1
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
2
|
Ling C, Liu SS, Wang YY, Huo GT, Yang YW, Xu N, Wang H, Wu Y, Miao YF, Fu R, Zhao YW, Fan CF. Overexpression of wild-type HRAS drives non-alcoholic steatohepatitis to hepatocellular carcinoma in mice. Zool Res 2024; 45:551-566. [PMID: 38757223 PMCID: PMC11188599 DOI: 10.24272/j.issn.2095-8137.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.
Collapse
Affiliation(s)
- Chen Ling
- College of Life Sciences, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, Shaanxi 710069, China
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Su-Su Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Ya Wang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Gui-Tao Huo
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Yan-Wei Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Nan Xu
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Products Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Hong Wang
- Division of Laboratory Animal Monitoring, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Fa Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Rui Fu
- Division of Laboratory Animal Monitoring, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Wei Zhao
- College of Life Sciences, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, Shaanxi 710069, China. E-mail:
| | - Chang-Fa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China. E-mail:
| |
Collapse
|
3
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
4
|
Yamaji K, Iwabuchi S, Tokunaga Y, Hashimoto S, Yamane D, Toyama S, Kono R, Kitab B, Tsukiyama-Kohara K, Osawa Y, Hayashi Y, Hishima T, Tateno C, Kimura K, Okanoue T, Kohara M. Molecular insights of a CBP/β-catenin-signaling inhibitor on nonalcoholic steatohepatitis-induced liver fibrosis and disorder. Biomed Pharmacother 2023; 166:115379. [PMID: 37647690 DOI: 10.1016/j.biopha.2023.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive fibrotic disease associated with an increased risk of developing hepatocellular carcinoma; at present, no efficient therapeutic strategy has been established. Herein, we examined the efficacy of PRI-724, a potent inhibitor of CBP/β-catenin signaling, for treating NASH-related liver fibrosis and disorder and characterized its mechanism. Choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice exhibited NASH-induced liver fibrosis that is characterized by steatosis, lobular inflammation, hepatocellular injury and collagen fibrils. To examine the therapeutic effect, CDAHFD-fed mice were administered PRI-724. Serum levels of ALT and pro-fibrotic molecule, i.e. Mac-2 bp, alpha smooth muscle actin, type I and type III collagens, decreased significantly. mRNA levels of the matrix metalloproteinases Mmp8 and Mmp9 in the liver were significantly increased, and increases in the abundance of MMP9-producing neutrophils and macrophages were observed. Marco+Mmp9+Cd68+ Kupffer cells were only observed in the livers of mice treated with PRI-724, and Mmp9 expression in Marco+Cd68+ Kupffer cells increased 4.3-fold. Moreover, hepatic expression of the lipid metabolism regulator, pyruvate dehydrogenase kinase 4 and liver lipid droplets also decreased significantly. PRI-724-treated NASH mice not only recovered from NASH-related liver fibrosis through the effect of PRI-724 down-regulating the expression of pro-fibrotic genes and up-regulating the expression of anti-fibrotic genes, but they also recovered from NASH-induced liver disorder. PRI-724, a selective CBP/β-catenin inhibitor, thus shows a potent therapeutic effect for NASH-related liver fibrosis and for decreasing adipose tissue in the liver.
Collapse
Affiliation(s)
- Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Yosuke Osawa
- Department of Gastroenterology, International University of Health and Welfare Hospital, Nasushiobara 324-8501, Japan
| | - Yukiko Hayashi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Chise Tateno
- R&D Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka 564-0013, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
5
|
He J, Zhang X, Chen X, Xu Z, Chen X, Xu J. Shared Genes and Molecular Mechanisms between Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma Established by WGCNA Analysis. Glob Med Genet 2023; 10:144-158. [PMID: 37501756 PMCID: PMC10370469 DOI: 10.1055/s-0043-1768957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of death from cancer worldwide. The histopathological features, risk factors, and prognosis of HCC caused by nonalcoholic fatty liver disease (NAFLD) appear to be significantly different from those of HCC caused by other etiologies of liver disease. Objective This article explores the shared gene and molecular mechanism between NAFLD and HCC through bioinformatics technologies such as weighted gene co-expression network analysis (WGCNA), so as to provide a reference for comprehensive understanding and treatment of HCC caused by NAFLD. Methods NAFLD complementary deoxyribonucleic acid microarrays (GSE185051) from the Gene Expression Omnibus database and HCC ribonucleic acid (RNA)-sequencing data (RNA-seq data) from The Cancer Genome Atlas database were used to analyze the differentially expressed genes (DEGs) between NAFLD and HCC. Then, the clinical traits and DEGs in the two disease data sets were analyzed by WGCNA to obtain W-DEGs, and cross-W-DEGs were obtained by their intersection. We performed subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analyses of the cross-W-DEGs and established protein-protein interaction networks. Then, we identified the hub genes in them by Cytoscape and screened out the final candidate genes. Finally, we validated candidate genes by gene expression, survival, and immunohistochemical analyses. Results The GO analysis of 79 cross-W-DEGs showed they were related mainly to RNA polymerase II (RNAP II) and its upstream transcription factors. KEGG analysis revealed that they were enriched predominantly in inflammation-related pathways (tumor necrosis factor and interleukin-17). Four candidate genes (JUNB, DUSP1, NR4A1, and FOSB) were finally screened out from the cross-W-DEGs. Conclusion JUNB, DUSP1, NR4A1, and FOSB inhibit NAFLD and HCC development and progression. Thus, they can serve as potential useful biomarkers for predicting and treating NAFLD progression to HCC.
Collapse
Affiliation(s)
- Juan He
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xin Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Zongyao Xu
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xiaoqi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jiangyan Xu
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
6
|
Zhou Y, Zhang L, Ma Y, Xie L, Yang YY, Jin C, Chen H, Zhou Y, Song GQ, Ding J, Wu J. Secretome of senescent hepatic stellate cells favors malignant transformation from nonalcoholic steatohepatitis-fibrotic progression to hepatocellular carcinoma. Theranostics 2023; 13:4430-4448. [PMID: 37649614 PMCID: PMC10465212 DOI: 10.7150/thno.85369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background: Hepatic fibrosis is a premalignant lesion, and how injured hepatocytes transform into malignancy in a fibrotic microenvironment is poorly understood. Senescence is one of major fates of activated hepatic stellate cells (HSCs). Paucity of literature is available regarding the influence of senescent HSCs on behavior of steatotic hepatocytes. Methods: Senescent HSCs were identified in a murine model of nonalcoholic steatohepatitis (NASH)-fibrosis-hepatocellular carcinoma (HCC) and human NASH-HCC specimens. Secretome of senescent HSCs was analyzed by label-free mass-spectrum (NanoRPLC-MS/MS) and verified quantitatively. Results: Senescent HSCs were increased along with the progression from nonalcoholic fatty liver (NAFL), NASH to NASH-fibrosis, and reached a peak at the stage of advanced fibrosis and then decreased when hepatocellular dysplasia or HCC was developed. Critical components affecting proliferation, epithelial-mesenchymal transition (EMT) or migration were identified from secretome of senescent HSCs, and may activate morphogenic hedgehog or oncogenic Wnt signaling pathways to accelerate malignant transformation of steatotic or dysplastic hepatocytes. Primary hepatocytes stimulated with conditioned medium from senescent HSCs, in co-culture or co-cultured in 3D spheroids with senescent HSCs exhibited an enhanced proliferating or EMT profile. Conclusion: Senescent HSCs secreted a characterized protein profile favoring malignant transformation of steatotic or dysplastic hepatocytes through activating morphogenic hedgehog or oncogenic Wnt signaling pathways in the progression from NASH to malignancy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yong-yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Zhou
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology Co., Ltd, Suzhou 215163, China
| | - Guang-qi Song
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology Co., Ltd, Suzhou 215163, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
7
|
Zheng Q, Kawaguchi M, Mikami H, Diao P, Zhang X, Zhang Z, Nakajima T, Iwadare T, Kimura T, Nakayama J, Tanaka N. Establishment of Novel Mouse Model of Dietary NASH Rapidly Progressing into Liver Cirrhosis and Tumors. Cancers (Basel) 2023; 15:3744. [PMID: 37509405 PMCID: PMC10378543 DOI: 10.3390/cancers15143744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH), which is the most severe manifestation of non-alcoholic fatty liver disease (NAFLD), has been recognized as a major hepatocellular carcinoma (HCC) catalyst. However, the molecular mechanism of NASH-liver fibrosis-HCC sequence remains unclear and a specific and effective treatment for NASH has not yet been established. The progress in this field depends on the availability of reliable preclinical models which show the steady progression to NASH, liver cirrhosis, and HCC. However, most of the NASH mouse models that have been described to date develop NASH generally for more than 24 weeks and there is an uncertainty of HCC development. To overcome such shortcomings of experimental NASH studies, we established a novel NASH-HCC mouse model with very high reproducibility, generality, and convenience. We treated male C57BL/6J mice with a newly developed choline-deficient and methionine-restricted high-fat diet, named OYC-NASH2 diet, for 60 weeks. Treatment of OYC-NASH2 diet for 3 weeks revealed marked steatosis, lobular inflammation, and fibrosis, histologically diagnosed as NASH. Liver cirrhosis was observed in all mice with 48-week treatment. Liver nodules emerged at 12 weeks of the treatment, > 2 mm diameter liver tumors developed in all mice at 24 weeks of the treatment and HCC appeared after 36-week treatment. In conclusion, our rapidly progressive and highly reproducible NASH-liver cirrhosis-HCC model is helpful for preclinical development and research on the pathogenesis of human NAFLD-NASH-HCC. Our mouse model would be useful for the development of novel chemicals for NASH-HCC-targeted therapies.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | | - Hayato Mikami
- Oriental Yeast Co., Ltd., Itabashi, Tokyo 174-8505, Japan
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Zhe Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
8
|
Banerjee A, Sriramulu S, Catanzaro R, He F, Chabria Y, Balakrishnan B, Hari S, Ayala A, Muñoz M, Pathak S, Marotta F. Natural Compounds as Integrative Therapy for Liver Protection against Inflammatory and Carcinogenic Mechanisms: From Induction to Molecular Biology Advancement. Curr Mol Med 2023; 23:216-231. [PMID: 35297348 DOI: 10.2174/1566524022666220316102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/20/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
The liver is exposed to several harmful substances that bear the potential to cause excessive liver damage ranging from hepatitis and non-alcoholic fatty liver disease to extreme cases of liver cirrhosis and hepatocellular carcinoma. Liver ailments have been effectively treated from very old times with Chinese medicinal herbal formulations and later also applied by controlled trials in Japan. However, these traditional practices have been hardly well characterized in the past till in the last decades when more qualified studies have been carried out. Modern advances have given rise to specific molecular targets which are specifically good candidates for affecting the intricate mechanisms that play a role at the molecular level. These therapeutic regimens that mainly affect the progression of the disease by inhibiting the gene expression levels or by blocking essential molecular pathways or releasing cytokines may prove to play a vital role in minimizing the tissue damage. This review, therefore, tries to throw light upon the variation in the therapies for the treatment of benign and malignant liver disease from ancient times to the current date. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of benign chronic liver diseases as well as prevention and treatment of HCC is still warranted.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Roberto Catanzaro
- Dept of Clinical and Experimental Medicine, Section of Gastroenterology, University of Catania, Catania, Italy
| | - Fang He
- Dept of Nutrition, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yashna Chabria
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Sruthi Hari
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antonio Ayala
- Biochemistry and Clinical Biochemistry Department, Faculty of Pharmacy, University of Seville, Spain
| | - Mario Muñoz
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano, Italy and Vitality and Longevity Medical Science Commission, FEMTEC World Federation
| |
Collapse
|
9
|
Wu S, Wang X, Xing W, Li F, Liang M, Li K, He Y, Wang J. An update on animal models of liver fibrosis. Front Med (Lausanne) 2023; 10:1160053. [PMID: 37035335 PMCID: PMC10076546 DOI: 10.3389/fmed.2023.1160053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The development of liver fibrosis primarily determines quality of life as well as prognosis. Animal models are often used to model and understand the underlying mechanisms of human disease. Although organoids can be used to simulate organ development and disease, the technology still faces significant challenges. Therefore animal models are still irreplaceable at this stage. Currently, in vivo models of liver fibrosis can be classified into five categories based on etiology: chemical, dietary, surgical, transgenic, and immune. There is a wide variety of animal models of liver fibrosis with varying efficacy, which have different implications for proper understanding of the disease and effective screening of therapeutic agents. There is no high-quality literature recommending the most appropriate animal models. In this paper, we will describe the progress of commonly used animal models of liver fibrosis in terms of their development mechanisms, applications, advantages and disadvantages, and recommend appropriate animal models for different research purposes.
Collapse
Affiliation(s)
- ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Liang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - KeShen Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Yan He,
| | - JianMing Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- JianMing Wang,
| |
Collapse
|
10
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
11
|
Pitstick LD, Goral J, Schmelter RA, Fuja CM, Ciancio MJ, Pytynia M, Meyer A, Green JM. Fat and exposure to 4-nitroquinoline-1-oxide causes histologic and inflammatory changes in murine livers. PLoS One 2022; 17:e0268891. [PMID: 35639668 PMCID: PMC9154184 DOI: 10.1371/journal.pone.0268891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Risk factors for liver cancer include tobacco use, alcohol consumption, obesity, and male sex. Administration of 4-nitroquinonline-1-oxide (4NQO) in drinking water mimics the effects of tobacco and leads to oral carcinoma in mice. This study compared the effects of diets high and low in saturated fat (HF and LF, respectively), and sex, on liver histopathology in 4NQO-treated mice and controls. We hypothesized that 4NQO would cause histopathological changes in liver, and that a HF diet would increase hepatic pathology when compared to the LF diet. Mice (C57Bl/6, 36/sex), were divided into a low fat (10 kcal% fat; LF) or high fat (60 kcal% fat, HF) diet. Mice were further subdivided into one of 3 water treatment groups for 17 weeks: water (control), vehicle (1.25% propylene glycol in water [PG]), or 4NQO in (50 μg/ml; 4NQO). All mice were subsequently given water alone for 6 more weeks. Upon euthanasia, livers were harvested, fixed, sectioned, and stained with hematoxylin and eosin (H&E). H&E slides were graded for histopathology; frozen liver samples were analyzed for triglyceride content. Trichrome stained sections were graded for fibrosis. CD3+ T cells, CD68+ macrophages, and Ly6+ neutrophils were detected by immunohistochemistry. Compared to water controls, 4NQO-treatment caused mouse liver histopathological changes such as fibrosis, and increases in hepatic neutrophils, T cells, and macrophages. HF diet exacerbated pathological changes compared to LF diet. Male controls, but not females, demonstrated severe steatosis and increased triglyceride content. 4NQO treatment decreased hepatic fat accumulation, even in animals on a HF diet. In conclusion, this murine model of oral cancer may serve as a model to study the effects of tobacco and diet on liver.
Collapse
Affiliation(s)
- Lenore D. Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Ryan A. Schmelter
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States of America
| | - Christine M. Fuja
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States of America
| | - Mae J. Ciancio
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Matthew Pytynia
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Alice Meyer
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
| | - Jacalyn M. Green
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Eguchi A, Mizukami S, Nakamura M, Masuda S, Murayama H, Kawashima M, Inohana M, Nagahara R, Kobayashi M, Yamashita R, Uomoto S, Makino E, Ohtsuka R, Takahashi N, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Metronidazole enhances steatosis-related early-stage hepatocarcinogenesis in high fat diet-fed rats through DNA double-strand breaks and modulation of autophagy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:779-789. [PMID: 34341928 DOI: 10.1007/s11356-021-15689-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease is a hepatic disorder with deposition of fat droplets and has a high risk of progression to steatosis-related hepatitis and irreversible hepatic cancer. Metronidazole (MNZ) is an antiprotozoal and antimicrobial agent widely used to treat patients infected with anaerobic bacteria and intestinal parasites; however, MNZ has also been shown to induce liver tumors in rodents. To investigate the effects of MNZ on steatosis-related early-stage hepatocarcinogenesis, male rats treated with N-nitrosodiethylamine following 2/3 hepatectomy at week 3 were received a control basal diet, high fat diet (HFD), or HFD containing 0.5% MNZ. The HFD induced obesity and steatosis in the liver, accompanied by altered expression of Pparg and Fasn, genes related to lipid metabolism. MNZ increased nuclear translocation of lipid metabolism-related transcription factor peroxisome proliferator-activated receptor gamma in hepatocytes, together with altered liver expression of lipid metabolism genes (Srebf1, Srebf2, Pnpla2). Furthermore, MNZ significantly increased the number of preneoplastic liver foci, accompanied by DNA double-strand breaks and late-stage autophagy inhibition, as reflected by increased levels of γ-H2AX, LC3, and p62. Therefore, MNZ could induce steatosis-related hepatocarcinogenesis by inducing DNA double-strand breaks and modulating autophagy in HFD-fed rats.
Collapse
Affiliation(s)
- Ayumi Eguchi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Misato Nakamura
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sousuke Masuda
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hirotada Murayama
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Masashi Kawashima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mari Inohana
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Rei Nagahara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Risako Yamashita
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Emi Makino
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Ryoichi Ohtsuka
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan
| | | | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
13
|
Zhu LY, Liu C, Li ZR, Niu C, Wu J. NLRP3 deficiency did not attenuate NASH development under high fat calorie diet plus high fructose and glucose in drinking water. J Transl Med 2021; 101:588-599. [PMID: 33526807 DOI: 10.1038/s41374-021-00535-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
NOD-like receptor protein 3 (NLRP3) promotes the inflammatory response during progression of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). This study aimed to further delineate the role of NLRP3 in NASH development by abolishing its expression in mice. A high-fat and calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) was used to establish NASH in both wild-type (WT) and NLRP3 knock-out (KO) mice. Hepatocellular injury, hepatic steatosis and fibrosis, as well as inflammatory response and insulin resistance in the liver and epidydimal white adipose tissue (eWAT) were determined. Elevated body weight, liver weight and serum alanine transaminase level, increased hepatic triglyceride accumulation and collagen deposition, and worsened systemic insulin resistance were observed in Nlrp3-/- mice compared to WT mice under HFCD-HF/G feeding. Upregulated hepatic transcription of tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1), and enhanced infiltration of inducible nitric oxide synthase-positive (iNOS+) M1 macrophages were also documented in HFCD-HF/G-fed Nlrp3-/- mice in comparison to HFCD-HF/G-fed WT mice. Moreover, transcription of TNF-α and MCP-1 and infiltration of iNOS+ M1 macrophages were increased in the liver of Nlrp3-/- mice under control diet. NLRP3 deficiency did not attenuate, but instead aggravated NASH development under HFCD-HF/G feeding. The worsened extent of NASH might be attributed to enhanced hepatic MCP-1 expression and M1 macrophage infiltration in Nlrp3-/- mice. Our study points to additional caution when NLRP3 blockade is considered as a therapeutic strategy in the treatment of human NASH.
Collapse
Affiliation(s)
- Liu-Yan Zhu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Chang Liu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Zong-Rui Li
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Chen Niu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
14
|
Peiseler M, Tacke F. Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:730. [PMID: 33578800 PMCID: PMC7916589 DOI: 10.3390/cancers13040730] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising chronic liver disease and comprises a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) to end-stage cirrhosis and risk of hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is multifactorial, but inflammation is considered the key element of disease progression. The liver harbors an abundance of resident immune cells, that in concert with recruited immune cells, orchestrate steatohepatitis. While inflammatory processes drive fibrosis and disease progression in NASH, fueling the ground for HCC development, immunity also exerts antitumor activities. Furthermore, immunotherapy is a promising new treatment of HCC, warranting a more detailed understanding of inflammatory mechanisms underlying the progression of NASH and transition to HCC. Novel methodologies such as single-cell sequencing, genetic fate mapping, and intravital microscopy have unraveled complex mechanisms behind immune-mediated liver injury. In this review, we highlight some of the emerging paradigms, including macrophage heterogeneity, contributions of nonclassical immune cells, the role of the adaptive immune system, interorgan crosstalk with adipose tissue and gut microbiota. Furthermore, we summarize recent advances in preclinical and clinical studies aimed at modulating the inflammatory cascade and discuss how these novel therapeutic avenues may help in preventing or combating NAFLD-associated HCC.
Collapse
Affiliation(s)
- Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany;
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pharmacology & Physiology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany;
| |
Collapse
|
15
|
Li X, Xie L, Qu X, Zhao B, Fu W, Wu B, Wu J. GPR91, a critical signaling mechanism in modulating pathophysiologic processes in chronic illnesses. FASEB J 2020; 34:13091-13105. [PMID: 32812686 DOI: 10.1096/fj.202001037r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Succinate receptor GPR91 is one of G protein-coupled receptors (GPCRs), and is expressed in a variety of cell types and tissues. Succinate is its natural ligand, and its activation represents that an intrinsic metabolic intermediate exerts a regulatory role on many critical life processes involving pathophysiologic mechanisms, such as innate immunity, inflammation, tissue repair, and oncogenesis. With the illustration of 3-dimensional crystal structure of the receptor and discovery of its antagonists, it is possible to dissect the succinate-GPR91-G protein signaling pathways in different cell types under pathophysiological conditions. Deep understanding of the GPR91-ligand binding mode with various agonists and antagonists would aid in elucidating the molecular basis of a spectrum of chronic illnesses, such as hypertension, diabetes, and their renal and retina complications, metabolic-associated fatty liver diseases, such as nonalcoholic steatohepatitis and its fibrotic progression, inflammatory bowel diseases (Crohn's disease and ulcerative colitis), age-related macular degeneration, rheumatoid arthritis, and progressive behaviors of malignancies. With better delineation of critical regulatory role of the succinate-GPR91 axis in these illnesses, therapeutic intervention may be developed by specifically targeting this signaling pathway with small molecular antagonists or other strategies.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Xie
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiangli Qu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bangyi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
16
|
Liu XJ, Xie L, Du K, Liu C, Zhang NP, Gu CJ, Wang Y, Abdelmalek MF, Dong WY, Liu XP, Niu C, Yang C, Diehl AM, Wu J. Succinate-GPR-91 receptor signalling is responsible for nonalcoholic steatohepatitis-associated fibrosis: Effects of DHA supplementation. Liver Int 2020; 40:830-843. [PMID: 31903720 PMCID: PMC9990138 DOI: 10.1111/liv.14370] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Treatment of non-alcoholic steatohepatitis (NASH) is challenging, because suppressing fibrotic progression has not been achieved consistently by drug candidates currently in clinical trials. The aim of this study was to investigate the molecular interplays underlying NASH-associated fibrosis in a mouse NASH model and human specimens. METHODS Mice were divided into 4 groups: Controls; NASH (high fat/Calorie diet plus high fructose and glucose in drinking water, HFCD-HF/G) for 16 weeks; HFCD-HF/G plus docosahexaenoic acid (DHA) for 16 or 8 weeks. RESULTS Along with NASH progression, fibrotic deposition was documented in HFCD-HF/G-fed mice. Liver succinate content was significantly increased along with decreased expression of succinate dehydrogenase-A (SDH-A) in these mice; whereas, GPR-91 receptor expression was much enhanced in histology compared to control mice, and co-localized histologically with hepatic stellate cells (HSCs). Succinate content was increased in fatty acid-overloaded primary hepatocytes with significant oxidant stress and lipotoxicity. Exposure to succinate led to up-regulation of GPR-91 receptor in primary and immortalized HSCs. In contrast, suppression of GPR-91 receptor expression abolished succinate stimulatory role in GPR-91 expression and extracellular matrix production in HSCs. All these changes were minimized or abrogated by DHA supplementation in vivo or in vitro. Moreover, GPR-91 receptor expression correlates with severity of fibrosis in human NASH biopsy specimens. CONCLUSION Succinate accumulation in steatotoic hepatocytes may result in HSC activation through GPR-91 receptor signalling in NASH progression, and the cross-talk between hepatocytes and HSC through GPR-91 signalling is most likely to be the molecular basis of fibrogenesis in NASH.
Collapse
Affiliation(s)
- Xue-Jing Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Xie
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Chang Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Ping Zhang
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.,Dept. of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen-Jian Gu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Wen-Yue Dong
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Science, Beijing, China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Niu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.,Dept. of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Chianelli D, Rucker PV, Roland J, Tully DC, Nelson J, Liu X, Bursulaya B, Hernandez ED, Wu J, Prashad M, Schlama T, Liu Y, Chu A, Schmeits J, Huang DJ, Hill R, Bao D, Zoll J, Kim Y, Groessl T, McNamara P, Liu B, Richmond W, Sancho-Martinez I, Phimister A, Seidel HM, Badman MK, Joseph SB, Laffitte B, Molteni V. Nidufexor (LMB763), a Novel FXR Modulator for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:3868-3880. [PMID: 31940200 DOI: 10.1021/acs.jmedchem.9b01621] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Farnesoid X receptor (FXR) agonists are emerging as important potential therapeutics for the treatment of nonalcoholic steatohepatitis (NASH) patients, as they exert positive effects on multiple aspects of the disease. FXR agonists reduce lipid accumulation in the liver, hepatocellular inflammation, hepatic injury, and fibrosis. While there are currently no approved therapies for NASH, the bile acid-derived FXR agonist obeticholic acid (OCA; 6-ethyl chenodeoxycholic acid) has shown promise in clinical studies. Previously, we described the discovery of tropifexor (LJN452), the most potent non-bile acid FXR agonist currently in clinical investigation. Here, we report the discovery of a novel chemical series of non-bile acid FXR agonists based on a tricyclic dihydrochromenopyrazole core from which emerged nidufexor (LMB763), a compound with partial FXR agonistic activity in vitro and FXR-dependent gene modulation in vivo. Nidufexor has advanced to Phase 2 human clinical trials in patients with NASH and diabetic nephropathy.
Collapse
Affiliation(s)
- Donatella Chianelli
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Paul V Rucker
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Jason Roland
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - David C Tully
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States.,Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - John Nelson
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Xiaodong Liu
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Eloy D Hernandez
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Jane Wu
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Mahavir Prashad
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey 07936, United States
| | | | - Yugang Liu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey 07936, United States
| | - Alan Chu
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - James Schmeits
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - David J Huang
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Robert Hill
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Dingjiu Bao
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Jocelyn Zoll
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Young Kim
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Todd Groessl
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Wendy Richmond
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Ignacio Sancho-Martinez
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Andrew Phimister
- Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - H Martin Seidel
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Michael K Badman
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Sean B Joseph
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| |
Collapse
|
18
|
Fang M, Yao M, Yang J, Zheng WJ, Wang L, Yao DF. Abnormal CD44 activation of hepatocytes with nonalcoholic fatty accumulation in rat hepatocarcinogenesis. World J Gastrointest Oncol 2020; 12:66-76. [PMID: 31966914 PMCID: PMC6960074 DOI: 10.4251/wjgo.v12.i1.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prevalence of nonalcoholic fatty liver disease (NAFLD) is rapidly increasing, and NAFLD has become one of the most common chronic liver diseases worldwide. With abnormal CD44 activation, the severe form of NAFLD can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Thus, the molecular mechanism of CD44 in NAFLD needs to be identified.
AIM To investigate the relationship between CD44 activation and malignant transformation of rat hepatocytes under nonalcoholic lipid accumulation.
METHODS Sprague-Dawley rats were fed a high-fat (HF) for 12 wk to entice NAFLD and then with HF plus 2-fluorenylacetamide (0.05%) to induce HCC. Rats were sacrificed every 2 wk, and subsequently divided into the groups based on liver pathological examination (hematoxylin and eosin staining): NAFLD, denaturation, precancerosis, HCC, and control. Liver CD44 mRNA was detected by OneArray. Liver fat as assessed by Oil red O staining or CD44 by immunohistochemical assay was compared with their integral optic density. Serum CD44, alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, and AFP levels were quantitatively tested.
RESULTS Elevated CD44 was first reported in hepatocarcinogenesis, with increasing expression from NAFLD to HCC at the protein or mRNA level. The CD44 integral optic density values were significantly different between the control group and the NAFLD (t = 25.433, P < 0.001), denaturation (t = 48.822, P < 0.001), precancerosis (t = 27.751, P < 0.001), and HCC (t = 16.239, P < 0.001) groups, respectively. Hepatic CD44 can be secreted into the blood, and serum CD44 levels in HCC or precancerous rats were significantly higher (P < 0.001) than those in any of the other rats. Positive correlations were found between liver CD44 and CD44 mRNA (rs = 0.373, P = 0.043) and serum CD44 (rs = 0.541, P = 0.002) and between liver CD44 mRNA and serum CD44 (rs = 0.507, P = 0.004). Moreover, significant correlations were found between liver CD44 and liver AFP (rs = 0.572, P = 0.001), between serum CD44 and serum AFP (rs = 0.608, P < 0.001), and between CD44 mRNA and AFP mRNA (rs = 0.370, P = 0.044).
CONCLUSION The data suggested that increasing CD44 expression is associated with the malignant transformation of hepatocytes in NAFLD.
Collapse
Affiliation(s)
- Miao Fang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jie Yang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
19
|
Masuda S, Mizukami S, Eguchi A, Ichikawa R, Nakamura M, Nakamura K, Okada R, Tanaka T, Shibutani M, Yoshida T. Immunohistochemical expression of autophagosome markers LC3 and p62 in preneoplastic liver foci in high fat diet-fed rats. J Toxicol Sci 2019; 44:565-574. [PMID: 31378768 DOI: 10.2131/jts.44.565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive deposition of droplets in hepatocytes. Patients with NAFLD can be at risk for nonalcoholic steatohepatitis, which can lead to hepatocellular carcinoma. Autophagy is a cellular pathway that is crucial for survival and homeostasis, and which protects against pathophysiological changes like obesity and cancer. We determined the expression of autophagy markers in preneoplastic hepatic lesions and the effects of an autophagy repressor chloroquine (CQ) or inducer amiodarone (AM) in a steatosis-related hepatocarcinogenesis model. Male F344 rats were fed a control diet or high fat diet (HFD), and subjected to initiation and promotion steps with N-nitrosodiethylamine injection at week 0 and a partial hepatectomy at week 3. Several HFD-fed rats were administered 0.1% CQ and 0.5% AM in their drinking water during week 2 and 8. CQ and AM did not improve HFD-induced obesity. AM, but not CQ, significantly decreased the number of glutathione S-transferase placental form-positive preneoplastic liver foci in the liver. Autophagosome markers LC3 and the LC3-binding protein p62 were heterogeneously expressed in the preneoplastic foci. CQ might inhibit autophagy by significantly increased p62/LC3 ratio, while AM might have a potential of inducing autophagy by showing an increased gene expression of the autophagy regulator, Atg5. These results suggest that preneoplastic lesions express autophagosome markers and that AM might decrease steatosis-related early hepatocarcinogenesis by potentially inducing autophagy in HFD-fed rats, while inhibition of autophagy by CQ did not alter the hepatocarcinogenesis. However, an immunohistochemical trial revealed a technical limitation in detecting autophagosome markers because there were variations in each preneoplastic lesion.
Collapse
Affiliation(s)
- Sosuke Masuda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Ayumi Eguchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Ryo Ichikawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Misato Nakamura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kazuki Nakamura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Rena Okada
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Takaharu Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
20
|
Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from a hepatologist's point of view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:943-953. [PMID: 29990551 DOI: 10.1016/j.bbadis.2018.06.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder closely linked to obesity, hyperlipidemia and type 2 diabetes and is increasingly recognized as a major health problem in many parts of the world. While early stages of NAFLD are characterized by a bland accumulation of fat (steatosis) in hepatocytes, the disease can progress to non-alcoholic steatohepatitis (NASH) which involves chronic liver inflammation, tissue damage and fibrosis and can ultimately lead to end-stage liver disease including cirrhosis and cancer. As no approved pharmacological treatment for NAFLD exists today, there is an urgent need to identify promising pharmacological targets and develop future therapies. For this purpose, basic and translational research in NAFLD animal models is indispensable. While a large number of diverse animal models are currently used in the field, there is an ongoing challenge to identify those models that mirror human pathology the closest to allow good translation of obtained results into further clinical development. This review is meant to provide a concise overview of the most relevant NAFLD animal models currently available and will discuss the strengths and weaknesses of these models with regard to their comparability to human disease conditions.
Collapse
Affiliation(s)
- Daniel Jahn
- University Hospital Würzburg, Division of Hepatology, Würzburg, Germany.
| | - Stefan Kircher
- University of Würzburg, Institute of Pathology, Würzburg, Germany; Comprehensive Cancer Center Mainfranken (CCCMF), Würzburg, Germany
| | - Heike M Hermanns
- University Hospital Würzburg, Division of Hepatology, Würzburg, Germany
| | - Andreas Geier
- University Hospital Würzburg, Division of Hepatology, Würzburg, Germany
| |
Collapse
|
21
|
Nguyen J, Jiao J, Smoot K, Watt GP, Zhao C, Song X, Stevenson HL, McCormick JB, Fisher-Hoch SP, Zhang J, Futreal PA, Beretta L. Toll-like receptor 4: a target for chemoprevention of hepatocellular carcinoma in obesity and steatohepatitis. Oncotarget 2018; 9:29495-29507. [PMID: 30034633 PMCID: PMC6047684 DOI: 10.18632/oncotarget.25685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) associated with non-alcoholic fatty liver disease (NAFLD) is rapidly increasing. We aimed to elucidate the genetic basis of NAFLD-associated HCC and identify candidate targets for chemoprevention. Twenty HCC tumors, distant liver and matched tails from mice with hepatocyte-deletion of Pten (HepPten-) were subjected to whole-exome sequencing. A total of 162 genes with somatic non-synonymous single nucleotide variants or exonic small insertions and deletions in tumors were identified. Ingenuity Pathway Analysis of these 162 genes, further identified Toll-like receptor (TLR) 4, a key mediator of proinflammatory responses, and resatorvid, a TLR4 inhibitor, as the main causal networks of this dataset. Resatorvid treatment strongly prevented HCC development in these mice (p < 0.001). Remarkably, HCC patients with high tumoral TLR4 mRNA expression were more likely to be diagnosed with NAFLD and obese. TLR4 mRNA expression positively correlated with IL-6 and IL-10 mRNA expression in HCC tumors and the correlation was stronger in obese HCC patients. We have identified tumor mutation signatures and associated causal networks in NAFLD-associated HCC in HepPten- mice and further demonstrated the important role of TLR4 in promoting HCC development. This study also identified IL-6 and IL-10 as markers of TLR4 activation in HCC and subjects with NAFLD and obesity as the target population who would benefit from TLR4 inhibition treatment for HCC chemoprevention.
Collapse
Affiliation(s)
- Jennifer Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Smoot
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon P Watt
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas Health Science Center at Houston, School of Public Health in Brownsville, Brownsville, TX, USA
| | - Chen Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather L Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph B McCormick
- University of Texas Health Science Center at Houston, School of Public Health in Brownsville, Brownsville, TX, USA
| | - Susan P Fisher-Hoch
- University of Texas Health Science Center at Houston, School of Public Health in Brownsville, Brownsville, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Animal models of NAFLD from the pathologist's point of view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:929-942. [PMID: 29746920 DOI: 10.1016/j.bbadis.2018.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Fatty liver disease is a multifactorial world-wide health problem resulting from a complex interplay between liver, adipose tissue and intestine and initiated by alcohol abuse, overeating, various types of intoxication, adverse drug reactions and genetic or acquired metabolic defects. Depending on etiology fatty liver disease is commonly categorized as alcoholic or non-alcoholic. Both types may progress from simple steatosis to the necro-inflammatory lesion of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH), respectively, and finally to cirrhosis and hepatocellular carcinoma. Animal models are helpful to clarify aspects of pathogenesis and progression. Generally, they are classified as nutritional (dietary), toxin-induced and genetic, respectively, or represent a combination of these factors. Numerous reviews are dealing with NASH animal models designed to imitate as closely as possible the metabolic situation associated with human disease. This review focuses on currently used mouse models of NASH with particular emphasis on liver morphology. Despite metabolic similarities most models (except those with chemically or genetically induced porphyria or keratin 18-deficiency) fail to develop the morphologic key features of NASH, namely hepatocyte ballooning and formation of histologically and immunohistochemically well-defined Mallory-Denk-Bodies (MDBs). Although MDBs are not universally detectable in ballooned hepatocytes in NASH their experimental reproduction and analysis may, however, significantly contribute to our understanding of important pathogenic aspects of NASH despite the obvious differences in etiology.
Collapse
|
23
|
Xu G, Ye J, Liu XJ, Zhang NP, Zhao YM, Fan J, Liu XP, Wu J. Activation of pluripotent genes in hepatic progenitor cells in the transition of nonalcoholic steatohepatitis to pre-malignant lesions. J Transl Med 2017; 97:1201-1217. [PMID: 28869588 DOI: 10.1038/labinvest.2017.84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic steatohepatitis is considered as a precancerous condition. However, hepatic carcinogenesis from NASH is poorly understood. This study aims to investigate the activation of pluripotent genes (c-Myc, Oct-4, KLF-4, and Nanog) and morphogenic gene (Gli-1) in hepatic progenitor cells from patient specimens and in an animal model to determine the possibility of normal stem/progenitor cells becoming the origin of NASH-HCC. In this study, expression of pluripotent and morphogenic genes in human NASH-HCC tissues was significantly upregulated compared to adjacent non-tumor liver tissues. After feeding high-fat/calorie diet plus high fructose/glucose in drinking water (HFC diet plus HF/G) for up to 12 months, mice developed obesity, insulin resistance, and steatohepatitis with significant necroptotic inflammation and fibrotic progression, as well as occurrence of hyperplastic nodules with dysplasia; and this model represents pathohistologically as a transition from NASH to NASH-HCC in a pre-carcinomatous stage. High expression of pluripotent and morphogenic genes was immunohistochemically visualized in the dysplasia areas of mouse liver, where there were many OV-6-positive cells, indicating proliferation of HOCs in NASH with fibrotic progression. Moreover, oncogenic transcription factors (c-Myc, KLF-4, and Nanog) were co-localized in these hepatic progenitor cells. In conclusion, pluripotent and morphogenic genes may contribute to the reprogramming of hepatic progenitor cells in driving these cells to be the origin of NASH-HCC in a steatotic and inflamed microenvironment.
Collapse
Affiliation(s)
- Gang Xu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juan Ye
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xue-Jing Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Ping Zhang
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Ming Zhao
- Institute of Liver Cancer, Fudan University-Affiliated Zhongshan Hospital, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia Fan
- Institute of Liver Cancer, Fudan University-Affiliated Zhongshan Hospital, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Animal Models of Nonalcoholic Fatty Liver Disease-A Starter's Guide. Nutrients 2017; 9:nu9101072. [PMID: 28953222 PMCID: PMC5691689 DOI: 10.3390/nu9101072] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) constitutes a major health concern with the increasing incidence of obesity and diabetes in many Western countries, reaching a prevalence of up to 30% in the general population. Animal models have played a vital role in elucidating the pathophysiological mechanisms of NAFLD and continue to do so. A myriad of different models exists, each with its advantages and disadvantages. This review presents a brief overview of these models with a particular focus on the basic mechanisms and physical, biochemical and histological phenotype. Both nutritional and chemically induced, as well as genetic models are examined, including models combining different approaches.
Collapse
|
25
|
JCAD Promotes Progression of Nonalcoholic Steatohepatitis to Liver Cancer by Inhibiting LATS2 Kinase Activity. Cancer Res 2017; 77:5287-5300. [DOI: 10.1158/0008-5472.can-17-0229] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/31/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
|
26
|
Nam HH, Jun DW, Jang K, Saeed WK, Lee JS, Kang HT, Chae YJ. Granulocyte colony stimulating factor treatment in non-alcoholic fatty liver disease: beyond marrow cell mobilization. Oncotarget 2017; 8:97965-97976. [PMID: 29228666 PMCID: PMC5716706 DOI: 10.18632/oncotarget.18967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
Protective effects of granulocyte colony stimulating factor (G-CSF) in acute liver injury via marrow cell mobilization have been reported in several studies. But exact mode of action and optimal protocol of G-CSF has been still doubt in chronic disease. Here we investigated mode of action and optimization of G-CSF as a treatment for non-alcoholic fatty liver disease (NAFLD). Various doses of conventional G-CSF (30 μg/kg once weekly, once daily for 5 days, twice weekly) and long acting G-CSF (30 μg/kg once a month) were evaluated in two kinds of NAFLD animal models to optimize the G-CSF protocol. G-CSF receptor expression highest increased in NAFLD model among various liver diseases compare to control (NAFLD: 14.7 times, alcohol hepatitis: 7.1 times, cirrhosis: 2.4 times, and ischemia reperfusion: 6.8 times). G-CSF treatment reduced intrahepatic fat accumulation, and inflammation in two kinds of NAFLD animal models. G-CSF increased PI3K/Akt expression in hepatocyte as well as decreased apoptotic drive (increased Bcl-2 expression and decreased Bax expression) in animal model. Five day consecutive G-CSF treatment and once a month long acting G-CSF increased marrow derived stem cell marker in peripheral blood. But twice a week conventional G-CSF treatment did not increased CD34+ cell in peripheral blood and liver neither. Not only high dose G-CSF (once daily for 5 days) but also hepatotropic dose G-CSF (twice a week) significantly reduced hepatocyte apoptosis via PI3K and Akt pathway activation without marrow cell mobilization in NAFLD animal model.
Collapse
Affiliation(s)
- Ho Hyun Nam
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| | - Dae Won Jun
- Department Internal Medicine, Hanyang University School of Medicine, Seoul, South Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University School of Medicine, Seoul, South Korea
| | - Waqar Khalid Saeed
- Department Internal Medicine, Hanyang University School of Medicine, Seoul, South Korea
| | - Jai Sun Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| | - Hyeon Tae Kang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| | - Yeon Ji Chae
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| |
Collapse
|
27
|
Fan Z, Li L, Li M, Zhang X, Hao C, Yu L, Zeng S, Xu H, Fang M, Shen A, Jenuwein T, Xu Y. The histone methyltransferase Suv39h2 contributes to nonalcoholic steatohepatitis in mice. Hepatology 2017; 65:1904-1919. [PMID: 28244120 DOI: 10.1002/hep.29127] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/06/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Uncontrolled inflammatory response highlights the central theme of nonalcoholic steatohepatitis (NASH), a growing global pandemic. Hepatocytes and macrophages represent two major sources of hepatic inflammation during NASH pathogenesis, contributing to excessive synthesis of proinflammatory mediators. The epigenetic mechanism that accounts for the activation of hepatocytes and macrophages in this process remains obscure. Here, we report that compared to wild-type littermates, mice with a deficiency in the histone H3K9 methyltransferase suppressor of variegation 39 homolog 2 (Suv39h2, knockout) exhibited a less severe form of NASH induced by feeding with a high-fat, high-carbohydrate diet. Pro-NASH stimuli increased Suv39h2 expression in cell culture, in mice, and in human livers. In hepatocytes, Suv39h2 bound to the Sirt1 gene promoter and repressed Sirt1 transcription. Suv39h2 deficiency normalized Sirt1 expression, allowing nuclear factor kappa B/p65 to become hypoacetylated and thus dampening nuclear factor kappa B-dependent transcription of proinflammatory mediators. In macrophages, Suv39h2-mediated repression of peroxisome proliferator-activated receptor gamma transcription favored a proinflammatory M1 phenotype over an anti-inflammatory M2 phenotype, thereby elevating hepatic inflammation. CONCLUSION Suv39h2 plays a pivotal role in the regulation of inflammatory response in hepatocytes and macrophages, contributing to NASH pathogenesis. (Hepatology 2017;65:1904-1919).
Collapse
Affiliation(s)
- Zhiwen Fan
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital to Nanjing University Medical School, Nanjing, China
| | - Luyang Li
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xinjian Zhang
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Sheng Zeng
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Aiguo Shen
- Key Laboratory of Inflammation and Molecular Targets, Department of Immunology, College of Medicine, Nantong University, Nantong, China
| | - Thomas Jenuwein
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|