1
|
Marotta VE, Sabat-Pośpiech D, Fielding AB, Ponsford AH, Thomaz A, Querques F, Morgan MR, Prior IA, Coulson JM. OTUD6B regulates KIFC1-dependent centrosome clustering and breast cancer cell survival. EMBO Rep 2025:10.1038/s44319-024-00361-w. [PMID: 39789388 DOI: 10.1038/s44319-024-00361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1. In OTUD6B-deficient cells, we see increased KIFC1 polyubiquitination and premature KIFC1 degradation during mitosis. Depletion of OTUD6B increases multipolar spindles without inducing centrosome amplification. Phenotypic rescue is dependent on OTUD6B catalytic activity and evident upon KIFC1 overexpression. OTUD6B is commonly overexpressed in breast cancer, correlating with KIFC1 protein expression and worse patient survival. TNBC cells with centrosome amplification, but not normal breast epithelial cells, depend on OTUD6B to proliferate. Indeed CRISPR-Cas9 editing results in only OTUD6B-/+ TNBC cells which fail to divide and die. As a deubiquitinase that supports KIFC1 expression, allowing pseudo-bipolar cell division and survival of cancer cells with centrosome amplification, OTUD6B has potential as a novel target for cancer-specific therapies.
Collapse
Affiliation(s)
- Valeria E Marotta
- Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Dorota Sabat-Pośpiech
- Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Andrew B Fielding
- Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| | - Amy H Ponsford
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Amanda Thomaz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Francesca Querques
- Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Mark R Morgan
- Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Ian A Prior
- Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Judy M Coulson
- Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| |
Collapse
|
2
|
Hu S, Qin J, Ding M, Gao R, Xiao Q, Lou J, Chen Y, Wang S, Pan Y. Bulk integrated single-cell-spatial transcriptomics reveals the impact of preoperative chemotherapy on cancer-associated fibroblasts and tumor cells in colorectal cancer, and construction of related predictive models using machine learning. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167535. [PMID: 39374811 DOI: 10.1016/j.bbadis.2024.167535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Preoperative chemotherapy (PC) is an important component of Colorectal cancer (CRC) treatment, but its effects on the biological functions of fibroblasts and epithelial cells in CRC are unclear. METHODS This study utilized bulk, single-cell, and spatial transcriptomic sequencing data from 22 independent cohorts of CRC. Through bioinformatics analysis and in vitro experiments, the research investigated the impact of PC on fibroblast and epithelial cells in CRC. Subpopulations associated with PC and CRC prognosis were identified, and a predictive model was constructed using machine learning. RESULTS PC significantly attenuated the pathways related to tumor progression in fibroblasts and epithelial cells. NOTCH3 + Fibroblast (NOTCH3 + Fib), TNNT1 + Epithelial (TNNT1 + Epi), and HSPA1A + Epithelial (HSPA1A + Epi) subpopulations were identified in the adjacent spatial region and were associated with poor prognosis in CRC. PC effectively diminished the presence of these subpopulations, concurrently inhibiting pathway activity and intercellular crosstalk. A risk signature model, named the Preoperative Chemotherapy Risk Signature Model (PCRSM), was constructed using machine learning. PCRSM emerged as an independent prognostic indicator for CRC, impacting both overall survival (OS) and recurrence-free survival (RFS), surpassing the performance of 89 previously published CRC risk signatures. Additionally, patients with a high PCRSM risk score showed sensitivity to fluorouracil-based adjuvant chemotherapy (FOLFOX) but resistance to single chemotherapy drugs (such as Bevacizumab and Oxaliplatin). Furthermore, this study predicted that patients with high PCRSM were resistant to anti-PD1therapy. CONCLUSION In conclusion, this study identified three cell subpopulations (NOTCH3 + Fib, TNNT1 + Epi, and HSPA1A + Epi) associated with PC, which can be targeted to improve the prognosis of CRC patients. The PCRSM model shows promise in enhancing the survival and treatment of CRC patients.
Collapse
Affiliation(s)
- Shangshang Hu
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Muzi Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Rui Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - QianNi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Jinwei Lou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Yuhan Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China.
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China.
| |
Collapse
|
3
|
Jardanowska-Kotuniak M, Dramiński M, Własnowolski M, Łapiński M, Sengupta K, Agarwal A, Filip A, Ghosh N, Pancaldi V, Grynberg M, Saha I, Plewczynski D, Dąbrowski MJ. Unveiling epigenetic regulatory elements associated with breast cancer development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623187. [PMID: 39605637 PMCID: PMC11601335 DOI: 10.1101/2024.11.12.623187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Breast cancer is the most common cancer in women and the 2nd most common cancer worldwide, yearly impacting over 2 million females and causing 650 thousand deaths. It has been widely studied, but its epigenetic variation is not entirely unveiled. We aimed to identify epigenetic mechanisms impacting the expression of breast cancer related genes to detect new potential biomarkers and therapeutic targets. We considered The Cancer Genome Atlas database with over 800 samples and several omics datasets such as mRNA, miRNA, DNA methylation, which we used to select 2701 features that were statistically significant to differ between cancer and control samples using the Monte Carlo Feature Selection and Interdependency Discovery algorithm, from an initial total of 417,486. Their biological impact on cancerogenesis was confirmed using: statistical analysis, natural language processing, linear and machine learning models as well as: transcription factors identification, drugs and 3D chromatin structure analyses. Classification of cancer vs control samples on the selected features returned high classification weighted Accuracy from 0.91 to 0.98 depending on feature-type: mRNA, miRNA, DNA methylation, and classification algorithm. In general, cancer samples showed lower expression of differentially expressed genes and increased β-values of differentially methylated sites. We identified mRNAs whose expression is well explained by miRNA expression and differentially methylated sites β-values. We recognized differentially methylated sites possibly affecting NRF1 and MXI1 transcription factors binding, causing a disturbance in NKAPL and PITX1 expression, respectively. Our 3D models showed more loosely packed chromatin in cancer. This study successfully points out numerous possible regulatory dependencies.
Collapse
Affiliation(s)
- Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Własnowolski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Łapiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Kaustav Sengupta
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Abhishek Agarwal
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Adam Filip
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Nimisha Ghosh
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata 700106, India
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał J. Dąbrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Zhang C, Wu BZ, Di Ciano-Oliveira C, Wu YF, Khavkine Binstock SS, Soria-Bretones I, Pham NA, Elia AJ, Chari R, Lam WL, Bray MR, Mak TW, Tsao MS, Cescon DW, Thu KL. Identification of KIFC1 as a putative vulnerability in lung cancers with centrosome amplification. Cancer Gene Ther 2024; 31:1559-1570. [PMID: 39179685 PMCID: PMC11489082 DOI: 10.1038/s41417-024-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Centrosome amplification (CA), an abnormal increase in the number of centrosomes in the cell, is a recurrent phenomenon in lung and other malignancies. Although CA promotes tumor development and progression by inducing genomic instability (GIN), it also induces mitotic stress that jeopardizes cellular integrity. CA leads to the formation of multipolar mitotic spindles that can cause lethal chromosome segregation errors. To sustain the benefits of CA by mitigating its consequences, malignant cells are dependent on adaptive mechanisms that represent therapeutic vulnerabilities. We aimed to discover genetic dependencies associated with CA in lung cancer. Combining a CRISPR/Cas9 functional genomics screen with tumor genomic analyses, we identified the motor protein KIFC1, also known as HSET, as a putative vulnerability specifically in lung adenocarcinoma (LUAD) with CA. KIFC1 expression was positively correlated with CA in LUAD and associated with worse patient outcomes, smoking history, and indicators of GIN. KIFC1 loss-of-function sensitized LUAD cells with high basal KIFC1 expression to potentiation of CA, which was associated with a diminished ability to cluster extra centrosomes into pseudo-bipolar mitotic spindles. Our work suggests that KIFC1 inhibition represents a novel approach for potentiating GIN to lethal levels in LUAD with CA by forcing cells to divide with multipolar spindles, rationalizing further studies to investigate its therapeutic potential.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Benson Z Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Yin Fang Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Sharon S Khavkine Binstock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | | | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Andrew J Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Raj Chari
- Laboratory Animal Sciences Program, Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mark R Bray
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kelsie L Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Liu L, Jing F, Li J, Gong P, Shi B, Zhu Y, Yu H. Kinesin Family Member C1: Function in liver hepatocellular carcinoma and potential target for chemotherapeutic. Heliyon 2024; 10:e37832. [PMID: 39315235 PMCID: PMC11417577 DOI: 10.1016/j.heliyon.2024.e37832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
MiR-105 exerts inhibitory effects on the development and progression of various cancers, including breast cancer, lung cancer, and gastric cancer. Through GEO data analysis, we observed decreased expression of miR-105 in liver cancer tissues compared to adjacent tissues. Furthermore, miR-105 downregulates KIFC1 expression levels by targeting its 3' UTR. KIFC1 (Kinesin Family Member C1), a Protein Coding gene, may play a role in mitotic metaphase plate polymerization and mitotic spindle assembly. However, our findings suggest that this gene could serve as a potential chemotherapeutic target for Liver hepatocellular carcinoma (LIHC). We obtained the LIHC dataset from the TCGA database and genotype Tissue Expression Project (GTEx) normal tissue data for differential analysis. Additionally, we utilized the cBioPortal database, tumor immune single-cell center (TISCH) database, gene set enrichment analysis (GSEA), and R software to investigate the possible functions and mechanisms of KIFC1. These findings were further validated through experiments such as immunohistochemistry and wound healing assays. Our results indicate that KIFC1 might be involved in DNA repair and cell cycle regulation in LIHC cells which subsequently impacts tumor cell proliferation; moreover, miR-105 influences hepatoma cell line proliferation via its interaction with KIFC1. Collectively, these results highlight the potential therapeutic significance of targeting KIFC1 for chemotherapy treatment in LIHC patients.
Collapse
Affiliation(s)
- Lei Liu
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jia Li
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Pangjun Gong
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Baoqing Shi
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Youming Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032,China
| | - Hongzhu Yu
- Department of General Surgery, Department of Emergency Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|
6
|
Becker IC, Wilkie AR, Nikols E, Carminita E, Roweth HG, Tilburg J, Sciaudone AR, Noetzli LJ, Fatima F, Couldwell G, Ray A, Mogilner A, Machlus KR, Italiano JE. Cell cycle-dependent centrosome clustering precedes proplatelet formation. SCIENCE ADVANCES 2024; 10:eadl6153. [PMID: 38896608 PMCID: PMC11186502 DOI: 10.1126/sciadv.adl6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.
Collapse
Affiliation(s)
- Isabelle C. Becker
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrian R. Wilkie
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Harvey G. Roweth
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Julia Tilburg
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | - Leila J. Noetzli
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Farheen Fatima
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | - Anjana Ray
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
7
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Farrokhi A, Atre T, Rever J, Fidanza M, Duey W, Salitra S, Myung J, Guo M, Jo S, Uzozie A, Baharvand F, Rolf N, Auer F, Hauer J, Grupp SA, Eydoux P, Lange PF, Seif AE, Maxwell CA, Reid GSD. The Eμ-Ret mouse is a novel model of hyperdiploid B-cell acute lymphoblastic leukemia. Leukemia 2024; 38:969-980. [PMID: 38519798 PMCID: PMC11073968 DOI: 10.1038/s41375-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eμ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eμ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eμ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.
Collapse
Affiliation(s)
- Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jenna Rever
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Wendy Duey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Junia Myung
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Meiyun Guo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Anuli Uzozie
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Fatemeh Baharvand
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Franziska Auer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephan A Grupp
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philipp F Lange
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alix E Seif
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Xue P, Zheng J, Li R, Yan L, Wang Z, Jia Q, Zhang L, Li X. High Expression of KIFC1 in Glioma Correlates with Poor Prognosis. J Korean Neurosurg Soc 2024; 67:364-375. [PMID: 38720546 PMCID: PMC11079566 DOI: 10.3340/jkns.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. METHODS Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. RESULTS The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. CONCLUSION Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.
Collapse
Affiliation(s)
- Pengfei Xue
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Rongrong Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lili Yan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhaohao Wang
- Department of Neurosurgery, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Lianqun Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
11
|
Deng X, Liu Z, Wang B, Ma J, Meng X. The DDX6/KIFC1 signaling axis, as regulated by YY1, contributes to the malignant behavior of pancreatic cancer. FASEB J 2024; 38:e23581. [PMID: 38551642 DOI: 10.1096/fj.202400166r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Human DEAD/H box RNA helicase DDX6 acts as an oncogene in several different types of cancer, where it participates in RNA processing. Nevertheless, the role of DDX6 in pancreatic cancer (PC), together with the underlying mechanism, has yet to be fully elucidated. In the present study, compared with adjacent tissues, the level of DDX6 was abnormally increased in human PC tissues, and this increased level of expression was associated with poor prognosis. Furthermore, the role of DDX6 in PC was investigated by overexpressing or silencing the DDX6 in the PC cell lines, SW1990 and PaTu-8988t. A xenograft model was established by injecting nude mice with either DDX6-overexpressing or DDX6-silenced SW1990 cells. DDX6 overexpression promoted the proliferation and cell cycle transition, inhibited the cell apoptosis of PC cells, and accelerated tumor formation, whereas DDX6 knockdown elicited the opposite effects. DDX6 exerted positive effects on PC. RNA immunoprecipitation assay showed that DDX6 bound to kinesin family member C1 (KIFC1) mRNA, which was further confirmed by RNA pull-down assay. These results suggested that DDX6 positively regulated the expression of KIFC1. KIFC1 overexpression enhanced the proliferative capability of PC cells with DDX6 knockdown and inhibited their apoptosis. By contrast, DDX6 overexpression reversed the inhibitory effect of KIFC1 silencing on tumor proliferation. Subsequently, the transcription factor Yin Yang 1 (YY1) was shown to negatively regulate DDX6 at both the mRNA and protein levels. Dual-luciferase reporter assay verified that YY1 targeted the promoter of DDX6 and inhibited its transcription. High expression levels of YY1 decreased the proliferation of PC cells and promoted cell apoptosis, although these effects were reversed by DDX6 overexpression. Taken together, YY1 may target the DDX6/KIFC1 axis, thereby negatively regulating its expression, leading to an inhibitory effect on pancreatic tumor.
Collapse
Affiliation(s)
- Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Tian L, Wang W, Li X, Chen Y, Song Q, Yuan L, Hao T, Gu J, Dong J. Whole transcriptome scanning and validation of negatively related genes in UC-MSCs. Heliyon 2024; 10:e27996. [PMID: 38510024 PMCID: PMC10951646 DOI: 10.1016/j.heliyon.2024.e27996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (UC-MSCs) are one of the most extensively researched stem cell types due to their potential for multi-lineage differentiation, secretion of regenerative factors, modulations of immunological activities, and the release of regenerative substances and influence immunological processes. Since UC-MSCs must be cultivated on a large scale for clinical use, selecting the appropriate storing passage, such as the usage-based passage of UC-MSCs, is critical for long-term autologous or allogeneic usage. Long-term cultivation of stem cells, on the other hand, causes them to lose their pluripotent differentiation capacity. As a result, distinguishing between high and low passages of UC-MSCs and identifying the particular variations associated with stem cells and their modes of action is essential for regenerative medicine. Therefore, we investigated the biological features and transcriptional changes of UC-MSCs over passages. Methods UC-MSCs were isolated from the tissues of the human umbilical cord, and UC-MSCs from five passages (P1, P3, P5, P10 and P15) with three repetitions were compared and identified based on morphology, cell markers, differentiation capacity, and aging-related characteristics. It was previously assumed that the phenotype of cells before the P10 passage was stable, defined as early passage, and that culture could be continued until the 15th passage, defined as late passage. Next, the five passages of UC-MSCs were sequenced using high-throughput complete transcriptome sequencing. Fuzzy C-Means Clustering (FCM) and Weighted Gene Co-expression Network Analysis (WGCNA) were used to find hub genes, and gene silencing was performed to investigate the impact of missing genes on the stemness of UC-MSC cells. Results UC-MSCs of different passages displayed similar surface markers, including CD73, CD105, CD90, CD34, CD45 and HLA-DR. However, the proliferation time of late-phase UC-MSCs was longer than that of early-phase UC-MSCs, and the expression of the senescence-associated (SA)-β-gal staining marker was higher. At the same time, pluripotency markers (NANOG, OCT4, SOX2 and KIF4A) were down-regulated, and the multi-differentiation potential was reduced. Meanwhile, KIFC1 and UBE2C were down-regulated in late-phase UC-MSCs, which were involved in the maintenance of stemness. Conclusions KIFC1 and UBE2C were highly expressed in early-UC-MSCs and showed a downward gradient trend with cell expansion in vitro. They regulated UC-MSC proliferation, colony sphere formation, multiple differentiation, stemness maintenance, and other biological manifestations. Therefore, they are anticipated to be new biomarkers for UC-MSCs quality identification in regenerative medicine applications.
Collapse
Affiliation(s)
- Linghan Tian
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Weibin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Yan Chen
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Qian Song
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Lu Yuan
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Tingting Hao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Jiaming Gu
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jian Dong
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| |
Collapse
|
14
|
Chen T, Chu Y, Xu H, Dai H, Zhou Y, Du H, Zhu W. Kinesin superfamily member KIFC2 as an independent prognostic biomarker of colon adenocarcinoma associated with poor immune response. Medicine (Baltimore) 2023; 102:e35491. [PMID: 37904433 PMCID: PMC10615560 DOI: 10.1097/md.0000000000035491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
Clinical outcomes of colon adenocarcinoma (COAD) exhibit heterogeneity among different patients, highlighting the need for novel prognostic biomarkers. Kinesin superfamily members have been shown to play a crucial role in tumors and can predict cancer diagnosis and prognosis. However, the role of kinesin family member C2 (KIFC2) in tumors, particularly its prognostic value in COAD, remains poorly understood. Our bioinformatics analysis of the cancer genome atlas and GEO databases revealed significantly higher expression of KIFC2 in COAD, correlating with a worse prognosis in the cancer genome atlas-COAD and GSE17536 cohorts. Additionally, differentially expressed genes in COAD were enriched in immune-related pathways, and patients with higher KIFC2 expression showed fewer activated CD4 + T cells. These findings suggest KIFC2 as a potential prognostic biomarker for COAD, warranting further validation in clinical studies.
Collapse
Affiliation(s)
- Tao Chen
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yunqian Chu
- Cancer Center, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haiyuan Xu
- Department of Medical Oncology, Kunshan First People’s Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Hanjue Dai
- Cancer Center, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuxi Zhou
- Burning Rock Biotech, Guangzhou, China
| | - Haiwei Du
- Burning Rock Biotech, Guangzhou, China
| | - Wenyu Zhu
- Cancer Center, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
15
|
Martins S, Coletti R, Lopes MB. Disclosing transcriptomics network-based signatures of glioma heterogeneity using sparse methods. BioData Min 2023; 16:26. [PMID: 37752578 PMCID: PMC10523751 DOI: 10.1186/s13040-023-00341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/13/2023] [Indexed: 09/28/2023] Open
Abstract
Gliomas are primary malignant brain tumors with poor survival and high resistance to available treatments. Improving the molecular understanding of glioma and disclosing novel biomarkers of tumor development and progression could help to find novel targeted therapies for this type of cancer. Public databases such as The Cancer Genome Atlas (TCGA) provide an invaluable source of molecular information on cancer tissues. Machine learning tools show promise in dealing with the high dimension of omics data and extracting relevant information from it. In this work, network inference and clustering methods, namely Joint Graphical lasso and Robust Sparse K-means Clustering, were applied to RNA-sequencing data from TCGA glioma patients to identify shared and distinct gene networks among different types of glioma (glioblastoma, astrocytoma, and oligodendroglioma) and disclose new patient groups and the relevant genes behind groups' separation. The results obtained suggest that astrocytoma and oligodendroglioma have more similarities compared with glioblastoma, highlighting the molecular differences between glioblastoma and the others glioma subtypes. After a comprehensive literature search on the relevant genes pointed our from our analysis, we identified potential candidates for biomarkers of glioma. Further molecular validation of these genes is encouraged to understand their potential role in diagnosis and in the design of novel therapies.
Collapse
Affiliation(s)
- Sofia Martins
- NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Roberta Coletti
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| | - Marta B Lopes
- NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal.
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
- NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| |
Collapse
|
16
|
Celik B, Pasin O, Sen S, Tuncer SB, Kayım ZY, Erciyas SK, Erdogan OS, Gultaslar BK, Ghafour AA, Yazıcı H, Olgac NV. DNA methylation of KIFC1 gene in determination of histological diagnosis, prognosis and metastasis of lung cancer. Pathol Res Pract 2023; 249:154742. [PMID: 37666088 DOI: 10.1016/j.prp.2023.154742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND One of the main features of cancer, especially lung cancer (LC), is abnormal cell division. Abnormal expression of kinesin family member C1 (KIFC1/HSET), which is involved in mitotic cell division and ensures equatorial alignment of chromosomes during division, is observed in both premalignant and malignant lesions. There are no studies in the literature addressing the role of KIFC1 in the diagnosis and follow-up of LC. In this study, we investigated the epigenetic role of KIFC1 in the diagnosis, stage, and prognosis of various histological subtypes diagnosed with LC. MATERIAL AND METHODS The expression and methylation status of the KIFC1 gene were examined after DNA/RNA isolation in tumor, conjugate normal tissue, and blood samples from 39 patients diagnosed with LC and in blood samples from 39 healthy controls. Changes in KIFC1 gene expression were examined by the Quantitative Real Time-PCR (qRT-PCR) method after cDNA synthesis following RNA isolation. The Methylation-Specific PCR (MSP) method was used to determine the methylation status of the KIFC1 gene. In this study, the expression/methylation profiles of the KIFC1 gene and the clinical and pathological characteristics of the patients were analyzed by statistical methods. RESULT Hypomethylation was detected in 95.8% of the 62.1% of patients' tissues with increased KIFC1 gene expression. The expression level of the KIFC1 gene was found to be increased 3.2-fold in the tumor tissues of the patients compared with the conjugated normal tissues and 2.4-fold in the serum of the patients compared with the healthy serum. Statistical comparison of patients' clinical parameters and methylation and expression results revealed statistical significance between KIFC1 expression and metastasis, tumor stage and tumor grade. CONCLUSION In conclusion, the increase in the expression level of the KIFC1 gene is higher in patients diagnosed with LC than in the healthy population, and therefore, the increase in the expression level of the KIFC1 gene due to hypomethylation can be used as a screening biomarker in LC. It can also be considered that the methylation profile of the KIFC1 gene may be a potential biomarker for determining the subtype of squamous cell carcinoma in LC. The results of the study need to be analyzed and continued with a larger number of patients.
Collapse
Affiliation(s)
- Betul Celik
- Istanbul University, Institute of Graduate Studies in Health Sciences, Department of Cancer Genetics, Istanbul, Türkiye; Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye; Molecular Biology Department, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
| | - Ozge Pasin
- Department of Biostatistics, Bezmialem University, Istanbul, Türkiye.
| | - Sena Sen
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Zubeyde Yalnız Kayım
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Seda Kılıc Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Busra Kurt Gultaslar
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Arash Adamnejad Ghafour
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Hulya Yazıcı
- Istanbul Arel University, Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul, Türkiye.
| | - Necat Vakur Olgac
- Istanbul University, Institute of Graduate Studies in Health Sciences, Department of Cancer Genetics, Istanbul, Türkiye; Tumor Pathology Department, Department of Clinical Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
17
|
Sharma N, Setiawan D, Hamelberg D, Narayan R, Aneja R. Computational benchmarking of putative KIFC1 inhibitors. Med Res Rev 2023; 43:293-318. [PMID: 36104980 DOI: 10.1002/med.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023]
Abstract
The centrosome in animal cells is instrumental in spindle pole formation, nucleation, proper alignment of microtubules during cell division, and distribution of chromosomes in each daughter cell. Centrosome amplification involving structural and numerical abnormalities in the centrosome can cause chromosomal instability and dysregulation of the cell cycle, leading to cancer development and metastasis. However, disturbances caused by centrosome amplification can also limit cancer cell survival by activating mitotic checkpoints and promoting mitotic catastrophe. As a smart escape, cancer cells cluster their surplus of centrosomes into pseudo-bipolar spindles and progress through the cell cycle. This phenomenon, known as centrosome clustering (CC), involves many proteins and has garnered considerable attention as a specific cancer cell-targeting weapon. The kinesin-14 motor protein KIFC1 is a minus end-directed motor protein that is involved in CC. Because KIFC1 is upregulated in various cancers and modulates oncogenic signaling cascades, it has emerged as a potential chemotherapeutic target. Many molecules have been identified as KIFC1 inhibitors because of their centrosome declustering activity in cancer cells. Despite the ever-increasing literature in this field, there have been few efforts to review the progress. The current review aims to collate and present an in-depth analysis of known KIFC1 inhibitors and their biological activities. Additionally, we present computational docking data of putative KIFC1 inhibitors with their binding sites and binding affinities. This first-of-kind comparative analysis involving experimental biology, chemistry, and computational docking of different KIFC1 inhibitors may help guide decision-making in the selection and design of potent inhibitors.
Collapse
Affiliation(s)
- Nivya Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Dani Setiawan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa, India.,School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Goa, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA.,Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Kositza J, Nguyen J, Hong T, Mantwill K, Nawroth R. Identification of the KIF and MCM protein families as novel targets for combination therapy with CDK4/6 inhibitors in bladder cancer. Urol Oncol 2023; 41:253.e11-253.e20. [PMID: 36813612 DOI: 10.1016/j.urolonc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
CDK4/6 inhibitors have proven their potency for the treatment of cancer but only in combination with hormone or targeted therapies. The aim of this study was the identification of molecules that are involved in response mechanisms to CDK4/6 inhibitors and the development of novel combination therapies with corresponding inhibitors in bladder cancer. Genes of response to therapy and genes that confer resistance to the CDK4/6 inhibitor palbociclib were identified by performing an analysis of published literature and own published data using a CRISPR-dCas9 genome wide gain of function screen. Genes that were down-regulated upon treatment were compared with genes that confer resistance when up-regulated. Two of the top 5 genes were validated by quantitative PCR and western blotting upon treatment with palbociclib in the bladder cancer cell lines T24, RT112 and UMUC3. As inhibitors for combination therapy, we used ciprofloxacin, paprotrain, ispinesib and SR31527. Analysis of synergy was done using the "zero interaction potency" model. Cell growth was examined using sulforhodamine B staining. A list of genes that met the requirements for inclusion in the study was generated from 7 publications. Of the 5 most relevant genes, MCM6 and KIFC1 were chosen and their down-regulation upon treatment with palbociclib was confirmed by qPCR and immunoblotting. The combination of inhibitors against both, KIFC1 and MCM6 with PD resulted in a synergistic inhibition of cell growth. We have identified 2 molecular targets whose inhibition has promising potential for effective combination therapies with the CDK4/6 inhibitor palbociclib.
Collapse
Affiliation(s)
- Julian Kositza
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Nguyen
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ting Hong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus Mantwill
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
19
|
Centrosome Defects in Hematological Malignancies: Molecular Mechanisms and Therapeutic Insights. BLOOD SCIENCE 2022; 4:143-151. [DOI: 10.1097/bs9.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
|
20
|
Khan MKA, Ahmad S, Rabbani G, Shahab U, Khan MS. Target-based virtual screening, computational multiscoring docking and molecular dynamics simulation of small molecules as promising drug candidate affecting kinesin-like protein KIFC1. Cell Biochem Funct 2022; 40:451-472. [PMID: 35758564 DOI: 10.1002/cbf.3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/07/2022]
Abstract
The kinesin family member C1 (KIFC1) is an essential protein that facilitates the bipolar division of neoplastic cells. Inhibiting KIFC1 by small molecules is a lucrative strategy to impede bipolar mitosis leading to the apoptosis of cancerous cells. The research aims to envisage small-molecule inhibitors targeting KIFC1. The Mcule database, a comprehensive online digital platform containing more than five million chemical compounds, was used for structure-based virtual screening (SBVS). Druglikeness filtration sifted 2,293,282 chemical hits that further narrowed down to 49 molecules after toxicity profiling. Finally, 39 compounds that comply with the BOILED-Egg permeation predictive model of the ADME rules were carried forward for multiscoring docking using the AutoDock Vina inbuilt to Mcule drug discovery platform, DockThor and SwissDock tools. The mean of ΔG terms produced by docking tools was computed to find consensus top ligand hits. AZ82 exhibited stronger binding (Consensus ΔG: -7.99 kcal mol-1 ) with KIFC1 among reference inhibitors, for example, CW069 (-7.57 kcal mol-1 ) and SR31527 (-7.01 kcal mol-1 ). Ten ligand hits namely, Mcule-4895338547 (Consensus ΔG: -8.69 kcal mol-1 ), Mcule-7035674888 (-8.42 kcal mol-1 ), Mcule-5531166845 (-8.53 kcal mol-1 ), Mcule-3248415882 (-8.55 kcal mol-1 ), Mcule-291881733 (-8.41 kcal mol-1 ), Mcule-5918624394 (-8.44), Mcule-3470115427 (-8.47), Mcule-3686193135 (-8.18 kcal mol-1 ), Mcule-3955355291 (8.09 kcal mol-1 ) and Mcule-9534899193 (-8.01 kcal mol-1 ) depicted strong binding interactions with KIFC1 in comparison to potential reference inhibitor AZ82. The top four ligands and AZ82 were considered for molecular dynamics simulation of 50 ns duration. Toxicity profiling, physicochemical properties, lipophilicity, solubility, pharmacokinetics, druglikeness, medicinal chemistry attributes, average potential energy, RMSD, RMSF, SASA, ΔGsolv and Rg analyses forecast the ligand mcule-4895338547 as a promising inhibitor of KIFC1.
Collapse
Affiliation(s)
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, Gumi-si, Gyeongbuk, Republic of Korea
| | - Uzma Shahab
- Department of Biotechnology, KMC Language University, Lucknow, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Philip R, Fiorino C, Harrison RE. Terminally differentiated osteoclasts organize centrosomes into large clusters for microtubule nucleation and bone resorption. Mol Biol Cell 2022; 33:ar68. [PMID: 35511803 DOI: 10.1091/mbc.e22-03-0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Osteoclasts are highly specialized, multinucleated cells responsible for the selective resorption of the dense, calcified bone matrix. Microtubules (MTs) contribute to the polarization and trafficking events involved in bone resorption by osteoclasts, however the origin of these elaborate arrays is less clear. Osteoclasts arise through cell fusion of precursor cells. Previous studies have suggested that centrosome MT nucleation is lost during this process, with the nuclear membrane and its surrounding Golgi serving as the major microtubule organizing centres (MTOCs) in these cells. Here we reveal that precursor cell centrosomes are maintained and functional in the multinucleated osteoclast and interestingly form large MTOC clusters, with the clusters organizing significantly more MTs, compared to individual centrosomes. MTOC cluster formation requires dynamic microtubules and minus-end directed MT motor activity. Inhibition of these centrosome clustering elements had a marked impact on both F-actin ring formation and bone resorption. Together these findings show that multinucleated osteoclasts employ unique centrosomal clusters to organize the extensive microtubules during bone attachment and resorption. [Media: see text].
Collapse
Affiliation(s)
- Reuben Philip
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada, M5G 1 × 5
| | - Cara Fiorino
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Rene E Harrison
- Department of Cell & Systems Biology and the Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| |
Collapse
|
22
|
Centrosome Dysfunctions in Cancer. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:43-50. [DOI: 10.1007/978-3-031-20848-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Kinesin Family Member C1 (KIFC1/HSET): A Potential Actionable Biomarker of Early Stage Breast Tumorigenesis and Progression of High-Risk Lesions. J Pers Med 2021; 11:jpm11121361. [PMID: 34945833 PMCID: PMC8708236 DOI: 10.3390/jpm11121361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The enigma of why some premalignant or pre-invasive breast lesions transform and progress while others do not remains poorly understood. Currently, no radiologic or molecular biomarkers exist in the clinic that can successfully risk-stratify high-risk lesions for malignant transformation or tumor progression as well as serve as a minimally cytotoxic actionable target for at-risk subpopulations. Breast carcinogenesis involves a series of key molecular deregulatory events that prompt normal cells to bypass tumor-suppressive senescence barriers. Kinesin family member C1 (KIFC1/HSET), which confers survival of cancer cells burdened with extra centrosomes, has been observed in premalignant and pre-invasive lesions, and its expression has been shown to correlate with increasing neoplastic progression. Additionally, KIFC1 has been associated with aggressive breast tumor molecular subtypes, such as basal-like and triple-negative breast cancers. However, the role of KIFC1 in malignant transformation and its potential as a predictive biomarker of neoplastic progression remain elusive. Herein, we review compelling evidence suggesting the involvement of KIFC1 in enabling pre-neoplastic cells to bypass senescence barriers necessary to become immortalized and malignant. We also discuss evidence inferring that KIFC1 levels may be higher in premalignant lesions with a greater inclination to transform and acquire aggressive tumor intrinsic subtypes. Collectively, this evidence provides a strong impetus for further investigation into KIFC1 as a potential risk-stratifying biomarker and minimally cytotoxic actionable target for high-risk patient subpopulations.
Collapse
|
24
|
KIFC1 promotes aerobic glycolysis in endometrial cancer cells by regulating the c-myc pathway. J Bioenerg Biomembr 2021; 53:703-713. [PMID: 34729671 DOI: 10.1007/s10863-021-09924-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
Endometrial cancer (EC) is a common gynecological malignant tumor worldwide. It is imperative to study pathogenesis and therapeutic targets for improving the prognosis of EC. The present study aimed to explore the function and mechanism of kinesin family member C1 (KIFC1) in EC. EC tumor and adjacent normal tissues were collected from 68 pairs of patients. The expression of KIFC1 in tissues and EC cells was analyzed by immunohistochemistry, qRT-PCR or western blot. MTT assay was used to test the cell viability. Flow cytometry was used to determine apoptosis and the cell cycle. Glucose uptake, lactate production, ATP contents and lactate dehydrogenase (LDH) activity were evaluated by a glucose metabolism kit. The expression of HMGA1, c-myc and glycolytic genes was assessed using western blot or qRT-PCR. A mouse xenograft model was established in BALB/c mice to detect tumor growth in vivo. KIFC1 was significantly upregulated in EC tumor tissues compared to adjacent normal control tissues. The upregulated expression of KIFC1 was correlated with poor prognosis in patients. Lentiviral-mediated overexpression of KIFC1 observably enhanced cell viability and reduced the apoptotic rate of Ishikawa and HEC-1B cells. Cell cycle progression was also expedited in the KIFC1 vector group. Moreover, overexpression of KIFC1 elevated glucose uptake, lactate production, ATP contents and LDH activity. However, knockdown of KIFC1 by short hairpin RNA (shRNA) showed the reverse effect on cellular functions. In addition, the expression of c-myc, GLUT1, LDHA and HK2 was increased by the KIFC1 vector. Moreover, HMGA1 regulated the expression of c-myc and glycolytic genes. Upregulated HMGA1 could rescue the effect of KIFC1 knockdown on cellular functions and the expression of glycolytic genes. Finally, KIFC1 knockdown inhibits tumor growth in vivo. The upregulation of KIFC1 was correlated with poor prognosis in EC. KIFC1 promoted aerobic glycolysis in endometrial cancer cells by regulating the HMGA1/c-myc pathway. KIFC1 may be a potential target for the diagnosis and therapy of EC.
Collapse
|
25
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
26
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Akabane S, Oue N, Sekino Y, Asai R, Thang PQ, Taniyama D, Sentani K, Yukawa M, Toda T, Kimura KI, Egi H, Shimizu W, Ohdan H, Yasui W. KIFC1 regulates ZWINT to promote tumor progression and spheroid formation in colorectal cancer. Pathol Int 2021; 71:441-452. [PMID: 33819373 DOI: 10.1111/pin.13098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 02/02/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. Kinesin Family Member C1 (KIFC1) has been proposed as a promising therapeutic target due to its pivotal role in centrosome clustering to mediate cancer cell progression. This study aimed to analyze the expression and biological function of KIFC1 in CRC. Immunohistochemically, 67 (52%) of 129 CRC cases were positive for KIFC1 and statistically associated with poorer overall survival. KIFC1 small interfering RNA (siRNA)-transfected cells demonstrated lower cell proliferation as compared to the negative control cells. A specific KIFC1 inhibitor, kolavenic acid analog (KAA) drastically inhibited CRC cell proliferation. Microarray analysis revealed that KAA-treated CRC cells presented reduced ZW10 interacting kinetochore protein (ZWINT) expression as compared to control cells. Immunohistochemical analysis demonstrated that 61 (47%) of 129 CRC cases were positive for ZWINT and ZWINT expression was significantly correlated with KIFC1 expression. ZWINT-positive cases exhibited significantly worse overall survival. KIFC1 siRNA-transfected cells showed reduced ZWINT expression while ZWINT siRNA-transfected cells decreased cell proliferation. Both KIFC1 and ZWINT knockdown cells attenuated spheroid formation ability. This study provides new insights into KIFC1 regulating ZWINT in CRC progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shintaro Akabane
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Asai
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Pham Quoc Thang
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Ken-Ichi Kimura
- Chemical Biology Laboratory, Graduate School of Arts and Sciences, Iwate University, Iwate, Japan
| | - Hiroyuki Egi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Shimizu
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
28
|
Kostecka LG, Olseen A, Kang K, Torga G, Pienta KJ, Amend SR. High KIFC1 expression is associated with poor prognosis in prostate cancer. Med Oncol 2021; 38:47. [PMID: 33760984 PMCID: PMC7990808 DOI: 10.1007/s12032-021-01494-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Kinesins play important roles in the progression and development of cancer. Kinesin family member C1 (KIFC1), a minus end-directed motor protein, is a novel Kinesin involved in the clustering of excess centrosomes found in cancer cells. Recently KIFC1 has shown to play a role in the progression of many different cancers, however, the involvement of KIFC1 in the progression of prostate cancer (PCa) is still not well understood. This study investigated the expression and clinical significance of KIFC1 in PCa by utilizing multiple publicly available datasets to analyze KIFC1 expression in patient samples. High KIFC1 expression was found to be associated with high Gleason score, high tumor stage, metastatic lesions, high ploidy levels, and lower recurrence-free survival. These results reveal that high KIFC1 levels are associated with a poor prognosis for PCa patients and could act as a prognostic indicator for PCa patients as well.
Collapse
Affiliation(s)
- Laurie G Kostecka
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, 1830 E. Monument St., Baltimore, MD, 21205, USA.
| | - Athen Olseen
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - KiChang Kang
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - Gonzalo Torga
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA
| |
Collapse
|
29
|
Meier T, Timm M, Montani M, Wilkens L. Gene networks and transcriptional regulators associated with liver cancer development and progression. BMC Med Genomics 2021; 14:41. [PMID: 33541355 PMCID: PMC7863452 DOI: 10.1186/s12920-021-00883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. METHODS Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. RESULTS Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. CONCLUSION Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.
Collapse
Affiliation(s)
- Tatiana Meier
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany.
| | - Max Timm
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Clinic for Laryngology, Rhinology and Otology, Medical School Hanover, Hanover, Germany
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Institute of Human Genetics, Medical School Hanover, Hanover, Germany
| |
Collapse
|
30
|
Zhou K, Zhao J, Qi L, He Y, Xu J, Dai M. Kinesin Family Member C1 (KIFC1) Accelerates Proliferation and Invasion of Endometrial Cancer Cells Through Modulating the PI3K/AKT Signaling Pathway. Technol Cancer Res Treat 2020; 19:1533033820964217. [PMID: 33034273 PMCID: PMC7549169 DOI: 10.1177/1533033820964217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common cancers among women worldwide. Kinesin family member C1 (KIFC1) has been demonstrated to play crucial roles in various tumors. However, the function of KIFC1 in EC remains to be revealed. In this study, upregulation of KIFC1 expression in human EC tissues was found from analysis on data from The Cancer Genome Atlas (TCGA), and positively correlated with short survival outcome of EC patients. In addition, the mRNA and protein levels of KIFC1 were confirmed to be up-regulated in EC cells (Ishikawa, HEC-1B, HEC-1A and KLE) compared to human normal endometrial stromal cells (hESCs) by quantitative real time PCR and western blot. In vitro functional experiments showed that overexpression of KIFC1 promoted proliferation, migration and invasion of EC cells, while KIFC1 depletion showed the opposite results. Moreover, KIFC1 knockdown suppressed tumor growth in mice. Further mechanism analysis showed that KIFC1 participated in the regulation of EC progression through regulating the PI3K/AKT signaling pathway. Collectively, KIFC1 promoted proliferation and invasion through modulating PI3K/AKT signaling pathway in EC, implying that KIFC1 might provide a promising therapeutic target for the therapy of EC.
Collapse
Affiliation(s)
- Kening Zhou
- Department of Gynaecology, People’s Hospital of Quzhou City, Quzhou,
China
| | - Jian Zhao
- Department of Pathology, People’s Hospital of Quzhou City, Quzhou,
China
| | - Lifang Qi
- Department of Gynaecology, The Second Affiliated Hospital of Wenzhou
Medical University, Lucheng District, Wenzhou, China
| | - Yingying He
- Department of Pathology, People’s Hospital of Quzhou City, Quzhou,
China
| | - Jingui Xu
- Department of Gynaecology, People’s Hospital of Quzhou City, Quzhou,
China
| | - Mimi Dai
- Department of Gynaecology, The Second Affiliated Hospital of Wenzhou
Medical University, Lucheng District, Wenzhou, China
| |
Collapse
|
31
|
Wang X, Wang M, Li XY, Li J, Zhao DP. KIFC1 promotes the proliferation of hepatocellular carcinoma in vitro and in vivo. Oncol Lett 2019; 18:5739-5746. [PMID: 31788047 PMCID: PMC6865703 DOI: 10.3892/ol.2019.10985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of malignant tumor worldwide with a high mortality rate. In the past 20 years, the morbidity rate of HCC has increased. Progress has been made in the clinical diagnosis and therapy for HCC. However, due to the high heterogeneity and metastasis targeted therapy for HCC exhibits great promise, and novel therapeutic targets for HCC are urgently required. Kinesin family member C1 (KIFC1) is a member of the kinesin superfamily of proteins. Previous studies have indicated a potential association between KIFC1 and cancer progression. However, the potential role of KIFC1 in the development of HCC remains unclear. The present study aimed to explore the function of KIFC1 in HCC. Immunohistochemical (IHC) assays were performed to explore the KIF15 expression levels in 74 samples of HCC and corresponding non-tumor tissues. The potential association between KIF15 expression levels and clinical features was analyzed, and the effects of KIF15 on cell proliferation of HCC were detected by colony formation and MTT assays. In addition, the proliferation-related proteins Ki67 and PCNA were detected by western blotting. The possible effects of KIF15 on tumor growth were measured in mice. The results demonstrated that a high expression level of KIFC1 was associated with poor prognosis of HCC. Further results indicated that KIFC1 promoted cell proliferation of HCC in vitro. In addition, knockdown of KIFC1 suppressed tumor formation and growth in mice. Therefore, these results provide a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Xing Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xing-Yue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Dian-Peng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
32
|
Sun Y, Zhang Y, Lang Z, Huang J, Zou Z. Prognostic and clinicopathological significance of kinesin family member C1 in various cancers: A meta-analysis. Medicine (Baltimore) 2019; 98:e17346. [PMID: 31577729 PMCID: PMC6783163 DOI: 10.1097/md.0000000000017346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Kinesin family member C1 (KIFC1), a C-type kinesin motor protein, plays important roles in centrosome assembly and intracellular transport. Numerous studies have focused on the prognostic value of KIFC1 in malignant tumors and the relationship between KIFC1 expression and clinicopathological traits of cancer patients, but the studies remain controversial. And no meta-analysis has yet shown the association between KIFC1 and various cancers. METHODS Systematic retrieval was carried out within several databases, including PubMed, Embase, Web of Science, Wanfang and China National Knowledge Infrastructure (CNKI). In addition, hazard ratios (HR) and relative risks (RR) with 95% confidence intervals (CIs) were calculated to examine the risk or hazard correlation by Stata SE15.1. RESULTS Eleven studies with the overall 2424 participants were included in this research. High KIFC1 expression was remarkably correlated with worse OS (HR = 1.33, 95% CI = 1.07-1.60) and poorer relapse-free survival (HR = 2.28, 95% CI = 1.75-2.80). In subgroup analysis, high KIFC1 expression was a negative predictor for OS in patients with ovarian cancer (P < .001), breast cancer (P < .001), hepatocellular carcinoma (P < .001), and non-small cell lung cancer (P < .001), but not for esophageal squamous cell carcinoma (P = .246). Moreover, high levels of KIFC1 were related with positive lymph node metastasis (RR = 1.23, 95% CI = 1.01-1.50, P = .041) and advanced tumor node metastasis (TNM) stage (RR = 1.55, 95% CI = 1.27-1.89, P < .001). CONCLUSIONS KIFC1 overexpression indicates poor prognosis and more serious clinicopathological characteristics in kinds of malignancies. Thus, we conclude that KIFC1 could be a target for clinical diagnosis and treatment of various cancers.
Collapse
Affiliation(s)
- Yuting Sun
- Department of General Surgery, Second Affiliated Hospital of Nanchang University
- Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yi Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University
- Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhiquan Lang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University
- Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Junfu Huang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University
- Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhenhong Zou
- Department of General Surgery, Second Affiliated Hospital of Nanchang University
| |
Collapse
|
33
|
Strothman C, Farmer V, Arpağ G, Rodgers N, Podolski M, Norris S, Ohi R, Zanic M. Microtubule minus-end stability is dictated by the tubulin off-rate. J Cell Biol 2019; 218:2841-2853. [PMID: 31420452 PMCID: PMC6719460 DOI: 10.1083/jcb.201905019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Dynamic organization of microtubule minus ends is vital for the formation and maintenance of acentrosomal microtubule arrays. In vitro, both microtubule ends switch between phases of assembly and disassembly, a behavior called dynamic instability. Although minus ends grow slower, their lifetimes are similar to those of plus ends. The mechanisms underlying these distinct dynamics remain unknown. Here, we use an in vitro reconstitution approach to investigate minus-end dynamics. We find that minus-end lifetimes are not defined by the mean size of the protective GTP-tubulin cap. Rather, we conclude that the distinct tubulin off-rate is the primary determinant of the difference between plus- and minus-end dynamics. Further, our results show that the minus-end-directed kinesin-14 HSET/KIFC1 suppresses tubulin off-rate to specifically suppress minus-end catastrophe. HSET maintains its protective minus-end activity even when challenged by a known microtubule depolymerase, kinesin-13 MCAK. Our results provide novel insight into the mechanisms of minus-end dynamics, essential for our understanding of microtubule minus-end regulation in cells.
Collapse
Affiliation(s)
- Claire Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Veronica Farmer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Göker Arpağ
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Nicole Rodgers
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marija Podolski
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Stephen Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| |
Collapse
|
34
|
Radnai L, Stremel RF, Sellers JR, Rumbaugh G, Miller CA. A Semi-High-Throughput Adaptation of the NADH-Coupled ATPase Assay for Screening Small Molecule Inhibitors. J Vis Exp 2019. [PMID: 31475972 DOI: 10.3791/60017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ATPase enzymes utilize the free energy stored in adenosine triphosphate to catalyze a wide variety of endergonic biochemical processes in vivo that would not occur spontaneously. These proteins are crucial for essentially all aspects of cellular life, including metabolism, cell division, responses to environmental changes and movement. The protocol presented here describes a nicotinamide adenine dinucleotide (NADH)-coupled ATPase assay that has been adapted to semi-high throughput screening of small molecule ATPase inhibitors. The assay has been applied to cardiac and skeletal muscle myosin II's, two actin-based molecular motor ATPases, as a proof of principle. The hydrolysis of ATP is coupled to the oxidation of NADH by enzymatic reactions in the assay. First, the ADP generated by the ATPase is regenerated to ATP by pyruvate kinase (PK). PK catalyzes the transition of phosphoenolpyruvate (PEP) to pyruvate in parallel. Subsequently, pyruvate is reduced to lactate by lactate dehydrogenase (LDH), which catalyzes the oxidation of NADH in parallel. Thus, the decrease in ATP concentration is directly correlated to the decrease in NADH concentration, which is followed by change to the intrinsic fluorescence of NADH. As long as PEP is available in the reaction system, the ADP concentration remains very low, avoiding inhibition of the ATPase enzyme by its own product. Moreover, the ATP concentration remains nearly constant, yielding linear time courses. The fluorescence is monitored continuously, which allows for easy estimation of the quality of data and helps to filter out potential artifacts (e.g., arising from compound precipitation or thermal changes).
Collapse
Affiliation(s)
- Laszlo Radnai
- Department of Molecular Medicine, The Scripps Research Institute; Department of Neuroscience, The Scripps Research Institute
| | - Rebecca F Stremel
- Department of Molecular Medicine, The Scripps Research Institute; Department of Neuroscience, The Scripps Research Institute
| | - James R Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute; Department of Neuroscience, The Scripps Research Institute;
| |
Collapse
|
35
|
KIFC1 is activated by TCF-4 and promotes hepatocellular carcinoma pathogenesis by regulating HMGA1 transcriptional activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:329. [PMID: 31340839 PMCID: PMC6657086 DOI: 10.1186/s13046-019-1331-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Background Kinesins play important roles in the development and progression of many human cancers. The functions and underlying mechanisms of kinesin family member C1 (KIFC1), a member of the kinesin-14 family, in the pathogenesis of hepatocellular carcinoma (HCC) have not been fully elucidated. Methods In this study, 168 HCC samples were first analyzed to examine the association between KIFC1 expression and patient clinicopathological features and prognosis. The role of KIFC1 in HCC cell proliferation and metastasis was investigated both in vivo and in vitro. The upstream regulation and downstream targets of KIFC1 were studied by qRT-PCR, western blotting, coimmunoprecipitation, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Results KIFC1 was highly expressed in HCC tissues and positively associated with advanced stages and poor prognosis. KIFC1 knockdown suppressed HCC cell proliferation and invasion both in vitro and in vivo. Furthermore, KIFC1 knockdown decreased invadopodia formation and reduced epithelial-mesenchymal transition (EMT). HMGA1, an architectural transcriptional factor, was identified to interact with KIFC1. HMGA1 could bind to the promoters of Stat3, MMP2 and EMT-related genes and promote gene transcription. KIFC1 enhanced HMGA1 transcriptional activity and facilitated HCC proliferation and invasion. Moreover, KIFC1 was activated by TCF-4, and KIFC1 inhibition enhanced HCC cell sensitivity to paclitaxel. Conclusions Our findings suggest that KIFC1, activated by TCF-4, functions as an oncogene and promotes HCC pathogenesis through regulating HMGA1 transcriptional activity and that KIFC1 is a potential therapeutic target to enhance the paclitaxel sensitivity of HCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1331-8) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Xiao KH, Teng K, Ye YL, Tan L, Chen MK, Liang HT, Feng ZH, Duan JL, Deng MH, Wei WS, Luo JH, Qin ZK, Xie D. Kinesin family member C1 accelerates bladder cancer cell proliferation and induces epithelial-mesenchymal transition via Akt/GSK3β signaling. Cancer Sci 2019; 110:2822-2833. [PMID: 31278883 PMCID: PMC6726677 DOI: 10.1111/cas.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Kinesin family member C1 (KIFC1) is implicated in the clustering of multiple centrosomes to maintain tumor survival and is thought to be an oncogene in several kinds of cancers. In our experiments, we first performed bioinformatics analysis to investigate the expression levels of KIFC1 in bladder cancer (BC) specimens and normal bladder epitheliums and then, using our samples, verified findings by quantitative real‐time PCR and western blotting assays. All data showed that KIFC1 was significantly upregulated in BC specimens at both the mRNA and protein levels. Immunohistochemical studies in a cohort of 152 paraffin‐embedded BC tissues displayed that upregulated expression of KIFC1 clearly correlated with pT status (P = .014) and recurrent status (P = .002). Kaplan‐Meier survival analysis and log‐rank test indicated that patients with BC with high KIFC1 expression had both shorter cancer‐specific survival (P < .001) and recurrence‐free survival time (P < .001) than those with low KIFC1 expression. Furthermore, ectopic downregulation of KIFC1 weakened BC cell proliferation and migration both in vitro and in vivo, whereas upregulation of KIFC1 enhanced this in vitro. Overexpression of KIFC1 phosphorylated GSK3β and promoted Snail through activating AKT (protein kinase B0) to induce proliferation and epithelial–mesenchymal transition (EMT) and, therefore, substantially promoted BC migration and metastasis. Our study revealed an oncogenic role for KIFC1 to promote BC cell proliferation and EMT via Akt/GSK3β signaling; KIFC1 might be a promising prognostic biomarker as well as a therapeutic target for BC.
Collapse
Affiliation(s)
- Kang-Hua Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Teng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yun-Lin Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Tan
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming-Kun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hai-Tao Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Hao Feng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin-Ling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Su Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi-Ke Qin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Identification of KIF11 As a Novel Target in Meningioma. Cancers (Basel) 2019; 11:cancers11040545. [PMID: 30991738 PMCID: PMC6521001 DOI: 10.3390/cancers11040545] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Kinesins play an important role in many physiological functions including intracellular vesicle transport and mitosis. The emerging role of kinesins in different cancers led us to investigate the expression and functional role of kinesins in meningioma. Therefore, we re-analyzed our previous microarray dataset of benign, atypical, and anaplastic meningiomas (n = 62) and got evidence for differential expression of five kinesins (KIFC1, KIF4A, KIF11, KIF14 and KIF20A). Further validation in an extended study sample (n = 208) revealed a significant upregulation of these genes in WHO°I to °III meningiomas (WHO°I n = 61, WHO°II n = 88, and WHO°III n = 59), which was most pronounced in clinically more aggressive tumors of the same WHO grade. Immunohistochemical staining confirmed a WHO grade-associated upregulated protein expression in meningioma tissues. Furthermore, high mRNA expression levels of KIFC1, KIF11, KIF14 and KIF20A were associated with shorter progression-free survival. On a functional level, knockdown of kinesins in Ben-Men-1 cells and in the newly established anaplastic meningioma cell line NCH93 resulted in a significantly inhibited tumor cell proliferation upon siRNA-mediated downregulation of KIF11 in both cell lines by up to 95% and 71%, respectively. Taken together, in this study we were able to identify the prognostic and functional role of several kinesin family members of which KIF11 exhibits the most promising properties as a novel prognostic marker and therapeutic target, which may offer new treatment options for aggressive meningiomas.
Collapse
|
38
|
Taglieri L, Saccoliti F, Nicolai A, Peruzzi G, Madia VN, Tudino V, Messore A, Di Santo R, Artico M, Taurone S, Salvati M, Costi R, Scarpa S. Discovery of a pyrimidine compound endowed with antitumor activity. Invest New Drugs 2019; 38:39-49. [PMID: 30900116 DOI: 10.1007/s10637-019-00762-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
Recently, some synthetic nitrogen-based heterocyclic molecules, such as PJ34, have shown pronounced antitumor activity. Therefore, we designed and synthesized new derivatives characterized by a nitrogen-containing scaffold and evaluated their antiproliferative properties in tumor cells. We herein report the effects of three newly synthesized compounds on cell lines from three different human cancers: triple-negative breast cancer, colon carcinoma and glioblastoma. We found that two of these compounds did not affect proliferation, while the third significantly inhibited replication of the three cell lines. Moreover, this third molecule at 20 μM led to the upregulation of p21 and p27 and blockage of the cell cycle at G0/G1; in addition, it induced apoptosis in all three cell lines when used at higher concentrations (30-50 μM). The results demonstrate that this compound is a potent inhibitor of replication, an inducer of apoptosis and a negative regulator of cell cycle progression for cancer cells of different histotypes. Our data suggest a potential role for this new molecule as an interesting and powerful tool for new approaches in treating various cancers.
Collapse
Affiliation(s)
- Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alice Nicolai
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
- Department of Sensory Organs, Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Giovanna Peruzzi
- Italian Institute of Technology, Center for Life Nanoscience@Sapienza, Viale Regina Elena 324, 00161, Rome, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Valeria Tudino
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Samanta Taurone
- Department of Sensory Organs, Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maurizio Salvati
- Department of Human Neurosciences, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| |
Collapse
|
39
|
Gao XM, Mu DL, Hou CC, Zhu JQ, Jin S, Wang CL. Expression and putative functions of KIFC1 for nuclear reshaping and midpiece formation during spermiogenesis of Phascolosoma esculenta. Gene 2019; 683:169-183. [DOI: 10.1016/j.gene.2018.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
|
40
|
Han J, Wang F, Lan Y, Wang J, Nie C, Liang Y, Song R, Zheng T, Pan S, Pei T, Xie C, Yang G, Liu X, Zhu M, Wang Y, Liu Y, Meng F, Cui Y, Zhang B, Liu Y, Meng X, Zhang J, Liu L. KIFC1 regulated by miR-532-3p promotes epithelial-to-mesenchymal transition and metastasis of hepatocellular carcinoma via gankyrin/AKT signaling. Oncogene 2018; 38:406-420. [PMID: 30115976 PMCID: PMC6336682 DOI: 10.1038/s41388-018-0440-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/14/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. The poor survival may be due to a high proportions of tumor recurrence and metastasis. Kinesin family member C1 (KIFC1) is highly expressed in a variety of neoplasms and is a potential marker for non-small cell lung cancer or ovarian adenocarcinoma metastasis. Nevertheless, the role of KIFC1 in HCC metastasis remains obscure. We investigated this in the present study using HCC cell lines and clinical specimens. Our results indicated that increased levels of KIFC1 were associated with poor prognosis and metastasis in HCC. In addition, KIFC1 induced epithelial-to-mesenchymal transition (EMT) and HCC metastasis both in vitro and in vivo. This tumorigenic effect depended on gankyrin; inhibiting gankyrin activity reversed EMT via activation of protein kinase B (AKT)/Twist family BHLH transcription factor 1 (AKT/TWIST1). We also found that KIFC1 was directly regulated by the microRNA miR-532-3p, whose downregulation was associated with metastatic progression in HCC. These results denote that a decrease in miR-532-3p levels results in increased KIFC1 expression in HCC, leading to metastasis via activation of the gankyrin/AKT/TWIST1 signaling pathway.
Collapse
Affiliation(s)
- Jihua Han
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengyue Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaliang Lan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiabei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunlei Nie
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tiemin Pei
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changming Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangchao Yang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xirui Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingxi Zhu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yao Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanzheng Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yifeng Cui
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yufeng Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianzhi Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiewu Zhang
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
41
|
Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 2018; 150:303-325. [PMID: 30062583 DOI: 10.1007/s00418-018-1698-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 01/17/2023]
Abstract
Since its discovery well over 100 years ago (Flemming, in Sitzungsber Akad Wissensch Wien 71:81-147, 1875; Van Beneden, in Bull Acad R Belg 42:35-97, 1876) the centrosome is increasingly being recognized as a most impactful organelle for its role not only as primary microtubule organizing center (MTOC) but also as a major communication center for signal transduction pathways and as a center for proteolytic activities. Its significance for cell cycle regulation has been well studied and we now also know that centrosome dysfunctions are implicated in numerous diseases and disorders including cancer, Alstrom syndrome, Bardet-Biedl syndrome, Huntington's disease, reproductive disorders, and several other diseases and disorders. The present review is meant to build on information presented in the previous review (Schatten, in Histochem Cell Biol 129:667-686, 2008) and to highlight functions of the mammalian centrosome in health, and dysfunctions in disorders, disease, and aging with six sections focused on (1) centrosome structure and functions, and new insights into the role of centrosomes in cell cycle progression; (2) the role of centrosomes in tumor initiation and progression; (3) primary cilia, centrosome-primary cilia interactions, and consequences for cell cycle functions in health and disease; (4) transitions from centrosome to non-centrosome functions during cellular polarization; (5) other centrosome dysfunctions associated with the pathogenesis of human disease; and (6) centrosome functions in oocyte germ cells and dysfunctions in reproductive disorders and reproductive aging.
Collapse
|
42
|
Yukawa M, Yamauchi T, Kurisawa N, Ahmed S, Kimura KI, Toda T. Fission yeast cells overproducing HSET/KIFC1 provides a useful tool for identification and evaluation of human kinesin-14 inhibitors. Fungal Genet Biol 2018; 116:33-41. [DOI: 10.1016/j.fgb.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
|
43
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
44
|
Li G, Chong T, Yang J, Li H, Chen H. Kinesin Motor Protein KIFC1 Is a Target Protein of miR-338-3p and Is Associated With Poor Prognosis and Progression of Renal Cell Carcinoma. Oncol Res 2018; 27:125-137. [PMID: 29562961 PMCID: PMC7848269 DOI: 10.3727/096504018x15213115046567] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
KIFC1 (kinesin family member C1) plays a critical role in clustering of extra centrosomes in various cancer cells and thus could be considered as a promising therapeutic target. However, whether KIFC1 is involved in the procession of renal cell carcinoma (RCC) still remains unclear. In this study, we found that KIFC1 was upregulated in RCC tissues and is responsible for RCC tumorigenesis (p < 0.001). The high expression of KIFC1 correlates with aggressive clinicopathologic parameters. Kaplan–Meier analysis suggested that KIFC1 was associated with poor survival prognosis in RCC. Silencing KIFC1 dramatically resulted in inhibition of proliferation, delayed the cell cycle at G2/M phase, and suppressed cell invasion and migration in vitro. The antiproliferative effect of KIFC1 silencing was also observed in xenografted tumors in vivo. miR-338-3p could directly bind to the 3′-untranslated region (3′-UTR) of KIFC1, and ectopic miR-338-3p expression mimicked the inhibitory functions of KIFC1 silencing on RCC cells through inactivation of the PI3K/AKT signaling pathway. Therefore, these results revealed that KIFC1 may be a novel biomarker and an effective therapeutic target for the treatment of RCC.
Collapse
Affiliation(s)
- Gang Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Jie Yang
- Department of Nursing, Xi'an Beifang Chinese Medicine Skin Disease Hospital, Xi'an, Shaanxi Province, P.R. China
| | - Hongliang Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Haiwen Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
45
|
Patel N, Weekes D, Drosopoulos K, Gazinska P, Noel E, Rashid M, Mirza H, Quist J, Brasó-Maristany F, Mathew S, Ferro R, Pereira AM, Prince C, Noor F, Francesch-Domenech E, Marlow R, de Rinaldis E, Grigoriadis A, Linardopoulos S, Marra P, Tutt ANJ. Integrated genomics and functional validation identifies malignant cell specific dependencies in triple negative breast cancer. Nat Commun 2018; 9:1044. [PMID: 29535384 PMCID: PMC5849766 DOI: 10.1038/s41467-018-03283-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs. CNAs and gene expression alterations are integrated and genes scored for pre-specified target features revealing 130 candidate genes. We test functional dependence on each of these genes using RNAi in breast cancer and non-malignant cells, validating malignant cell selective dependence upon 37 of 130 genes. Further analysis reveals a cluster of 13 TNBC addiction genes frequently co-upregulated that includes genes regulating cell cycle checkpoints, DNA damage response, and malignant cell selective mitotic genes. We validate the mechanism of addiction to a potential drug target: the mitotic kinesin family member C1 (KIFC1/HSET), essential for successful bipolar division of centrosome-amplified malignant cells and develop a potential selection biomarker to identify patients with tumors exhibiting centrosome amplification.
Collapse
Affiliation(s)
- Nirmesh Patel
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Daniel Weekes
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Konstantinos Drosopoulos
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Patrycja Gazinska
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Elodie Noel
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Mamun Rashid
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Hasan Mirza
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
- Cancer Bioinformatics, King's College London, London, SE1 9RT, UK
| | - Jelmar Quist
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
- Cancer Bioinformatics, King's College London, London, SE1 9RT, UK
| | - Fara Brasó-Maristany
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Sumi Mathew
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Riccardo Ferro
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Ana Mendes Pereira
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Cynthia Prince
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Farzana Noor
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Erika Francesch-Domenech
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Rebecca Marlow
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Emanuele de Rinaldis
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
- Precision Immunology Cluster, Sanofi, 640 Memorial Drive, Cambridge, MA, 02149, USA
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
- Cancer Bioinformatics, King's College London, London, SE1 9RT, UK
| | - Spiros Linardopoulos
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Pierfrancesco Marra
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, King's College London, London, SE1 9RT, UK.
- School of Cancer and Pharmaceutical Sciences, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, UK.
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
46
|
The Impact of Centrosome Pathologies on Prostate Cancer Development and Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1095:67-81. [DOI: 10.1007/978-3-319-95693-0_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Thompson LL, Jeusset LMP, Lepage CC, McManus KJ. Evolving Therapeutic Strategies to Exploit Chromosome Instability in Cancer. Cancers (Basel) 2017; 9:cancers9110151. [PMID: 29104272 PMCID: PMC5704169 DOI: 10.3390/cancers9110151] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is a devastating disease that claims over 8 million lives each year. Understanding the molecular etiology of the disease is critical to identify and develop new therapeutic strategies and targets. Chromosome instability (CIN) is an abnormal phenotype, characterized by progressive numerical and/or structural chromosomal changes, which is observed in virtually all cancer types. CIN generates intratumoral heterogeneity, drives cancer development, and promotes metastatic progression, and thus, it is associated with highly aggressive, drug-resistant tumors and poor patient prognosis. As CIN is observed in both primary and metastatic lesions, innovative strategies that exploit CIN may offer therapeutic benefits and better outcomes for cancer patients. Unfortunately, exploiting CIN remains a significant challenge, as the aberrant mechanisms driving CIN and their causative roles in cancer have yet to be fully elucidated. The development and utilization of CIN-exploiting therapies is further complicated by the associated risks for off-target effects and secondary cancers. Accordingly, this review will assess the strengths and limitations of current CIN-exploiting therapies, and discuss emerging strategies designed to overcome these challenges to improve outcomes and survival for patients diagnosed with cancer.
Collapse
Affiliation(s)
- Laura L Thompson
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Chloe C Lepage
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
48
|
Dai J, Bing Z, Zhang Y, Li Q, Niu L, Liang W, Yuan G, Duan L, Yin H, Pan Y. Integrated mRNAseq and microRNAseq data analysis for grade III gliomas. Mol Med Rep 2017; 16:7468-7478. [PMID: 28944855 PMCID: PMC5865882 DOI: 10.3892/mmr.2017.7545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
The World Health Organization classification distinguishes four grades for gliomas. Grade III gliomas, which are brain malignant brain tumors with variable biological behavior and propensity, have been not widely investigated. The objective of the present study was to identify specific gene modules and valuable hubs associated with gliomagenesis and molecular signatures to assist in determining grade III glioma prognosis. mRNAseq and micro (mi)RNAseq data were used to construct a co-expression network of gliomas using weight gene co-expression network analysis, and revealed the prognostic molecular signature of grade III gliomas. The differently expressed miRNAs and mRNAs were identified. A total of 37 mRNAs and 10 miRNAs were identified, which were closely associated with the survival rates of patients with grade III glioma. To further understand the tumorigenesis, Cytoscape software was used to construct a network containing these differently expressed molecules. The result suggested that both the downregulated genes and upregulated genes are vital in the process of glioma deterioration, and certain genes are closely associated with clinical prognosis.
Collapse
Affiliation(s)
- Junqiang Dai
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Yinian Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiao Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Liang Niu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Wentao Liang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guoqiang Yuan
- Institute of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Lei Duan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
49
|
Karki M, Keyhaninejad N, Shuster CB. Precocious centriole disengagement and centrosome fragmentation induced by mitotic delay. Nat Commun 2017; 8:15803. [PMID: 28607478 PMCID: PMC5474744 DOI: 10.1038/ncomms15803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022] Open
Abstract
The spindle assembly checkpoint (SAC) delays mitotic progression until all sister chromatid pairs achieve bi-orientation, and while the SAC can maintain mitotic arrest for extended periods, moderate delays in mitotic progression have significant effects on the resulting daughter cells. Here we show that when retinal-pigmented epithelial (RPE1) cells experience mitotic delay, there is a time-dependent increase in centrosome fragmentation and centriole disengagement. While most cells with disengaged centrioles maintain spindle bipolarity, clustering of disengaged centrioles requires the kinesin-14, HSET. Centrosome fragmentation and precocious centriole disengagement depend on separase and anaphase-promoting complex/cyclosome (APC/C) activity, which also triggers the acquisition of distal appendage markers on daughter centrioles and the loss of procentriolar markers. Together, these results suggest that moderate delays in mitotic progression trigger the initiation of centriole licensing through centriole disengagement, at which point the ability to maintain spindle bipolarity becomes a function of HSET-mediated spindle pole clustering. The spindle assembly checkpoint delays mitotic progression until sister chromatids are bi-oriented. Here the authors show that moderate delays in mitotic progression induce centrosome fragmentation and centriole disengagement and that spindle bipolarity is ensured by HSET-mediated spindle pole clustering.
Collapse
Affiliation(s)
- Menuka Karki
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | - Neda Keyhaninejad
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA.,Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA
| |
Collapse
|
50
|
C-terminal kinesin motor KIFC1 participates in facilitating proper cell division of human seminoma. Oncotarget 2017; 8:61373-61384. [PMID: 28977870 PMCID: PMC5617430 DOI: 10.18632/oncotarget.18139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
C-terminus kinesin motor KIFC1 is known for centrosome clustering in cancer cells with supernumerary centrosomes. KIFC1 crosslinks and glides on microtubules (MT) to assist normal bipolar spindle formation to avoid multi-polar cell division, which might be fatal. Testis cancer is the most common human cancer among young men. However, the gene expression profiles of testis cancer is still not complete and the expression of the C-terminus kinesin motor KIFC1 in testis cancer has not yet been examined. We found that KIFC1 is enriched in seminoma tissues in both mRNA level and protein level, and is specifically enriched in the cells that divide actively. Cell experiments showed that KIFC1 may be essential in cell division, but not essential in metastasis. Based on subcellular immuno-florescent staining results, we also described the localization of KIFC1 during cell cycle. By expressing ΔC-FLAG peptide in the cells, we found that the tail domain of KIFC1 might be essential for the dynamic disassociation of KIFC1, and the motor domain of KIFC1 might be essential for the degradation of KIFC1. Our work provides a new perspective for seminoma research.
Collapse
|