many of the above traits. This review summarizes the current state of knowledge of the functions and pharmacologic targeting of JHDMs in cancer and other neoplastic processes, with an emphasis on diseases affecting the pediatric population. Expert opinion: To date, the JHDM family has largely been studied in the context of normal development and adult cancers. In contrast, comparatively few studies have addressed JHDM biology in cancer and other neoplastic diseases of childhood, especially solid (non-hematopoietic) neoplasms. Encouragingly, the few available examples support important roles for JHDMs in pediatric neoplasia, as well as potential roles for JHDM pharmacologic inhibition in disease management. Further investigations of JHDMs in cancer and other types of neoplasia of childhood can be expected to both enlighten disease biology and inform new approaches to improve disease outcomes.
Collapse
Affiliation(s)
- Tyler S McCann
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Lays M Sobral
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Chelsea Self
- b Department of Pediatrics , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Joseph Hsieh
- c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Marybeth Sechler
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Paul Jedlicka
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
35
|
Lu DH, Yang J, Gao LK, Min J, Tang JM, Hu M, Li Y, Li ST, Chen J, Hong L. Lysine demethylase 2A promotes the progression of ovarian cancer by regulating the PI3K pathway and reversing epithelial‑mesenchymal transition. Oncol Rep 2018; 41:917-927. [PMID: 30483796 PMCID: PMC6313075 DOI: 10.3892/or.2018.6888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the most common cause of death in ovarian cancer patients but remains largely untreated. Epithelial‑mesenchymal transition (EMT) is critical for the conversion of early‑stage ovarian tumors into metastatic malignancies. Thus, investigating the signaling pathways promoting EMT may identify potential targets for the treatment of metastatic ovarian cancer. Lysine demethylase 2A (KDM2A), also known as FBXL11 and JHDM1A, is a histone H3 lysine 36 (H3K36) demethylase that regulates EMT and the metastasis of ovarian cancer. However, the function and underlying mechanisms of EMT suppression in ovarian cancer have not been thoroughly elucidated to date. In the present study, we used Gene Expression Omnibus (GEO) databases to determine that KDM2A is significantly upregulated in human ovarian cancers. KDM2A expression was assessed by immunohistochemistry of epithelial ovarian cancer (EOC) borderline ovarian tumors and normal ovary tissues. Seven fresh EOC tissues and 3 fresh normal ovary tissues were collected for western blot analysis. Kaplan‑Meier survival curves were constructed to identify genes related to EOC prognosis from the TCGA data portal. Stable KDM2A‑knockdown cell lines were established to study the biological functions and underlying mechanisms of KDM2A in EMT in vitro. GEO database analysis revealed that KDM2A was highly upregulated in EOC tissues; this analysis was accompanied by immunochemistry and western blot analysis using samples of human tissues. High expression of KDM2A was associated with poor survival in EOC patients. KDM2A knockdown promoted apoptosis and suppressed the proliferation, migration and invasion of tumor cells in vitro. EMT and the PI3K/AKT/mTOR signaling pathway were suppressed in KDM2A‑silenced cells. Inactivation of the PI3K/AKT/mTOR signaling pathway in A2780 cells induced EMT inhibition. Our data revealed that KDM2A functions as a tumor oncogene, and the downregulation of KDM2A expression regulates EMT and EOC progression, providing a valuable prognostic marker and potential target for the treatment of EOC patients.
Collapse
Affiliation(s)
- Dan-Hua Lu
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiang Yang
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li-Kun Gao
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Min
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Tang
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Hu
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Li
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Su-Ting Li
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Pathology, Molecular Diagnostics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Hong
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
36
|
Wang F, Liang S, Liu X, Han L, Wang J, Du Q. LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer. Onco Targets Ther 2018; 11:6383-6394. [PMID: 30323616 PMCID: PMC6174301 DOI: 10.2147/ott.s169307] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence has shown that long non-coding RNAs (lncRNAs) play important roles in the occurrence and development of human cancers. LINC00460, a novel tumor-related lncRNA, has been reported to be involved in several types of human malignancies. However, the role of LINC00460 in gastric cancer (GC) is still unclear. The present study aimed at exploring the biological role of LINC00460 in GC and illuminating the potential molecular mechanisms. Methods In this study, qRT-PCR, western blotting, MTT assay, and Transwell invasion assay were used to conduct relevant experimental analysis. Results Here, we found that LINC00460 was highly expressed in GC tissues and cell lines. Moreover, LINC00460 overexpression was found to promote GC cell proliferation, migration and invasion, whereas LINC00460 down-regulation significantly inhibited these processes. Notably, we confirmed that LINC00460 could up-regulate KDM2A expression by competitively binding to miR-342-3p in GC cells. Furthermore, the suppressive effects of LINC00460 down-regulation on GC cell proliferation, migration and invasion were partially reversed by a miR-342-3p inhibitor. Conclusion In summary, our findings provide evidence for LINC00460 as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Shaobo Liang
- Department of Gastroenterology, Central Hospital of Shanxian County, Heze, 274399, China
| | - Xiaowei Liu
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Lei Han
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Junye Wang
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| | - Qin Du
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining 272029, China,
| |
Collapse
|
37
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
38
|
Shah D, Wyatt D, Baker AT, Simms P, Peiffer DS, Fernandez M, Rakha E, Green A, Filipovic A, Miele L, Osipo C. Inhibition of HER2 Increases JAGGED1-dependent Breast Cancer Stem Cells: Role for Membrane JAGGED1. Clin Cancer Res 2018; 24:4566-4578. [PMID: 29895705 DOI: 10.1158/1078-0432.ccr-17-1952] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/19/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Purpose: HER2-positive breast cancer is driven by cells possessing stem-like properties of self-renewal and differentiation, referred to as cancer stem cells (CSC). CSCs are implicated in radiotherapy, chemotherapy resistance, and tumor recurrence. NOTCH promotes breast CSC survival and self-renewal, and overexpression of NOTCH1 and the NOTCH ligand JAGGED1 predict poor outcome. Resistance to anti-HER2 therapy in HER2+ breast cancer requires NOTCH1, and that combination of trastuzumab and a gamma secretase inhibitor (GSI) prevents tumor relapse in xenograft models.Experimental Design: The current study investigates mechanisms by which HER2 tyrosine kinase activity regulates NOTCH-dependent CSC survival and tumor initiation.Results: Lapatinib-mediated HER2 inhibition shifts the population of HER2+ breast cancer cells from low membrane JAGGED1 expression to higher levels, independent of sensitivity to anti-HER2 treatment within the bulk cell population. This increase in membrane JAGGED1 is associated with higher NOTCH receptor expression, activation, and enrichment of CSCs in vitro and in vivo Importantly, lapatinib treatment results in growth arrest and cell death of JAGGED1 low-expressing cells while the JAGGED1 high-expressing cells continue to cycle. High membrane JAGGED1 protein expression predicts poor overall cumulative survival in women with HER2+ breast cancer.Conclusions: These results indicate that higher membrane JAGGED1 expression may be used to either predict response to anti-HER2 therapy or for detection of NOTCH-sensitive CSCs posttherapy. Sequential blockade of HER2 followed by JAGGED1 or NOTCH could be more effective than simultaneous blockade to prevent drug resistance and tumor progression. Clin Cancer Res; 24(18); 4566-78. ©2018 AACR.
Collapse
Affiliation(s)
- Deep Shah
- Molecular Pharmacology and Therapeutics Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Debra Wyatt
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Andrew T Baker
- Integrated Cell Biology Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Patricia Simms
- FACS Core Facility, Office of Research Services, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Daniel S Peiffer
- Integrated Cell Biology Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois.,MD/PhD Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Michelle Fernandez
- Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Emad Rakha
- Departments of Histopathology and Medicine, University of Nottingham and University Hospital NHS Trust, Nottingham, United Kingdom
| | - Andrew Green
- Departments of Histopathology and Medicine, University of Nottingham and University Hospital NHS Trust, Nottingham, United Kingdom
| | | | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Los Angeles
| | - Clodia Osipo
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois. .,Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| |
Collapse
|
39
|
Kim MS, Cho HI, Yoon HJ, Ahn YH, Park EJ, Jin YH, Jang YK. JIB-04, A Small Molecule Histone Demethylase Inhibitor, Selectively Targets Colorectal Cancer Stem Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Sci Rep 2018; 8:6611. [PMID: 29700375 PMCID: PMC5919936 DOI: 10.1038/s41598-018-24903-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
Although several epigenetic modulating drugs are suggested to target cancer stem cells (CSCs), additional identification of anti-CSC drugs is still necessary. Here we showed that JIB-04, a pan-selective inhibitor of histone demethylase(s), was identified as a small molecule that selectively target colorectal CSCs. Our data showed that JIB-04 is capable of reducing self-renewal and stemness of colorectal CSCs in three different colorectal cancer cell lines. JIB-04 significantly attenuated CSC tumorsphere formation, growth/relapse, invasion, and migration in vitro. Furthermore, JIB-04-treated colorectal cancer cells showed reduced tumorigenic activity in vivo. RNA sequencing analysis revealed that JIB-04 affected various cancer-related signaling pathways, especially Wnt/β-catenin signaling, which is crucial for the proliferation and maintenance of colorectal cancer cells. qRT-PCR and TOP/FOP flash luciferase assays showed that JIB-04 down-regulated the expression of Wnt/β-catenin-regulated target genes associated with colorectal CSC function. Overall, the effects of JIB-04 were equal to or greater than those of salinomycin, a known anti-colorectal CSC drug, despite the lower concentration of JIB-04 compared with that of salinomycin. Our results strongly suggest that JIB-04 is a promising drug candidate for colorectal cancer therapy.
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hye In Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hee Jung Yoon
- Immunotherapeutics Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Ye-Hyeon Ahn
- Immunotherapeutics Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Eun Jung Park
- Immunotherapeutics Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Yan Hua Jin
- Institute for Regenerative Medicine, Yanbian University, Yanji, 133002, China.
- Department of Cell Biology and Genetics, College of Medicine, Yanbian University, Yanji, 133002, China.
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
40
|
Cao LL, Du C, Liu H, Pei L, Qin L, Jia M, Wang H. Lysine-specific demethylase 2A expression is associated with cell growth and cyclin D1 expression in colorectal adenocarcinoma. Int J Biol Markers 2018; 33:1724600818764069. [PMID: 29683067 DOI: 10.1177/1724600818764069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Lysine-specific demethylase 2A (KDM2A), a specific H3K36me1/2 demethylase, has been reported to be closely associated with several types of cancer. In this study, we aimed to investigate the expression and function of KDM2A in colorectal adenocarcinoma. METHODS A total of 215 colorectal adenocarcinoma specimens were collected, and then subjected to immunohistochemistry assay to evaluate the expression levels of KDM2A, cyclin D1 and other proteins in colorectal adenocarcinoma tissues. Real-time polymerase chain reaction, Western blot, and other molecular biology methods were used to explore the role of KDM2A in colorectal adenocarcinoma cells. RESULTS In this study, we report that the expression level of KDM2A is high in colorectal adenocarcinoma tissues, and this high expression promotes the proliferation and colony formation of colorectal adenocarcinoma cells, as demonstrated by KDM2A knockdown experiments. In addition, the expression of KDM2A is closely associated with cyclin D1 expression in colorectal adenocarcinoma tissues and cell lines. CONCLUSIONS Our study reveals a novel role for high-expressed KDM2A in colorectal adenocarcinoma cell growth, and that the expression of KDM2A is associated with that of cyclin D1 in colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Lin-Lin Cao
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Changzheng Du
- 2 Department of Colorectal Surgery, Beijing Cancer Hospital, Beijing, China
| | - Hangqi Liu
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Lin Pei
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Li Qin
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mei Jia
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
41
|
Recruitment of lysine demethylase 2A to DNA double strand breaks and its interaction with 53BP1 ensures genome stability. Oncotarget 2018; 9:15915-15930. [PMID: 29662616 PMCID: PMC5882307 DOI: 10.18632/oncotarget.24636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Lysine demethylase 2A (KDM2A) functions in transcription as a demethylase of lysine 36 on histone H3. Herein, we characterise a role for KDM2A in the DNA damage response in which KDM2A stimulates conjugation of ubiquitin to 53BP1. Impaired KDM2A-mediated ubiquitination negatively affects the recruitment of 53BP1 to DSBs. Notably, we show that KDM2A itself is recruited to DSBs in a process that depends on its demethylase activity and zinc finger domain. Moreover, we show that KDM2A plays an important role in ensuring genomic stability upon DNA damage. Depletion of KDM2A or disruption of its zinc finger domain results in the accumulation of micronuclei following ionizing radiation (IR) treatment. In addition, IR-treated cells depleted of KDM2A display premature exit from the G2/M checkpoint. Interestingly, loss of the zinc finger domain also resulted in 53BP1 focal distribution in condensed mitotic chromosomes. Overall, our data indicates that KDM2A plays an important role in modulating the recruitment of 53BP1 to DNA breaks and is crucial for the preservation of genome integrity following DNA damage.
Collapse
|
42
|
Notch-out for breast cancer therapies. N Biotechnol 2017; 39:215-221. [DOI: 10.1016/j.nbt.2017.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/07/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
|
43
|
Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer. Oncogenesis 2017; 6:e369. [PMID: 28785073 PMCID: PMC5608919 DOI: 10.1038/oncsis.2017.71] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
The coupling between DNA methylation and histone modification contributes to aberrant expression of oncogenes or tumor suppressor genes that leads to tumor development. Our previous study demonstrated that lysine demethylase 2A (KDM2A) functions as an oncogene in breast cancer by promoting cancer stemness and angiogenesis via activation of the Notch signaling. Here, we demonstrate that knockdown of KDM2A significantly increases the 5′-hydroxymethylcytosine (5′-hmc) level in genomic DNA and expression of tet-eleven translocation 2 (TET2) in various breast cancer cell lines. Conversely, ectopic expression of KDM2A inhibits TET2 expression in KDM2A-depleted cells suggesting TET2 is a transcriptional repression target of KDM2A. Our results show that KDM2A interacts with RelA to co-occupy at the TET2 gene promoter to repress transcription and depletion of RelA or KDM2A restores TET2 expression. Upregulation of TET2 in the KDM2A-depleted cells induces the re-activation of two TET downstream tumor suppressor genes, epithelial cell adhesion molecule (EpCAM) and E-cadherin, and inhibits migration and invasion. On the contrary, knockdown of TET2 in these cells decreases EpCAM and E-cadherin and increases cell invasiveness. More importantly, TET2 expression is negatively associated KDM2A in triple-negative breast tumor tissues, and its expression predicts a better survival. Taken together, we demonstrate for the first time that TET2 is a direct repression target of KDM2A and reveal a novel mechanism by which KDM2A promotes DNA methylation and breast cancer progression via the inhibition of a DNA demethylase.
Collapse
|
44
|
Liu Z, Sanders AJ, Liang G, Song E, Jiang WG, Gong C. Hey Factors at the Crossroad of Tumorigenesis and Clinical Therapeutic Modulation of Hey for Anticancer Treatment. Mol Cancer Ther 2017; 16:775-786. [PMID: 28468863 DOI: 10.1158/1535-7163.mct-16-0576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Zihao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Gehao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
45
|
Batie M, Druker J, D'Ignazio L, Rocha S. KDM2 Family Members are Regulated by HIF-1 in Hypoxia. Cells 2017; 6:E8. [PMID: 28304334 PMCID: PMC5371873 DOI: 10.3390/cells6010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/01/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is not only a developmental cue but also a stress and pathological stimulus in many human diseases. The response to hypoxia at the cellular level relies on the activity of the transcription factor family, hypoxia inducible factor (HIF). HIF-1 is responsible for the acute response and transactivates a variety of genes involved in cellular metabolism, cell death, and cell growth. Here, we show that hypoxia results in increased mRNA levels for human lysine (K)-specific demethylase 2 (KDM2) family members, KDM2A and KDM2B, and also for Drosophila melanogaster KDM2, a histone and protein demethylase. In human cells, KDM2 family member's mRNA levels are regulated by HIF-1 but not HIF-2 in hypoxia. Interestingly, only KDM2A protein levels are significantly induced in a HIF-1-dependent manner, while KDM2B protein changes in a cell type-dependent manner. Importantly, we demonstrate that in human cells, KDM2A regulation by hypoxia and HIF-1 occurs at the level of promoter, with HIF-1 binding to the KDM2A promoter being required for RNA polymerase II recruitment. Taken together, these results demonstrate that KDM2 is a novel HIF target that can help coordinate the cellular response to hypoxia. In addition, these results might explain why KDM2 levels are often deregulated in human cancers.
Collapse
Affiliation(s)
- Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow street, Dundee DD1 5EH, UK.
| | - Jimena Druker
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow street, Dundee DD1 5EH, UK.
| | - Laura D'Ignazio
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow street, Dundee DD1 5EH, UK.
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow street, Dundee DD1 5EH, UK.
| |
Collapse
|
46
|
Exercise and Prebiotics Produce Stress Resistance: Converging Impacts on Stress-Protective and Butyrate-Producing Gut Bacteria. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:165-191. [PMID: 27793217 DOI: 10.1016/bs.irn.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbial ecosystem can mediate the negative health impacts of stress on the host. Stressor-induced disruptions in microbial ecology (dysbiosis) can lead to maladaptive health effects, while certain probiotic organisms and their metabolites can protect against these negative impacts. Prebiotic diets and exercise are feasible and cost-effective strategies that can increase stress-protective bacteria and produce resistance against the detrimental behavioral and neurobiological impacts of stress. The goal of this review is to describe research demonstrating that both prebiotic diets and exercise produce adaptations in gut ecology and the brain that arm the organism against inescapable stress-induced learned helplessness. The results of this research support the novel hypothesis that some of the stress-protective effects of prebiotics and exercise are due to increases in stress-protective gut microbial species and their metabolites. In addition, new evidence also suggests that prebiotic diet or exercise interventions are most effective if given early in life (juvenile-adolescence) when both the gut microbial ecosystem and the brain are plastic. Based on our new understanding of the mechanistic convergence of these interventions, it is feasible to propose that in adults, both interventions delivered in combination may elevate their efficacy to promote a stress-resistant phenotype.
Collapse
|