1
|
Hariom SK, Nelson EJR. Effects of short-term hypergravity on hematopoiesis and vasculogenesis in embryonic zebrafish. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:21-29. [PMID: 35940686 DOI: 10.1016/j.lssr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microgravity and hypergravity-induced changes affect both molecular and organismal responses as demonstrated in various animal models. In addition to its inherent advantages, zebrafish have been shown to be incredibly resilient to altered gravity conditions. To understand the effects of altered gravity on animal physiology, especially the cardiovascular system, we used 2 h centrifugations to simulate short-term hypergravity and investigated its effects on zebrafish development. Morphological and in situ hybridization observations show a comparable overall development in both control and treated embryos. Spatiotemporal analysis revealed varied gene expression patterns across different developmental times. Genes driving primitive hematopoiesis (tal1, gata1) and vascular specificity (vegf, etv2) displayed an early onset of expression following hypergravity exposure. Upregulated expression of hematopoiesis-linked genes, such as runx1, cmyb, nos, and pdgf family demonstrate short-term hypergravity to be a factor inducing definitive hematopoiesis through a combinatorial mechanism. We speculate that these short-term hypergravity-induced physiological changes in the developing zebrafish embryos constitute a rescue mechanism to regain homeostasis.
Collapse
Affiliation(s)
- Senthil Kumar Hariom
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India
| | - Everette Jacob Remington Nelson
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India.
| |
Collapse
|
2
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
3
|
Ji M, Kim HJ, Ahn CB, Son KH, Hong JH. Cellular channelopathy mediated by hypergravity: IL-6-mediated Nkcc1 activation and enhanced Trpm2 expression in rat atrium. Cell Tissue Res 2020; 383:1017-1024. [PMID: 33159577 DOI: 10.1007/s00441-020-03299-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
Abstract
Although cardiac tissue is considered a target of gravitational force (g-force), the mechanism of hypergravity on the ion modulation or identification of ion transporters is still unknown. Thus, we determine the effect of hypergravity on a physical force-sensitive cytokine, IL-6 and its related channel activity to investigate rat cardiac function changes in response to accelerated g-force. Serum IL-6 levels and intracellular calcium levels of the right atrium were moderately increased under hypergravity stimulation (4g). IL-6 was involved in the modulation of sodium-potassium-chloride cotransporter (Nkcc) activity. Surprisingly, the right atrium under 4g revealed significantly enhanced Nkcc1 activity. The use of IL-6 on the NKCC1-overexpressed or native NKCC-expressing cells also showed enhanced NKCC1 activity. Hypergravity conditions were also involved in the oxidative stress activated Trpm2 channel and revealed an enhanced expression of the Trpm2 channel under 4g in the rat right atrium. In conclusion, hypergravity revealed that moderate increases in serum IL-6 and enhanced Nkcc1 activity was modulated by IL-6. In addition, enhanced Trpm2 channel expression could be involved in the increased intracellular calcium levels of the right atrium under hypergravitational force. We therefore address that enhanced physical force-sensitive cytokine and oxidative stress by the gravitational force mediate activation of the cotransporter involved in possibilities of edema and calcium loading in cardiac tissue.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, 21999, South Korea
| | - Hyun Ji Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, South Korea
| | - Chi Bum Ahn
- Center for Information Security Technologies, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon, 21565, South Korea.
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, 21999, South Korea. .,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, 21999, South Korea.
| |
Collapse
|
4
|
Bagali S, Nerune SM, Reddy RC, Yendigeri SM, Patil BS, Naikwadi AA, Kulkarni RV, Das KK. Low oxygen microenvironment and cardiovascular remodeling: Role of dual L/N.type Ca 2+ channel blocker. Indian J Pharmacol 2020; 52:383-391. [PMID: 33283770 PMCID: PMC8025765 DOI: 10.4103/ijp.ijp_136_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Patients exposed to chronic sustained hypoxia frequently develop cardiovascular disease risk factors to ultimately succumb to adverse cardiovascular events. In this context, the present study intends to assess the role of cilnidipine (Cil), a unique calcium channel blocker that blocks both L-type and N-type calcium channels, on cardiovascular pathophysiology in face of chronic sustained hypoxia exposure. MATERIALS AND METHODS The study involved Wistar strain albino rats. The group-wise allocation of the experimental animals is as follows - Group 1, control (21% O2); Group 2, chronic hypoxia (CH) (10% O2, 90% N); Group 3, Cil + 21% O2; and Group 4, CH (10% O2, 90% N) + Cil (CH + Cil). Cardiovascular hemodynamics, heart rate variability, and endothelial functions (serum nitric oxide [NO], serum endothelial nitric oxide synthase [NOS3], and serum vascular endothelial growth factor [VEGF]) were assessed. Cardiovascular remodeling was studied by histopathological examination of the ventricular tissues, coronary artery (intramyocardial), and elastic and muscular arteries. Normalized wall index of the coronary artery was also calculated. RESULTS AND CONCLUSION The results demonstrated altered cardiovascular hemodynamics, disturbed cardiovascular autonomic balance, increased levels of VEGF and NOS3, and decreased bioavailability of NO on exposure to chronic sustained hypoxia. The histopathological examination further pointed toward cardiovascular remodeling. Treatment with Cil ameliorated the cardiovascular remodeling and endothelial dysfunction induced by CH exposure, which may be due to its blocking actions on L/N-type of calcium channels, indicating the possible therapeutic role of Cil against CH-induced cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Shrilaxmi Bagali
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Savitri M Nerune
- Department of Pathology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - R Chandramouli Reddy
- Department of Biochemistry, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Saeed M Yendigeri
- Department of Pathology, Al-Ameen Medical College, Vijayapura, Karnataka, India
| | - Bheemshetty S Patil
- Department of Anatomy, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Akram A Naikwadi
- Department of Pharmacology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics and Pharmaceutical Technology, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapura, Karnataka, India
| | - Kusal K Das
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| |
Collapse
|
5
|
Abdelzaher WY, Rofaeil RR, Ali DME, Attya ME. Protective effect of dipeptidyl peptidase-4 inhibitors in testicular torsion/detorsion in rats: a possible role of HIF-1α and nitric oxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:603-614. [PMID: 31773182 DOI: 10.1007/s00210-019-01765-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022]
Abstract
Spermatic cord torsion is a serious and common urologic emergency. It requires early diagnosis for prevention of subfertility and testicular necrosis. Vildagliptin and sitagliptin are anti-diabetic drugs of the dipeptidyl peptidase-4 (DPP-4) inhibitors that have a protective role against cerebral ischemic stroke and cardiac ischemia reperfusion. This study aimed to investigate the role and mechanism of action of vildagliptin and sitagliptin in a model of testicular ischemia/reperfusion injury by testicular torsion/detorsion (T/D). Testicular T/D was done and vildagliptin and sitagliptin were administered either alone or in combination with nitric oxide synthase (NOS) inhibitor. Serum total cholesterol and testosterone were measured, while in testicular tissue testosterone, malondialdehyde (MDA) level, total antioxidant capacity (TAC), nitric oxide level, caspase-3, superoxide dismutase (SOD), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α) and endothelial NOS (eNOS), and inducible NOS (iNOS) and neuronal NOS (nNOS) were measured. Histopathology of testicular tissue was done. Vildagliptin and sitagliptin increased serum testosterone, expression, and activity of SOD and testicular TAC. It also reduced total serum cholesterol, testicular MDA, caspase-3, HIF-1α, TNF-α, and expression of eNOS, iNOS, and nNOS. Vildagliptin and sitagliptin also improved histopathological picture of testicular tissue. NOS inhibitor produced similar result to DDP-4 inhibitors; however, its co-administration augmented the effect of vildagliptin and sitagliptin on these parameters. DPP-4 inhibitors, vildagliptin, and sitagliptin were protective against testicular T/D-induced injury mostly by anti-oxidative stress, and anti-apoptotic and anti-inflammatory actions that was augmented by NOS inhibition with a possible role for HIF-1α expression.
Collapse
Affiliation(s)
| | - Remon Roshdy Rofaeil
- Department of Pharmacology, Minia University, Minia, 61111, Egypt. .,Department of Pharmacology, Deraya University, New Minia City, Egypt.
| | | | | |
Collapse
|
6
|
Adrenalectomy abolishes hypergravity-induced gastric acid hyposecretion. Oncotarget 2018; 8:30700-30705. [PMID: 28430608 PMCID: PMC5458160 DOI: 10.18632/oncotarget.15408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 11/25/2022] Open
Abstract
Jet fighter pilots experience high gravitational acceleration forces in the cephalocaudal direction (+Gz), causing severe stress. Stress affects different physiological functions of the gastrointestinal tract. Although the effects of exposure to hypergravity on cardiovascular and cerebral functions have been the subject of numerous studies, crucial information regarding potential pathophysiological alterations following hypergravity exposure in the gastrointestinal tract is lacking. We recently documented a significant decrease in gastric secretory activity in rats after acute exposure to hypergravity. In the present study, we investigated the effects of adrenalectomy on gastric acid secretion and plasma gastrin level in hypergravity-exposed rats. Male Sprague-Dawley rats were adrenalectomized and exposed to +10Gz three times for 3 min. Gastric juice and blood samples were collected, and the volume and total acidity of gastric juice and plasma level of gastrin were measured. Consistent with our previous data, acute exposure to +10Gz significantly altered the gastric juice parameters in the sham-operated rats. The volume (P < 0.001) and acidity (P < 0.001) of gastric juice in the hypergravity-exposed rats were significantly lower than those in the nonexposed rats. In contrast, in adrenalectomized rats, the differences in the gastric juice volume (P = 0.712) and acidity (P = 0.279) were not statistically significant between the hypergravity-exposed and nonexposed rats. We demonstrated that adrenalectomy abolished hypergravity-induced gastric acid hyposecretion, but did not influence gastrin release. These findings suggest that the adrenal glands are required for hypergravity-induced gastric acid hyposecretion.
Collapse
|
7
|
Yoon N, Na K, Kim HS. Simulated weightlessness affects the expression and activity of neuronal nitric oxide synthase in the rat brain. Oncotarget 2018; 8:30692-30699. [PMID: 28430607 PMCID: PMC5458159 DOI: 10.18632/oncotarget.15407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/01/2017] [Indexed: 01/15/2023] Open
Abstract
Spaceflight induces pathophysiological alterations in various organs. To study pathophysiological adaptations to weightlessness on the ground, the tail suspension (TS) rat model has been used to simulate the effects of weightlessness. There is currently little information on the effect of TS on the expression and activity of nitric oxide synthase (NOS) in the brain. In this study, we examined time-dependent alterations in the expression and activity of neuronal NOS (nNOS) in the brains of TS rats. Male Sprague-Dawley rats were tail-suspended for 1 (TS1), 7 (TS7), and 14 (TS14) days or rested on the ground for 3 days after 14 days of TS. TS1 and TS7 rats exhibited no significant alterations in the expression of nNOS compared to control rats, whereas nNOS expression in TS14 rats was significantly upregulated compared to control rats. Normalized expression of nNOS mRNA and protein in TS14 rats (1.86 ± 0.48 and 1.84 ± 0.29, respectively) were significantly higher than that of control rats (P < 0.001 and P < 0.001, respectively). Consistent with these results, significant elevations in NOS activity and NO production were observed in TS14 rats. Thus, we demonstrated a significant upregulation of nNOS expression, accompanied by significant increases in NOS activity and NO production, in the brain of rats exposed to simulated weightlessness.
Collapse
Affiliation(s)
- Nara Yoon
- Department of Pathology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, Republic of Korea
| | - Kiyong Na
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
The hypoxia-responsive lncRNA NDRG-OT1 promotes NDRG1 degradation via ubiquitin-mediated proteolysis in breast cancer cells. Oncotarget 2017. [PMID: 29535820 PMCID: PMC5828211 DOI: 10.18632/oncotarget.23732] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypoxia can lead to solid tumor aggressiveness by driving multiple signaling pathways. Long non-coding RNAs respond to several extrinsic stimuli, causing changes in cancer cells by participating in multiple steps of gene expression. However, genomic profiling of long non-coding RNAs regulated by oxygen in breast cancer remained unclear. Therefore, the aims of this study were to identify oxygen-responsive long non-coding RNAs in breast cancer cells, and to delineate their regulatory mechanisms. The expression profiling of long non-coding RNAs in breast cancer cells growing under normoxic, hypoxic, and re-oxygenated conditions was examined using next-generation sequencing technology. Four hundred and seventy-two lncRNAs oxygen-responsive lncRNAs were identified. After examining the top three differentially expressed lncRNAs in hypoxia, we selected N-Myc Downstream Regulated Gene 1-Overlapping 1 (NDRG1-OT1) for further study, especially the most responsive isoform, NDRG1-OT1_v4. We overexpressed NDRG1-OT1_v4 under normoxia and performed microarray analysis to identify 108 NDRG1-OT1_v4 regulated genes and their functions. Among these genes, we found that both NDRG1 mRNA expression and NDRG1 protein levels were inhibited by NDRG1-OT1_v4. Finally, we used co-immunoprecipitation to show that NDRG1-OT1_v4 destabilizes NDRG1 by promoting ubiquitin-mediated proteolysis. Our findings reveal a new type of epigenetic regulation of NDRG1 by NDRG1-OT1_v4 in breast cancer cells.
Collapse
|
9
|
Clinicopathological characteristics of fallopian tube metastases from primary endometrial, cervical, and nongynecological malignancies: a single institutional experience. Virchows Arch 2017; 471:363-373. [DOI: 10.1007/s00428-017-2186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022]
|
10
|
Yoon G, Kim HS. Gastric acid response to acute exposure to hypergravity. Oncotarget 2017; 8:64-69. [PMID: 27992379 PMCID: PMC5352184 DOI: 10.18632/oncotarget.13969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022] Open
Abstract
The influence of environmental stressors on the pathogenesis of gastrointestinal disease has received increased awareness. Stress affects different physiological functions of the gastrointestinal tract, including gastric acid secretion and mucosal blood flow. Repeated exposures of rapid-onset, highly-sustained hypergravity cause severe physical stress in the pilot. Although the effects of exposure to hypergravity on cardiovascular and cerebral functions have been the subjects of numerous studies, crucial information regarding pathophysiological changes in the gastrointestinal tract following hypergravity exposure is lacking. In this study, we investigated the effects of acute exposure to hypergravity on gastric secretory activity and gastrin release. Male Sprague-Dawley rats were exposed to +10Gz three times for 3 min. Gastric juice and blood were collected. The volume and total acidity of gastric juice, and the plasma gastrin level was measured. Acute exposure to +10Gz significantly decreased the gastric juice parameters. The gastric juice volume and total acidity of hypergravity-exposed rats were 3.54 ± 0.32 mL/100 g and 84.90 ± 5.17 mEq/L, respectively, which were significantly lower than those of the nonexposed rats (4.62 ± 0.39 mL/100 g and 97.37 ± 5.42 mEq/L; P < 0.001 and P < 0.001, respectively). In contrast, plasma gastrin level was not significantly altered following hypergravity exposure. We demonstrated that acute exposure to hypergravity led to a significant decrease in the gastric juice volume and acidity but did not alter the plasma gastrin level.
Collapse
Affiliation(s)
- Gun Yoon
- Shinsegae Women's Hospital, Daegu, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|