1
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
2
|
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. J Exp Med 2022; 219:e20211505. [PMID: 35522218 PMCID: PMC9086500 DOI: 10.1084/jem.20211505] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers and is projected to soon be the second leading cause of cancer death. Median survival of PDA patients is 6-10 mo, with the majority of diagnoses occurring at later, metastatic stages that are refractory to treatment and accompanied by worsening prognoses. Glycosylation is one of the most common types of post-translational modifications. The complex landscape of glycosylation produces an extensive repertoire of glycan moieties, glycoproteins, and glycolipids, thus adding a dynamic and tunable level of intra- and intercellular signaling regulation. Aberrant glycosylation is a feature of cancer progression and influences a broad range of signaling pathways to promote disease onset and progression. However, despite being so common, the functional consequences of altered glycosylation and their potential as therapeutic targets remain poorly understood and vastly understudied in the context of PDA. In this review, the functionality of glycans as they contribute to hallmarks of PDA are highlighted as active regulators of disease onset, tumor progression, metastatic capability, therapeutic resistance, and remodeling of the tumor immune microenvironment. A deeper understanding of the functional consequences of altered glycosylation will facilitate future hypothesis-driven studies and identify novel therapeutic strategies in PDA.
Collapse
Affiliation(s)
| | | | - Jasper Hsu
- Salk Institute for Biological Studies, La Jolla, CA
| | | |
Collapse
|
3
|
Vallejo A, Erice O, Entrialgo-Cadierno R, Feliu I, Guruceaga E, Perugorria MJ, Olaizola P, Muggli A, Macaya I, O'Dell M, Ruiz-Fernandez de Cordoba B, Ortiz-Espinosa S, Hezel AF, Arozarena I, Lecanda F, Avila MA, Fernandez-Barrena MG, Evert M, Ponz-Sarvise M, Calvisi DF, Banales JM, Vicent S. FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted. J Hepatol 2021; 75:363-376. [PMID: 33887357 DOI: 10.1016/j.jhep.2021.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/30/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. METHODS FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. RESULTS An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. CONCLUSIONS Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. LAY SUMMARY Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Adrián Vallejo
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
| | - Oihane Erice
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Iker Feliu
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; University of Navarra, Centre for Applied Medical Research, Computational Biology Program, Pamplona, Spain; ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria J Perugorria
- University of the Basque Country, San Sebastian, Spain; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Alexandra Muggli
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Irati Macaya
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
| | - Michael O'Dell
- University of Rochester Medical Centre, Rochester, NY, USA
| | | | - Sergio Ortiz-Espinosa
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
| | - Aram F Hezel
- University of Rochester Medical Centre, Rochester, NY, USA
| | - Imanol Arozarena
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Cancer Signalling Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Fernando Lecanda
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain; University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Matias A Avila
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; University of Navarra, Centre for Applied Medical Research, Hepatology Program, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; University of Navarra, Centre for Applied Medical Research, Hepatology Program, Pamplona, Spain
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; Ikerbasque, Basque Foundation for Sciences, Bilbao, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain; University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain.
| |
Collapse
|
4
|
Wang Q, Zou H, Wang Y, Shang J, Yang L, Shen J. CCR7-CCL21 axis promotes the cervical lymph node metastasis of tongue squamous cell carcinoma by up-regulating MUC1. J Craniomaxillofac Surg 2021; 49:562-569. [PMID: 33966967 DOI: 10.1016/j.jcms.2021.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 02/07/2021] [Indexed: 12/24/2022] Open
Abstract
This study aims at investigating the potential role of MUC1 in CCR7-CCL21 axis-induced metastasis of tongue squamous cell carcinoma (TSCC). TSCC patients were selected for epidemiologic trends. The expression of CCR7 and MUC1 was detected via immunohistochemistry. SCC15 and CAL27 cells were induced by CCL21 and specific antibody to CCR7. Gene and protein expression was detected using qRT-PCR and western blotting. Migration and invasion capacities of TSCC cells were determined using wound healing and Transwell invasion assays. The male:female ratio of 78 patients was 1.6:1. Metastasis rate of cervical lymph nodes (CLNs) was 42.3%. CLN metastasis significantly correlated with T staging (P = 0.026), clinical staging (P = 0.024), and depth of invasion (DOI, P = 0.001). DOI significantly influenced CLN metastasis (P = 0.033, OR = 10.919) of TSCC, as did CCR7 (P = 0.041) and MUC1 (P = 0.026). The consistency of CCR7 and MUC1 expression was fairly good (Kappa = 0.683, P < 0.001). Reduced survival was significantly associated with higher expression of CCR7 (P = 0.039) and MUC1 (P = 0.030). CCL21 up-regulated MUC1 in SCC15 cells, which was inhibited when CCR7 was blocked. MUC1 positively correlated with TSCC cell migration and invasion. CCR7-CCL21 axis might promote CLN metastasis of TSCC by up-regulating MUC1. CCR7 and MUC1 show promise as potential biomarkers for TSCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Huiru Zou
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Yue Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Medical College of Nankai University, Tianjin, 300071, China
| | - Jianwei Shang
- Department of Oral Pathology, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| | - Jun Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin Haihe Hospital, Tianjin, 300350, China.
| |
Collapse
|
5
|
Yu M, Ghamsari L, Rotolo JA, Kappel BJ, Mason JM. Combined computational and intracellular peptide library screening: towards a potent and selective Fra1 inhibitor. RSC Chem Biol 2021; 2:656-668. [PMID: 34458807 PMCID: PMC8341738 DOI: 10.1039/d1cb00012h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
To date, most research into the inhibition of oncogenic transcriptional regulator, Activator Protein 1 (AP-1), has focused on heterodimers of cJun and cFos. However, the Fra1 homologue remains an important cancer target. Here we describe library design coupled with computational and intracellular screening as an effective methodology to derive an antagonist that is selective for Fra1 relative to Jun counterparts. To do so the isCAN computational tool was used to rapidly screen >75 million peptide library members, narrowing the library size by >99.8% to one accessible to intracellular PCA selection. The resulting 131 072-member library was predicted to contain high quality binders with both a high likelihood of target engagement, while simultaneously avoiding homodimerization and off-target interaction with Jun homologues. PCA screening was next performed to enrich those members that meet these criteria. In particular, optimization was achieved via inclusion of options designed to generate the potential for compromised intermolecular contacts in both desired and non-desired species. This is an often-overlooked prerequisite in the conflicting design requirement of libraries that must be selective for their target in the context of a range of alternative potential interactions. Here we demonstrate that specificity is achieved via a combination of both hydrophobic and electrostatic contacts as exhibited by the selected peptide (Fra1W). In vitro analysis of the desired Fra1-Fra1W interaction further validates high Fra1 affinity (917 nM) yet selective binding relative to Fra1W homodimers or affinity for cJun. The isCAN → PCA based multidisciplinary approach provides a robust screening pipeline in generating target-specific hits, as well as new insight into rational peptide design in the search for novel bZIP family inhibitors.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biology & Biochemistry, University of Bath Claverton Down Bath BA2 7AY UK +44 (0)1225386867
| | - Lila Ghamsari
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320 Harrison NY 10528 USA
| | - Jim A Rotolo
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320 Harrison NY 10528 USA
| | - Barry J Kappel
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320 Harrison NY 10528 USA
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath Claverton Down Bath BA2 7AY UK +44 (0)1225386867
| |
Collapse
|
6
|
Activator Protein-1 Transcriptional Activity Drives Soluble Micrograft-Mediated Cell Migration and Promotes the Matrix Remodeling Machinery. Stem Cells Int 2019; 2019:6461580. [PMID: 32082384 PMCID: PMC7012246 DOI: 10.1155/2019/6461580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022] Open
Abstract
Impaired wound healing and tissue regeneration have severe consequences on the patient's quality of life. Micrograft therapies are emerging as promising and affordable alternatives to improve skin regeneration by enhancing the endogenous wound repair processes. However, the molecular mechanisms underpinning the beneficial effects of the micrograft treatments remain largely unknown. In this study, we identified the active protein-1 (AP-1) member Fos-related antigen-1 (Fra-1) to play a central role in the extracellular signal-regulated kinase- (ERK-) mediated enhanced cell migratory capacity of soluble micrograft-treated mouse adult fibroblasts and in the human keratinocyte cell model. Accordingly, we show that increased micrograft-dependent in vitro cell migration and matrix metalloprotease activity is abolished upon inhibition of AP-1. Furthermore, soluble micrograft treatment leads to increased expression and posttranslational phosphorylation of Fra-1 and c-Jun, resulting in the upregulation of wound healing-associated genes mainly involved in the regulation of cell migration. Collectively, our work provides insights into the molecular mechanisms behind the cell-free micrograft treatment, which might contribute to future advances in wound repair therapies.
Collapse
|
7
|
Abstract
AP-1 is a dimeric complex that is composed of JUN, FOS, ATF and MAF protein families. FOS-related antigen 1 (FRA1) which encoded by FOSL1 gene, belongs to the FOS protein family, and mainly forms an AP-1 complex with the protein of the JUN family to exert an effect. Regulation of FRA1 occurs at levels of transcription and post-translational modification, and phosphorylation is the major post-translational modification. FRA1 is mainly regulated by the mitogen-activated protein kinases signaling pathway and is degraded by ubiquitin-independent proteasomes. FRA1 can affect biological functions, such as tumor proliferation, differentiation, invasion and apoptosis. Studies have demonstrated that FRA1 is abnormally expressed in many tumors and plays a relevant role, but the specific condition varies from the target organs. FRA1 is overexpressed in breast cancer, lung cancer, colorectal cancer, prostate cancer, nasopharyngeal cancer, thyroid cancer and other tumors. However, the expression of FRA1 is decreased in cervical cancer, and the expression of FRA1 in ovarian cancer and oral squamous cell carcinoma is still controversial. In this review, we present a detailed description of the regulatory factors and functions of FRA1, also, the expression of FRA1 in various tumors and its function in relative tumor.
Collapse
|
8
|
Zou Q, Zhang CJ, Yan YZ, Min ZJ, Li CS. MUC-1 aptamer targeted superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of pancreatic cancer in vivo and in vitro experiment. J Cell Biochem 2019; 120:18650-18658. [PMID: 31338877 DOI: 10.1002/jcb.28950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
This study aims to explore the ability of magnetic resonance imaging (MRI) in mucin 1 (MUC1) modified superparamagnetic iron oxide nanoparticle (SPION) targeting human pancreatic cancer (PC). The MUC1 target-directed probe was prepared through MUC1 conjugated to SPION using the chemical method to assess its physiochemical characteristics, including hydration diameter, surface charge, and magnetic resonance signal. The cytotoxicity of MUC1-USPION was verified by MTS assay. BxPC-3 was cultured with MUC1-USPION and SPION in different concentrations. The combined condition of the targeted probes and cells were observed through Prussian blue staining. The nude mice model of pancreatic cancer was established to investigate the application of the probe. MRI was performed to determine the intensity of the signal of the transplanted tumor, while immunohistochemistry and Western blot analysis were performed to detect the expression of MUC1 after taking the transplanted tumor specimen. The particle size of the prepared molecular probe was 63.5 ± 3.2 nm, and the surface charge was 10.2 mV. Furthermore, the probe solution could significantly reduce the MRI at T2 , and the magnetic resonance transverse relaxation rate (ΔR2 ) has a linear relationship with the concentration of iron in the solution. The cell viability of MUC1-USPION in different concentrations revealed no statistical difference, according to the MTS assay. In vitro, the MRI demonstrated decreased T2WI signal intensity in both groups, especially the targeting group. In vivo, MUC1 could selectively accumulate in the nude mice model, and significantly reduce the T2 signal strength. In subsequent experiments, the expression of MUC1 was high in pancreatic cancer tissues, but low in normal pancreatic tissues, as determined by immunohistochemistry and Western blot analysis. The prepared samples can be combined with pancreatic cancer tissue specificity by in vivo imaging, providing reliable early in vivo imaging data for disease diagnosis.
Collapse
Affiliation(s)
- Qi Zou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| | - Chong-Jie Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| | - Yu-Zhong Yan
- Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhi-Jun Min
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| | - Chun-Sheng Li
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Nimmakayala RK, Seshacharyulu P, Lakshmanan I, Rachagani S, Chugh S, Karmakar S, Rauth S, Vengoji R, Atri P, Talmon GA, Lele SM, Smith LM, Thapa I, Bastola D, Ouellette MM, Batra SK, Ponnusamy MP. Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1. Gastroenterology 2018; 155:892-908.e6. [PMID: 29864419 PMCID: PMC6120776 DOI: 10.1053/j.gastro.2018.05.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/27/2017] [Revised: 05/08/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Cigarette smoking is a major risk factor for pancreatic cancer. Aggressive pancreatic tumors contain cancer cells with stem cell features. We investigated whether cigarette smoke induces stem cell features in pancreatic cancer cells. METHODS KrasG12D; Pdx1-Cre mice were exposed to cigarette smoke or clean air (controls) for up to 20 weeks; pancreata were collected and analyzed by histology, quantitative reverse transcription polymerase chain reaction, and confocal immunofluorescence microscopy. HPNE and Capan1 cells were exposed to cigarette smoke extract (CSE), nicotine and nicotine-derived carcinogens (NNN or NNK), or clean air (controls) for 80 days and evaluated for stem cell markers and features using flow cytometry-based autofluorescence, sphere formation, and immunoblot assays. Proteins were knocked down in cells with small interfering RNAs. We performed RNA sequencing analyses of CSE-exposed cells. We used chromatin immunoprecipitation assays to confirm the binding of FOS-like 1, AP-1 transcription factor subunit (FOSL1) to RNA polymerase II-associated factor (PAF1) promoter. We obtained pancreatic ductal adenocarcinoma (PDAC) and matched nontumor tissues (n = 15) and performed immunohistochemical analyses. RESULTS Chronic exposure of HPNE and Capan1 cells to CSE caused them to increase markers of stem cells, including autofluorescence and sphere formation, compared with control cells. These cells increased expression of ABCG2, SOX9, and PAF1, via cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) signaling to mitogen-activated protein kinase 1 and FOSL1. CSE-exposed pancreatic cells with knockdown of PAF1 did not show stem cell features. Exposure of cells to NNN and NNK led to increased expression of CHRNA7, FOSL1, and PAF1 along with stem cell features. Pancreata from KrasG12D; Pdx1-Cre mice exposed to cigarette smoke had increased levels of PAF1 mRNA and protein, compared with control mice, as well as increased expression of SOX9. Levels of PAF1 and FOSL1 were increased in PDAC tissues, especially those from smokers, compared with nontumor pancreatic tissue. CSE exposure increased expression of PHD-finger protein 5A, a pluripotent transcription factor and its interaction with PAF1. CONCLUSIONS Exposure to cigarette smoke activates stem cell features of pancreatic cells, via CHRNA7 signaling and FOSL1 activation of PAF1 expression. Levels of PAF1 are increased in pancreatic tumors of humans and mice with chronic cigarette smoke exposure.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Subodh M. Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, NE
| | - Dhundy Bastola
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, NE
| | - Michel M. Ouellette
- Department of Internal Medicine, College of Medicine, University of Nebraska medical Center, Omaha, NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE,Correspondence: Moorthy P. Ponnusamy and Surinder K. Batra, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A., Phone: 402-559-1170, Fax: 402-559-6650, (M.P.P) and (S.K.B)
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE,Correspondence: Moorthy P. Ponnusamy and Surinder K. Batra, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A., Phone: 402-559-1170, Fax: 402-559-6650, (M.P.P) and (S.K.B)
| |
Collapse
|
10
|
Functional Consequences of Differential O-glycosylation of MUC1, MUC4, and MUC16 (Downstream Effects on Signaling). Biomolecules 2016; 6:biom6030034. [PMID: 27483328 PMCID: PMC5039420 DOI: 10.3390/biom6030034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is one of the most abundant post-translational modifications that occur within the cell. Under normal physiological conditions, O-linked glycosylation of extracellular proteins is critical for both structure and function. During the progression of cancer, however, the expression of aberrant and truncated glycans is commonly observed. Mucins are high molecular weight glycoproteins that contain numerous sites of O-glycosylation within their extracellular domains. Transmembrane mucins also play a functional role in monitoring the surrounding microenvironment and transducing these signals into the cell. In cancer, these mucins often take on an oncogenic role and promote a number of pro-tumorigenic effects, including pro-survival, migratory, and invasive behaviors. Within this review, we highlight both the processes involved in the expression of aberrant glycan structures on mucins, as well as the potential downstream impacts on cellular signaling.
Collapse
|